Reductions for NP-Complete Problems

Tao Hou

1 Circuit Satisfiability: A First NP-Complete Problem

- **Definition 1.** Define a *circuit* K to be a labeled, directed acyclic graph such as the one shown in Figure [1:](#page-0-0) • The *sources* in K are the nodes with no incoming edges. They are either labeled a fixed value 0 or 1, or need to be assigned a value (thus called free sources)
	- Every other node is labeled with one of the Boolean operators ∧, ∨, or ¬; nodes labeled with \wedge or \vee have two incoming edges, and nodes labeled with \neg have one incoming edge. • There is a single node with no outgoing edges, and it represents the output: the result computed by the circuit.

 $\,1$ $\boldsymbol{0}$ Figure 1: A circuit with 5 sources (two of them have fixed truth values and three are free sources) and one output. [Figure from [\[1\]](#page-0-1)] **Problem 1** (CIRCUIT-SAT). Given a circuit K , is there an assignment of 0-1 values to the free sources that causes the output to have the value 1? Proposition 1. CIRCUIT-SAT is NP-complete.

- Sketch of proof. • Any algorithm that takes an input of n bits and produces a yes/no answer can be represented by a circuit having n sources
	- Moreover, if the algorithm takes poly-time, then circuit is of poly-size w.r.t \overline{n} .
- Consider some problem X in NP, which has a poly-time certifier $C(s, t)$. • An instance s of X is an "yes" instance if and only if there exists a certificate t of length $p(|s|)$ such that $C(s,t) = "yes".$
- Notice $C(s, t)$ is an algorithm taking an input of $|s| + |t|$ bits • So we convert it into a poly-size circuit K with $|s| + |t|$ sources:

– First $|s|$ sources are *hard-coded* with values of s – Remaining t sources are *free* and represent bits of the certificate t • Circuit K is satisfiable there iff exists a certificate t making $C(s, t) = \text{``yes''}.$ \Box

2 SAT and 3-SAT **Definition 2.** A Boolean formula is made up of the Boolean variables x_1, \ldots, x_n ,

operators including \land (AND), \lor (OR), \neg (NOT), \rightarrow (implication), \leftrightarrow (if and only if), and composite (combinations) of them possibly with parenthesis. E.g.,: $((x_1 \rightarrow x_2) \vee \neg ((\neg x_1 \leftrightarrow x_3) \vee x_4)) \wedge \neg x_2$. **Problem 2** (SAT). Given a Boolean formula with n Boolean variables x_1, \ldots, x_n ,

is there an assignment (of true/false values) to x_1, \ldots, x_n making the whole formula true?

Definition 3. Given *n* Boolean variables x_1, \ldots, x_n : • *literal*: one of the variables x_i or its negation $\neg x_i$ • *clause*: a disjunction of distinct literals, e.g., $x_1 \vee \neg x_2 \vee \neg x_1 \vee x_5$

Problem 3 (3-SAT). Given m clauses C_1, \ldots, C_m each containing exactly three literals over the Boolean variables x_1, \ldots, x_n , is there an assignment of truth values to the variables making $C_1 \wedge \cdots \wedge C_m$

to be true (i.e., all the clauses are true)? Proposition 2. 3-SAT is NP-complete.

- *Proof.* We shall omit the proof that $3\text{-SAT} \in \text{NP}$. We then prove that 3-SAT is NP-hard by reducing CIRCUIT-SAT to 3-SAT. Given a circuit K as an instance of CIRCUIT-SAT, we construct an instance of 3-SAT as follows: • To construct the Boolean variables: Have a variable x_v for each node v of the circuit, which encodes the out-going truth value of the node v . (This finishes the construction of the Boolean variables)
	- To construct the clauses: – A node v labeled with " \neg " with its only incoming edge from node u : Notice that we need to have $x_v = -x_u$. We guarantee this by adding the two clauses to the 3-SAT instance: $(x_v \vee x_u)$, and $(\neg x_v \vee \neg x_u)$.
		- $−$ A node v is labeled with "∨" with its two incoming edges from nodes u and w: We need to have $x_v = x_u \vee x_w$. We guarantee this by adding the following clauses: $(\neg x_v \lor x_u \lor x_w), (\neg x_u \lor x_v), \text{ and } (\neg x_w \lor x_v).$

Why? Because: $x_v \Leftrightarrow x_u \vee x_w = (x_v \Rightarrow x_u \vee x_w) \wedge (x_u \vee x_w \Rightarrow x_v)$ $=(\neg x_v \vee x_u \vee x_w) \wedge (\neg (x_u \vee x_w) \vee x_v)$

- $=(\neg x_v \vee x_u \vee x_w) \wedge ((\neg x_u \wedge \neg x_w) \vee x_v)$ $=(\neg x_v \vee x_u \vee x_w) \wedge (\neg x_u \vee x_v) \wedge (\neg x_w \vee x_v)$ – A node v labeled with "∧" with two incoming edges from nodes u and
- w: We need to have $x_v = x_u \wedge x_w$. We add the following clauses: $(\neg x_v \lor x_u), (\neg x_v \lor x_w), \text{ and } (x_v \lor \neg x_u \lor \neg x_w).$ – A source v labeled with a fixed value 1: Add a clause (x_v) with a single
- literal, forcing the variable x_v to take the designated value 1. – A source v labeled with a fixed value 0: Add a clause $(\neg x_v)$ with a single literal, forcing the variable x_v to take the designated value 0. – The output node α : Add the single-literal clause (x_0) , which requires that o take the value 1. We then claim that all the clauses we have constructed for 3-SAT

are satisfiable iff the circuit K can be satisfied: • Since free sources in K correspond to Boolean variables but *do not* correspond to any clauses, we are free to choose values for the Boolean variables corresponding to these free sources $\bullet~$ The clauses constructed for each internal node v guarantee that the Boolean variable x_v has the same value as the outgoing edge in K given a certain

 $z_1, z_2, z_3, z_4,$ • And the four clauses:

- $(\neg z_i \lor z_3 \lor z_4), (\neg z_i \lor \neg z_3 \lor z_4), (\neg z_i \lor z_3 \lor \neg z_4), (\neg z_i \lor \neg z_3 \lor \neg z_4)$ for each of $i = 1$ and $i = 2$. In order for all four clauses to be true, we must have $z_i = 0$ for $i = 1$ and $i = 2$. Then:
- $(t) \Rightarrow (t \vee z_1 \vee z_2)$
- $(t \vee t') \Rightarrow (t \vee t' \vee z_1)$

Proposition 3. SAT is NP-complete. Proof. This is easy because each instance of 3-SAT is an instance of SAT. \Box 3 Independent set

 \Box

Definition 4. In a graph $G = (V, E)$, we say a set of vertices $S \subseteq V$ is an independent set if no two vertices in S form an edge in G . Remark 4. By default, graphs are undirected in this topic.

We construct a graph $G = (V, E)$ consisting of 3k vertices with two types of edges: • G contains 3 vertices for each clause, one for each literal. • (Triangle edges) Connect the 3 literals in a clause in a triangle.

be exactly k) • This corresponds to choosing a literal from a clause to be "true" which

Definition 5. Given a graph $G = (V, E)$, we say that a set of vertices $S \subseteq V$ is a vertex cover of G if for every edge $e \in E$, at least one vertex of e is in S. Remark 8. It is easy to find large vertex covers in a graph (for example, the whole vertex set is one); the hard part is to find small ones **Problem 5** (VERTEX-COVER). Given a graph G and an integer k , does G contain a vertex cover of size at most k ? Remark 9. The "optimization" version of the problem is to find a vertex cover of the smallest size. **Proposition 10.** Let $G = (V, E)$ be a graph. Then S is an independent set of G if and only if its complement $V - S$ is a vertex cover of G . Proof.

• ⇒: – Suppose that S is an independent set.

- Consider an arbitrary edge e. – Since S is an independent set, the two vertices of e cannot be both in S . – So one of the vertex of e is in $V - S$. – Since e is arbitrary, $V - S$ is a vertex cover
- $\bullet \Leftarrow$: – Suppose that $V - S$ is a vertex cover.
	- Consider any two nodes u and v in S . – We want to show that $(u, v) \notin E$ so that S is independent. – Use proof by contradiction, suppose that $(u, v) \in E$.
	- Since $V S$ is a vertex cover, at least one of u, v is in $V S$ – Say $u \in V - S$
	- We have $u \notin S$ (a contradiction).

assignment on the free sources • The output value also has to be 1 by the single-literal clause (x_0) Notice that our goal was to create an instance of 3-SAT where all clauses have exactly 3 literals, while in the instance we constructed, some clauses

have lengths of 1 or 2. So we need to convert this instance of SAT to an equivalent instance in which each clause has exactly three literals. To do this: • Create four new variables:

Definition 6 (*k*-coloring). Given a graph G and k colors (labels), a k-coloring of G is an assignment of the k colors to each vertex such that no two adjacent vertex have the same color. **Problem 6** (k -COLORING). Given a graph G and an integer k , does G have a k-coloring?

Fact 12. A 2-colorable graph is also called a bipartite graph. Checking whether a graph is bipartite can be done in $O(m + n)$ time. Proposition 13. 3-COLORING is NP-complete. Proof.

- We again reduce 3-SAT to 3-COLORING.
- Suppose we are given an instance of 3-SAT with variables x_1, \ldots, x_n and clauses C_1, \ldots, C_k . • We going to construct a graph G as an instance of 3-COLORING.
- For each variable x_i , we define nodes v_i and $\overline{v_i}$ corresponding to x_i and its negation $\neg x_i$. • We also define three "special nodes" T , F , and B .
- For each variable x_i , we let v_i , $\overline{v_i}$, and B form a triangle. • We also let T , F , and B form a triangle (see figure below)

- (v_2) (v_2) Figure 3: Triangles constructed for three variables x_1, x_2, x_3 [taken from [\[1\]](#page-0-1)] • The idea of this construction is to let either v_i or $\overline{v_i}$ to get T's color and let
- the other get F 's color. • This provides a consistent "true"/"false" assignment to the variable x_i .
- We also add more edges and nodes for each clause C_j . • Take a clause $C_j = (x_1 \vee \neg x_2 \vee x_3)$ as an example.
- What we want to achieve is that, C_j is satisfiable iff at least one of the nodes v_1 , $\overline{v_2}$, and v_3 get T's color. • We attach the following nodes (gray ones) and edges to the existing nodes v_1 , $\overline{v_2}$, v_3 , T and F:

Figure 4: Attaching a subgraph to represent the clause $C_j = (x_1 \vee \neg x_2 \vee x_3)$

Remark 5. It is easy to find small independent sets in a graph (for example, a single node forms an independent set); the hard part is to find a large independent set, since when you add more and more points into a set, it becomes more probable that two vertices from the set are connected by an edge. **Problem 4** (IND-SET). Given a graph G and a number k , does G contain an independent set of size at least k ? Remark 6. The "optimization" version of the above problem is to find the independent set with the maximum size. Proposition 7. IND-SET is NP-complete.

Proof. **IND-SET** is in NP. To design a certifier, given a certificate t , you try to decode k vertices from the bits in t . If the decoding cannot be done, you simply return "no". Otherwise, you check whether the k vertices form an independent set (which is easy), and return "yes" or "no" accordingly. IND-SET is NP-complete. We show that 3-SAT reduces to IND-SET. Suppose we are given an instance Φ of 3-SAT: • Variables x_1, \ldots, x_n and clauses C_1, \ldots, C_k .

- We have that the top gray node can be colored iff one of the nodes v_1 , $\overline{v_2}$, and v_3 get T's color (i.e., C_j is satisfied). $\bullet~$ Adding the above nodes and edges for each clause, we have a graph G which is 3-colorable iff the instance of 3-SAT is satisfiable. \Box
- 6 Summary Three strategies for NP-completeness reductions:
- 1. Reduction by simple equivalence: IND-SET \leq_p VERTEX-COVER. 2. Reduction from special case to general case: $3\text{-SAT} \leq_p \text{SAT}$.
- 3. Reduction by encoding with gadgets: 3-SAT \leq_p VERTEX-COVER; 3-SAT $≤_p$ 3-COLORING. References
- [1] J. Kleinberg and E. Tardos. Algorithm Design. Addison Wesley, 2006.

• (Cross edges) Connect literals to their negations.

Example:

G

 x_1 x_2 x_1 \bigcirc n C C \overline{x}_4 x_2 x_1 x_3 x_2 x_3 $\left(\begin{array}{c|ccc}\overline{x_1} & v & x_2 & v & x_3\end{array}\right)$ \wedge $\left(\begin{array}{c|ccc}x_1 & v & \overline{x_2} & v & x_3\end{array}\right)$ \wedge $\left(\begin{array}{c|ccc}\overline{x_1} & v & x_2 & v & x_4\end{array}\right)$ $k = 3$ Φ $\qquad \qquad =$

Figure 2: [taken from [\[1\]](#page-0-1)]

Idea of construction: • To have an independent set of size $\geq k$ in G, you have to choose at most one vertex from each triangle (BTW, the size of the independent set has to

makes the clause "true" • Connecting the literals to their negations make sure that values for the variables are "consistent" across the different literals

- We then show that Φ is satisfiable iff G contains an independent set of size $\geq k$: • \Rightarrow : Given a satisfying assignment to Φ , select a "true" literal from each triangle in G . This is an independent set S of size k .
	- It's clear that no triangle edge connects two vertices in S $-$ A cross edge connecting two vertices $x_i, \neg x_i$ in S also cannot happen: $x_i, \neg x_i$ in S are two "true" literals from two different clauses, but they cannot be both "true".
	- \Leftarrow : Let S be independent set of size k in G. $- S$ must contain exactly one vertex (literal) from each triangle (clause). – Set these literals in S to "true", which can be done because there are no two literals such as $x_i, \neg x_i$ in S – We then have that each clause is true because we have a "true" literal from each triangle \Box

4 Vertex cover

Proposition 11. VERTEX-COVER is NP-complete.

Proof. Proof of VERTEX-COVER \in NP is omitted. To prove that it's NP-complete, we reduce IND-SET to VERTEX-COVER: • Given an instance (G, k) of IND-SET, we construct an instance $(G, n - k)$ of IND-SET, where n is the number of vertices of G . • Then, by Proposition [10,](#page-0-2) G has an independent set of size $\geq k$ if and only if G has a vertex cover of size $\leq n - k$. \Box

 \Box

5 Graph coloring

[taken from [\[1\]](#page-0-1)]

1