
Reductions for NP-Complete Problems

Tao Hou

1 Circuit Satisfiability: A First NP-Complete Prob-
lem

Definition 1. Define a circuit K to be a labeled, directed acyclic graph such
as the one shown in Figure 1:

• The sources in K are the nodes with no incoming edges. They are either
labeled a fixed value 0 or 1, or need to be assigned a value (thus called free
sources)

• Every other node is labeled with one of the Boolean operators ∧, ∨, or ¬;
nodes labeled with ∧ or ∨ have two incoming edges, and nodes labeled with
¬ have one incoming edge.

• There is a single node with no outgoing edges, and it represents the output:
the result computed by the circuit.

Figure 1: A circuit with 5 sources (two of them have fixed truth values and
three are free sources) and one output. [Figure from [1]]

Problem 1 (CIRCUIT-SAT). Given a circuit K, is there an assignment of 0-1
values to the free sources that causes the output to have the value 1?

Proposition 1. CIRCUIT-SAT is NP-complete.

Sketch of proof.

• Any algorithm that takes an input of n bits and produces a yes/no answer
can be represented by a circuit having n sources

• Moreover, if the algorithm takes poly-time, then circuit is of poly-size w.r.t
n.

• Consider some problem X in NP, which has a poly-time certifier C(s, t).

• An instance s of X is an “yes” instance if and only if there exists a certificate
t of length p(|s|) such that C(s, t) =“yes”.

• Notice C(s, t) is an algorithm taking an input of |s|+ |t| bits

• So we convert it into a poly-size circuit K with |s|+ |t| sources:

– First |s| sources are hard-coded with values of s

– Remaining t sources are free and represent bits of the certificate t

• Circuit K is satisfiable there iff exists a certificate t making C(s, t) =“yes”.

2 SAT and 3-SAT

Definition 2. A Boolean formula is made up of the Boolean variables x1, . . . , xn,
operators including ∧ (AND), ∨ (OR), ¬ (NOT), → (implication), ↔ (if and
only if), and composite (combinations) of them possibly with parenthesis. E.g.,:

((x1 → x2) ∨ ¬((¬x1 ↔ x3) ∨ x4)) ∧ ¬x2.

Problem 2 (SAT). Given a Boolean formula with n Boolean variables x1, . . . , xn,
is there an assignment (of true/false values) to x1, . . . , xn making the whole
formula true?

Definition 3. Given n Boolean variables x1, . . . , xn:

• literal : one of the variables xi or its negation ¬xi

• clause: a disjunction of distinct literals, e.g., x1 ∨ ¬x2 ∨ ¬x1 ∨ x5

Problem 3 (3-SAT). Given m clauses C1, . . . , Cm each containing exactly
three literals over the Boolean variables x1, . . . , xn, is there an assignment of
truth values to the variables making

C1 ∧ · · · ∧ Cm

to be true (i.e., all the clauses are true)?

Proposition 2. 3-SAT is NP-complete.

Proof. We shall omit the proof that 3-SAT ∈ NP. We then prove that 3-SAT
is NP-hard by reducing CIRCUIT-SAT to 3-SAT. Given a circuit K as an
instance of CIRCUIT-SAT, we construct an instance of 3-SAT as follows:

• To construct the Boolean variables: Have a variable xv for each node v of
the circuit, which encodes the out-going truth value of the node v. (This
finishes the construction of the Boolean variables)

• To construct the clauses:

– A node v labeled with “¬” with its only incoming edge from node u:
Notice that we need to have xv = ¬xu. We guarantee this by adding
the two clauses to the 3-SAT instance:

(xv ∨ xu), and (¬xv ∨ ¬xu).

– A node v is labeled with “∨” with its two incoming edges from nodes u
and w: We need to have xv = xu ∨ xw. We guarantee this by adding
the following clauses:

(¬xv ∨ xu ∨ xw), (¬xu ∨ xv), and (¬xw ∨ xv).

Why? Because:

xv ⇔ xu ∨ xw = (xv ⇒ xu ∨ xw) ∧ (xu ∨ xw ⇒ xv)

= (¬xv ∨ xu ∨ xw) ∧ (¬(xu ∨ xw) ∨ xv)

= (¬xv ∨ xu ∨ xw) ∧ ((¬xu ∧ ¬xw) ∨ xv)

= (¬xv ∨ xu ∨ xw) ∧ (¬xu ∨ xv) ∧ (¬xw ∨ xv)

– A node v labeled with “∧” with two incoming edges from nodes u and
w: We need to have xv = xu ∧ xw. We add the following clauses:

(¬xv ∨ xu), (¬xv ∨ xw), and (xv ∨ ¬xu ∨ ¬xw).

– A source v labeled with a fixed value 1: Add a clause (xv) with a single
literal, forcing the variable xv to take the designated value 1.

– A source v labeled with a fixed value 0: Add a clause (¬xv) with a
single literal, forcing the variable xv to take the designated value 0.

– The output node o: Add the single-literal clause (xo), which requires
that o take the value 1.

We then claim that all the clauses we have constructed for 3-SAT
are satisfiable iff the circuit K can be satisfied:

• Since free sources in K correspond to Boolean variables but do not corre-
spond to any clauses, we are free to choose values for the Boolean variables
corresponding to these free sources

• The clauses constructed for each internal node v guarantee that the Boolean
variable xv has the same value as the outgoing edge in K given a certain
assignment on the free sources

• The output value also has to be 1 by the single-literal clause (xo)

Notice that our goal was to create an instance of 3-SAT where all clauses
have exactly 3 literals, while in the instance we constructed, some clauses
have lengths of 1 or 2. So we need to convert this instance of SAT to an
equivalent instance in which each clause has exactly three literals.

To do this:

• Create four new variables:
z1, z2, z3, z4,

• And the four clauses:

(¬zi ∨ z3 ∨ z4), (¬zi ∨ ¬z3 ∨ z4), (¬zi ∨ z3 ∨ ¬z4), (¬zi ∨ ¬z3 ∨ ¬z4)

for each of i = 1 and i = 2. In order for all four clauses to be true, we must
have zi = 0 for i = 1 and i = 2.

Then:

• (t)⇒ (t ∨ z1 ∨ z2)

• (t ∨ t′)⇒ (t ∨ t′ ∨ z1)

Proposition 3. SAT is NP-complete.

Proof. This is easy because each instance of 3-SAT is an instance of SAT.

3 Independent set

Definition 4. In a graph G = (V,E), we say a set of vertices S ⊆ V is an
independent set if no two vertices in S form an edge in G.

Remark 4. By default, graphs are undirected in this topic.

Remark 5. It is easy to find small independent sets in a graph (for example,
a single node forms an independent set); the hard part is to find a large
independent set, since when you add more and more points into a set, it
becomes more probable that two vertices from the set are connected by an
edge.

Problem 4 (IND-SET). Given a graph G and a number k, does G contain an
independent set of size at least k?

Remark 6. The “optimization” version of the above problem is to find the
independent set with the maximum size.

Proposition 7. IND-SET is NP-complete.

Proof. IND-SET is in NP. To design a certifier, given a certificate t, you
try to decode k vertices from the bits in t. If the decoding cannot be done,
you simply return “no”. Otherwise, you check whether the k vertices form an
independent set (which is easy), and return “yes” or “no” accordingly.

IND-SET is NP-complete. We show that 3-SAT reduces to IND-SET.
Suppose we are given an instance Φ of 3-SAT:

• Variables x1, . . . , xn and clauses C1, . . . , Ck.

We construct a graph G = (V,E) consisting of 3k vertices with two types of
edges:

• G contains 3 vertices for each clause, one for each literal.

• (Triangle edges) Connect the 3 literals in a clause in a triangle.

• (Cross edges) Connect literals to their negations.

Example:

Figure 2: [taken from [1]]

Idea of construction:

• To have an independent set of size ≥ k in G, you have to choose at most
one vertex from each triangle (BTW, the size of the independent set has to
be exactly k)

• This corresponds to choosing a literal from a clause to be “true” which
makes the clause “true”

• Connecting the literals to their negations make sure that values for the
variables are “consistent” across the different literals

We then show that Φ is satisfiable iff G contains an independent set
of size ≥ k:

• ⇒: Given a satisfying assignment to Φ, select a “true” literal from each
triangle in G. This is an independent set S of size k.

– It’s clear that no triangle edge connects two vertices in S

– A cross edge connecting two vertices xi,¬xi in S also cannot happen:
xi,¬xi in S are two “true” literals from two different clauses, but they
cannot be both “true”.

• ⇐: Let S be independent set of size k in G.

– S must contain exactly one vertex (literal) from each triangle (clause).

– Set these literals in S to “true”, which can be done because there are
no two literals such as xi,¬xi in S

– We then have that each clause is true because we have a “true” literal
from each triangle

4 Vertex cover

Definition 5. Given a graph G = (V,E), we say that a set of vertices S ⊆ V
is a vertex cover of G if for every edge e ∈ E, at least one vertex of e is in S.

Remark 8. It is easy to find large vertex covers in a graph (for example, the
whole vertex set is one); the hard part is to find small ones

Problem 5 (VERTEX-COVER). Given a graph G and an integer k, does G
contain a vertex cover of size at most k?

Remark 9. The “optimization” version of the problem is to find a vertex cover
of the smallest size.

Proposition 10. Let G = (V,E) be a graph. Then S is an independent set of
G if and only if its complement V − S is a vertex cover of G.

Proof.

• ⇒:

– Suppose that S is an independent set.

– Consider an arbitrary edge e.

– Since S is an independent set, the two vertices of e cannot be both in S.

– So one of the vertex of e is in V − S.

– Since e is arbitrary, V − S is a vertex cover

• ⇐:

– Suppose that V − S is a vertex cover.

– Consider any two nodes u and v in S.

– We want to show that (u, v) 6∈ E so that S is independent.

– Use proof by contradiction, suppose that (u, v) ∈ E.

– Since V − S is a vertex cover, at least one of u, v is in V − S

– Say u ∈ V − S

– We have u 6∈ S (a contradiction).

Proposition 11. VERTEX-COVER is NP-complete.

Proof. Proof of VERTEX-COVER ∈ NP is omitted.
To prove that it’s NP-complete, we reduce IND-SET to VERTEX-COVER:

• Given an instance (G, k) of IND-SET, we construct an instance (G,n− k)
of IND-SET, where n is the number of vertices of G.

• Then, by Proposition 10, G has an independent set of size ≥ k if and only
if G has a vertex cover of size ≤ n− k.

5 Graph coloring

Definition 6 (k-coloring). Given a graph G and k colors (labels), a k-coloring
of G is an assignment of the k colors to each vertex such that no two adjacent
vertex have the same color.

Problem 6 (k-COLORING). Given a graph G and an integer k, does G have
a k-coloring?

Fact 12. A 2-colorable graph is also called a bipartite graph. Checking whether
a graph is bipartite can be done in O(m + n) time.

Proposition 13. 3-COLORING is NP-complete.

Proof.

• We again reduce 3-SAT to 3-COLORING.

• Suppose we are given an instance of 3-SAT with variables x1, . . . , xn and
clauses C1, . . . , Ck.

• We going to construct a graph G as an instance of 3-COLORING.

• For each variable xi, we define nodes vi and vi corresponding to xi and its
negation ¬xi.

• We also define three “special nodes” T , F , and B.

• For each variable xi, we let vi, vi, and B form a triangle.

• We also let T , F , and B form a triangle (see figure below)

Figure 3: Triangles constructed for three variables x1, x2, x3 [taken from [1]]

• The idea of this construction is to let either vi or vi to get T ’s color and let
the other get F ’s color.

• This provides a consistent “true”/“false” assignment to the variable xi.

• We also add more edges and nodes for each clause Cj .

• Take a clause Cj = (x1 ∨ ¬x2 ∨ x3) as an example.

• What we want to achieve is that, Cj is satisfiable iff at least one of the
nodes v1, v2, and v3 get T ’s color.

• We attach the following nodes (gray ones) and edges to the existing nodes
v1, v2, v3, T and F :

Figure 4: Attaching a subgraph to represent the clause Cj = (x1 ∨ ¬x2 ∨ x3)
[taken from [1]]

• We have that the top gray node can be colored iff one of the nodes v1, v2,
and v3 get T ’s color (i.e., Cj is satisfied).

• Adding the above nodes and edges for each clause, we have a graph G which
is 3-colorable iff the instance of 3-SAT is satisfiable.

6 Summary

Three strategies for NP-completeness reductions:

1. Reduction by simple equivalence: IND-SET ≤p VERTEX-COVER.

2. Reduction from special case to general case: 3-SAT ≤p SAT.

3. Reduction by encoding with gadgets: 3-SAT ≤p VERTEX-COVER; 3-SAT
≤p 3-COLORING.

References

[1] J. Kleinberg and E. Tardos. Algorithm Design. Addison Wesley, 2006.

1

	Circuit Satisfiability: A First NP-Complete Problem
	SAT and 3-SAT
	Independent set
	Vertex cover
	Graph coloring
	Summary

