NP Completeness

Tao Hou

- So far, our study has been focusing on *algorithms*, which are used to solve *problems*
	- ▶ Examples are merge sort, quick sort, and insertion sort, which are algorithms solving the *sorting* problem

- So far, our study has been focusing on *algorithms*, which are used to solve *problems*
	- \triangleright Examples are merge sort, quick sort, and insertion sort, which are algorithms solving the *sorting* problem
- In this topic, we are turning our attention to **problems** themselves

- So far, our study has been focusing on *algorithms*, which are used to solve *problems*
	- \triangleright Examples are merge sort, quick sort, and insertion sort, which are algorithms solving the *sorting* problem
- In this topic, we are turning our attention to **problems** themselves
- Previously, for different problems we consider, we were trying to show how we *can* design efficient algorithms for solving them

- So far, our study has been focusing on *algorithms*, which are used to solve *problems*
	- \triangleright Examples are merge sort, quick sort, and insertion sort, which are algorithms solving the *sorting* problem
- In this topic, we are turning our attention to **problems** themselves
- Previously, for different problems we consider, we were trying to show how we *can* design efficient algorithms for solving them
- **Now, we are going to show for certain problems, how we** *cannot* design efficient algorithms

- "Efficient" algorithms: *polynomial-time* algorithms, i.e., ones with worst-case time complexity being *O*(*n k*) for some constant *k*
- \blacksquare You might wonder whether all problems can be solved in polynomial time $-$ the answer is *no*:

- "Efficient" algorithms: *polynomial-time* algorithms, i.e., ones with worst-case time complexity being *O*(*n k*) for some constant *k*
- \blacksquare You might wonder whether all problems can be solved in polynomial time $-$ the answer is *no*:
	- ▶ There are problems, such as Turing's famous "Halting Problem", that cannot be solved by any computer in *finite* steps

- "Efficient" algorithms: *polynomial-time* algorithms, i.e., ones with worst-case time complexity being *O*(*n k*) for some constant *k*
- \blacksquare You might wonder whether all problems can be solved in polynomial time $-$ the answer is *no*:
	- ▶ There are problems, such as Turing's famous "Halting Problem", that cannot be solved by any computer in *finite* steps
	- \triangleright There are also problems that can be solved in finite steps (e.g., in exponential time), but not in polynomial time

- "Efficient" algorithms: *polynomial-time* algorithms, i.e., ones with worst-case time complexity being *O*(*n k*) for some constant *k*
- \blacksquare You might wonder whether all problems can be solved in polynomial time $-$ the answer is *no*:
	- ▶ There are problems, such as Turing's famous "Halting Problem", that cannot be solved by any computer in *finite* steps
	- \triangleright There are also problems that can be solved in finite steps (e.g., in exponential time), but not in polynomial time
- Generally, we think of problems that are solvable by polynomial-time algorithms as being *tractable*, or "easy", and problems that require superpolynomial time as being *intractable*, or "hard"

NP-Complete problems

- \blacksquare The subject of this chapter, however, is an interesting class of problems called the "NP-complete" problems, whose status is unknown:
	- \triangleright No polynomial-time algorithm have ever been discovered for an NP-complete problem, nor has anyone been able to prove that no polynomial-time algorithm can exist for any one of them

NP-Complete problems

- \blacksquare The subject of this chapter, however, is an interesting class of problems called the "NP-complete" problems, whose status is unknown:
	- \triangleright No polynomial-time algorithm have ever been discovered for an NP-complete problem, nor has anyone been able to prove that no polynomial-time algorithm can exist for any one of them
- **This so-called** $P \neq NP$ **question has been one of the deepest, most perplexing open** research problems in theoretical computer science since it was first posed in 1971

NP-Complete problems

- \blacksquare The subject of this chapter, however, is an interesting class of problems called the "NP-complete" problems, whose status is unknown:
	- \triangleright No polynomial-time algorithm have ever been discovered for an NP-complete problem, nor has anyone been able to prove that no polynomial-time algorithm can exist for any one of them
- **This so-called** $P \neq NP$ **question has been one of the deepest, most perplexing open** research problems in theoretical computer science since it was first posed in 1971
- Notice that NP-complete problems are still in general considered "hard" problems as most people believe you cannot find polynomial time algorithms for them

Similar problems could have completely different hardness

- Whether a problem is hard or easy can be very elusive
- \blacksquare Two problems could look very 'similar' on the surface, with one being polynomially-solvable and another being NP-complete

Similar problems could have completely different hardness

- Whether a problem is hard or easy can be very elusive
- Two problems could look very 'similar' on the surface, with one being polynomially-solvable and another being NP-complete
- Ex.: *Shortest* vs. *longest* simple paths
	- **Finding shortest paths: polynomially-solvable**
	- Finding longest paths: NP-complete

Similar problems could have completely different hardness

- Whether a problem is hard or easy can be very elusive
- Two problems could look very 'similar' on the surface, with one being polynomially-solvable and another being NP-complete

Ex.: *Shortest* vs. *longest* simple paths

- **Finding shortest paths: polynomially-solvable**
- Finding longest paths: NP-complete

Euler tour vs. Hamiltonian cycle:

- **An** *Euler tour* of an undirected graph is a cycle that traverses each edge of the graph exactly once (it is allowed to visit vertices more than once)
- A *Hamiltonian cycle* of an undirected graph is a simple cycle that traverses each vertex exactly once
- We can determine whether a graph has an Euler tour in only $O(|E|)$ time
- Determining whether an undirected graph has a Hamiltonian cycle is NP-complete

P, NP, NPC

Throughout this topic, we shall consider three classes of problems:

- **P**: Problems that are solvable in polynomial time
- NP: Problems that are "verifiable" in polynomial time
	- ▶ We have *P* ⊆ *NP*
- *NPC*: NP-complete problems, those problems that are as hard as *any* problems in the class *NP* (you can also say is the hardest problem in *NP*)

Why do we study it?

Understanding NP-completeness theory is critical to algorithm designers:

- If you can find that a problem is NP-complete, you would then do better to spend your time finding an approximation algorithm or solving a tractable special case
- \blacksquare Many natural and interesting problems that on the surface seem no harder than sorting, graph searching, or network flow are in fact NP-complete

Why do we care polynomial time?

We focus on polynomial time algorithms for certain reasons:

- Although a polynomial running time of $\Theta(n^{100})$ is completely disastrous in practice, the polynomial-time algorithms we actually encountered *typically require much less time*
- **Experience has shown that once the first polynomial-time algorithm for a problem has** been discovered, *more efficient algorithms often follow*

Why do we care polynomial time?

We focus on polynomial time algorithms for certain reasons:

- Although a polynomial running time of $\Theta(n^{100})$ is completely disastrous in practice, the polynomial-time algorithms we actually encountered *typically require much less time*
- **Experience has shown that once the first polynomial-time algorithm for a problem has** been discovered, *more efficient algorithms often follow*
- For many *different machine models*, a problem that can be solved in polynomial time in one model can be solved in polynomial time in another
	- ▶ E.g., a "serial random-access machine" model we typically assume, or an "abstract Turing machine" model

Why do we care polynomial time?

We focus on polynomial time algorithms for certain reasons:

- Although a polynomial running time of $\Theta(n^{100})$ is completely disastrous in practice, the polynomial-time algorithms we actually encountered *typically require much less time*
- **Experience has shown that once the first polynomial-time algorithm for a problem has** been discovered, *more efficient algorithms often follow*
- For many *different machine models*, a problem that can be solved in polynomial time in one model can be solved in polynomial time in another
	- ▶ E.g., a "serial random-access machine" model we typically assume, or an "abstract Turing machine" model
- Most importantly, the class of polynomial-time solvable problems has nice *closure properties*, since polynomials are closed under addition, multiplication, and composition
	- \triangleright E.g., if we apply a polynomial-time algorithm for polynomially many times, we still have a polynomial-time algorithm

Decision Problems vs. Optimization Problems

- Many problems of interest are *optimization* problems: each legal solution has an associated value, and we wish to find a legal solution with the best value
- (Example) SHORTEST-PATH-OPTMZ: given an undirected graph *G* and vertices *u* and *v*, we wish to find a path from *u* to *v* with the fewest edges

Decision Problems vs. Optimization Problems

- Many problems of interest are *optimization* problems: each legal solution has an associated value, and we wish to find a legal solution with the best value
- (Example) SHORTEST-PATH-OPTMZ: given an undirected graph *G* and vertices *u* and *v*, we wish to find a path from *u* to *v* with the fewest edges
- **H** However, the theory of NP-Completeness focuses only on *decision* problems: given an input, a program should produce "yes" or "no"
- (Example) SHORTEST-PATH: given an undirected graph *G*, two vertices *u* and *v*, and *an integer k*, is there a path from *u* to *v* with $\lt k$ edges?

For an optimization problem (which people usually care about in real life), there is typically a *corresponding version of decision problem* (e.g., SHORTEST-PATH-OPTMZ vs. SHORTEST-PATH)

- \blacksquare For an optimization problem (which people usually care about in real life), there is typically a *corresponding version of decision problem* (e.g., SHORTEST-PATH-OPTMZ vs. SHORTEST-PATH)
- **The decision problem is typically "easier" than the optimization problem: we can** *simply invoke the algorithm for the optimization problem* and have an algorithms for the decision problem
	- ▶ E.g., given an instance (*G*, *u*, *v*, *k*) of SHORTEST-PATH, we can find the length *ℓ* of the shortest path of (G, u, v) using an algorithm for the optimization problem, and then check if $k \geq \ell$

- \blacksquare For an optimization problem (which people usually care about in real life), there is typically a *corresponding version of decision problem* (e.g., SHORTEST-PATH-OPTMZ vs. SHORTEST-PATH)
- **The decision problem is typically "easier" than the optimization problem: we can** *simply invoke the algorithm for the optimization problem* and have an algorithms for the decision problem
	- ▶ E.g., given an instance (*G*, *u*, *v*, *k*) of SHORTEST-PATH, we can find the length *ℓ* of the shortest path of (G, u, v) using an algorithm for the optimization problem, and then check if $k \geq \ell$
	- ▶ Remark: This is indeed a first instance of "*reduction*" which we will study more in-depth later

- \blacksquare For an optimization problem (which people usually care about in real life), there is typically a *corresponding version of decision problem* (e.g., SHORTEST-PATH-OPTMZ vs. SHORTEST-PATH)
- **The decision problem is typically "easier" than the optimization problem: we can** *simply invoke the algorithm for the optimization problem* and have an algorithms for the decision problem
	- ▶ E.g., given an instance (*G*, *u*, *v*, *k*) of SHORTEST-PATH, we can find the length *ℓ* of the shortest path of (G, u, v) using an algorithm for the optimization problem, and then check if $k \geq \ell$
	- ▶ Remark: This is indeed a first instance of "*reduction*" which we will study more in-depth later
- Implication: if we show that a decision problem is "hard", we also show that *its related optimization problem is hard*
	- \triangleright If we can find a polynomial-time algorithm for the optimization problem, we can definitely find a polynomial-time algorithm for the decision problem

- For an optimization problem (which people usually care about in real life), there is typically a *corresponding version of decision problem* (e.g., SHORTEST-PATH-OPTMZ vs. SHORTEST-PATH)
- **The decision problem is typically "easier" than the optimization problem: we can** *simply invoke the algorithm for the optimization problem* and have an algorithms for the decision problem
	- ▶ E.g., given an instance (*G*, *u*, *v*, *k*) of SHORTEST-PATH, we can find the length *ℓ* of the shortest path of (G, u, v) using an algorithm for the optimization problem, and then check if $k \geq \ell$
	- ▶ Remark: This is indeed a first instance of "*reduction*" which we will study more in-depth later
- Implication: if we show that a decision problem is "hard", we also show that *its related optimization problem is hard*
	- \triangleright If we can find a polynomial-time algorithm for the optimization problem, we can definitely find a polynomial-time algorithm for the decision problem
	- ▶ Equivalently, if we *cannot* find a polynomial-time algorithm for the decision problem, we *also cannot* find a polynomial-time algorithm for the optimization problem
- Thus, though NP-completeness theory restricts attention to decision problems, it *often has implications for optimization problems*

Problem

A *problem* is an association of problem instances (inputs) and to their solutions

Problem

A *problem* is an association of problem instances (inputs) and to their solutions

(Example) SHORTEST-PATH-OPTMZ:

- An instance for the problem is a triple (G, u, v)
- A solution is a sequence of vertices in *G* encoding the shortest path from *u* to *v*, with perhaps the empty sequence denoting that no path exists
- Notice: a given problem instance may be associated with more than one solution

Problem

A *problem* is an association of problem instances (inputs) and to their solutions

(Example) SHORTEST-PATH-OPTMZ:

- An instance for the problem is a triple (G, u, v)
- A solution is a sequence of vertices in *G* encoding the shortest path from *u* to *v*, with perhaps the empty sequence denoting that no path exists
- Notice: a given problem instance may be associated with more than one solution

Decision Problem

A *decision problem* is a problem where the associated solution of each instance is either "yes" or "no"

Problem

A *problem* is an association of problem instances (inputs) and to their solutions

(Example) SHORTEST-PATH-OPTMZ:

- An instance for the problem is a triple (G, u, v)
- A solution is a sequence of vertices in *G* encoding the shortest path from *u* to *v*, with perhaps the empty sequence denoting that no path exists
- Notice: a given problem instance may be associated with more than one solution

Decision Problem

A *decision problem* is a problem where the associated solution of each instance is either "yes" or "no"

(Example) SHORTEST-PATH:

- An instance for the problem is a triple (G, u, v, k)
- \blacksquare Return ...

Polynomial-time solvable problem

A problem is said to be *polynomial-time solvable* if there exist an algorithm such that:

- \blacksquare The algorithm returns a correct associated solution to each instance of the problem
- The algorithm finishes in $O(n^k)$ time for any instance of size k

Polynomial-time solvable problem

A problem is said to be *polynomial-time solvable* if there exist an algorithm such that:

- \blacksquare The algorithm returns a correct associated solution to each instance of the problem
- The algorithm finishes in $O(n^k)$ time for any instance of size k

Complexity class *P*

The complexity class *P* is the set of decision problems that are polynomial-time solvable

Consider two problems:

Hamiltonian cycle problem (HAM-CYCLE)

Given an undirected graph *G* = (*V*, *E*), does *G* contain a *Hamiltonian* cycle, i.e., a simple cycle containing each vertex in *V*?

Consider two problems:

Hamiltonian cycle problem (HAM-CYCLE)

Given an undirected graph *G* = (*V*, *E*), does *G* contain a *Hamiltonian* cycle, i.e., a simple cycle containing each vertex in *V*?

Left dodecahedron graph (taken from [K&T] slides) has a Hamiltonian cycle while the right bipartite graph (taken from Wikipedia) does not have one

Satisfiability problem (SAT)

Given a boolean formula with *n* boolean variables *x*1, . . . , *xn*, is there an assignment (of true/false values) to x_1, \ldots, x_n making the whole formula true?

Satisfiability problem (SAT)

Given a boolean formula with *n* boolean variables *x*1, . . . , *xn*, is there an assignment (of true/false values) to x_1, \ldots, x_n making the whole formula true?

A boolean formula is made up of the boolean variables x_1, \ldots, x_n , operators including \wedge (AND), $∨ (OR)$, $¬ (NOT)$, $→ (implication)$, $↔ (if and only if)$, and composite (combinations) of them possibly with parenthesis. E.g.,:

$$
((x_1 \rightarrow x_2) \vee \neg((\neg x_1 \leftrightarrow x_3) \vee x_4)) \wedge \neg x_2.
$$

The two problems are "hard" to solve *directly* in the sense that no one on this earth has come up with a polynomial-time algorithm for them (although no one ever has proven otherwise)

- **The two problems are "hard" to solve** *directly* in the sense that no one on this earth has come up with a polynomial-time algorithm for them (although no one ever has proven otherwise)
- Let's consider an easier version for such a problem by solving it "*indirectly*" (HAM-CYCLE as an example)
- Suppose that someone tells you a given graph *G* is Hamiltonian and offers to prove it *by giving you a sequence of vertices* which this person claims to be a Hamiltonian cycle
- It would then be easy to *verify* this: simply verify whether the sequence contain all the vertices and whether each two consecutive vertices form an edge

- **The two problems are "hard" to solve** *directly* in the sense that no one on this earth has come up with a polynomial-time algorithm for them (although no one ever has proven otherwise)
- Let's consider an easier version for such a problem by solving it "*indirectly*" (HAM-CYCLE as an example)
- Suppose that someone tells you a given graph *G* is Hamiltonian and offers to prove it *by giving you a sequence of vertices* which this person claims to be a Hamiltonian cycle
- It would then be easy to *verify* this: simply verify whether the sequence contain all the vertices and whether each two consecutive vertices form an edge
- \blacksquare The "verification" process can definitely be done in polynomial time in terms of the size of *G*
- Formally speaking, the algorithm used for the "verification" is termed as a *verification algorithm*, and the sequence of vertices you used for verification is called a *certificate*

Verification algorithm

For a problem Q, a **verification algorithm** (or simply **verifier**), denoted $C(x, y)$, is an algorithm satisfying:

- $C(x, y)$ returns "yer"/"no"
- input *x* is an instance of *Q*
- input *y* ∈ {0, 1} ∗ (a binary string) is a *certificate*
- *x* is an "yes"-instance of *Q* ⇔ there exist a certificate *y* making C(*x*, *y*) return "yes"

Verification algorithm

For a problem Q, a *verification algorithm* (or simply *verifier*), denoted $C(x, y)$, is an algorithm satisfying:

- $C(x, y)$ returns "yer"/"no"
- input *x* is an instance of *Q*
- input *y* ∈ {0, 1} ∗ (a binary string) is a *certificate*
- *x* is an "yes"-instance of *Q* ⇔ there exist a certificate *y* making C(*x*, *y*) return "yes"

Notice:

- For a "yes"-instance *x*, it's okay that $C(x, y)$ returns "no" given some certificate *y*
- As long as *there is one certificate* γ making $C(x, y)$ return "yes", it is fine
- But if *x* is a "no"-instance, then $C(x, y)$ should return "no" **for all certificates**

To write a verification algorithm $C(x, y)$ for a problem:

- You first "*decode*" the certificate *y* (which is a binary string) into something "meaningful"
- You then use it to verify whether *y* is a "yes"-instance

To write a verification algorithm $C(x, y)$ for a problem:

- You first "*decode*" the certificate *y* (which is a binary string) into something "meaningful"
- You then use it to verify whether *y* is a "yes"-instance
- Notice that in order to "decode" it, you have to design an "*encoding*" for the certificate
- When you try to decode *y*, if you cannot decode it into something meaningful, the verifier simply returns "no"

To write a verification algorithm $C(x, y)$ for a problem:

- You first "*decode*" the certificate *y* (which is a binary string) into something "meaningful"
- You then use it to verify whether *y* is a "yes"-instance
- Notice that in order to "decode" it, you have to design an "*encoding*" for the certificate
- When you try to decode *y*, if you cannot decode it into something meaningful, the verifier simply returns "no"

(Example) A verification algorithm C(*x*, *y*) for SAT:

- Notice that here *x* is a boolean formula with boolean variables x_1, \ldots, x_n
- Given *y* as a bit string, decode *y* into a T/F assignment to x_1, \ldots, x_n
	- ▶ The simplest thing to do is to take the first *n* bits in *y* and take them as the T/F assignment to x_1, \ldots, x_n
	- ▶ If *y* has less than *n* bits, return "no"
- Then use the T/F assignment of x_1, \ldots, x_n from the certificate *y* to verify whether the boolean formula evaluate to true; If true, return "yes"; otherwise, return "no"

(Example) A verification algorithm C(*x*, *y*) for HAM-CYCLE:

- Given *y* as a bit string, decode *y* into a sequence of *n* vertices where *n* is the number of vertices in the input graph $G := x$
	- ▶ If *y* cannot be decoded into *n* vertices, return "no"
	- \blacktriangleright Ignore the remaining bits
- Then verify whether the *n* vertices form a valid Hamiltonian cycle

The Complexity Class *NP*

The complexity class *NP* is a set of decision problems such that a problem *Q* ∈ *NP* if and only if there is a verification algorithm C(*x*, *y*) for *Q* running in polynomial time in term of the size of the *Q*'s instance *x*

The Complexity Class *NP*

The complexity class *NP* is a set of decision problems such that a problem *Q* ∈ *NP* if and only if there is a verification algorithm C(*x*, *y*) for *Q* running in polynomial time in term of the size of the *Q*'s instance *x*

Example: SAT, HAM-CYCLE ∈ *NP*

- There is one complexity class **NPC** which is yet to be defined
- Roughly saying, **NPC** is the set of "hardest" problems in **NP**
- But to do that, we need a way to compare the "difficulty" of problems
- For that, we introduce the notion of "*reducibility*", which is probably the single most important notion in the topic

Polynomial reduction

A decision problem *Q*¹ is said to *polynomially reduces* to (or simply *reduces* to) another decision problem Q_2 if there is a polynomial time ($O(|x_1|^k)$) algorithm ${\cal F}$ taking an instance x_1 for Q_1 and computing an instance x_2 for Q_2 such that:

 \blacksquare *x*₁ is a "yes"-instance for Q_1 iff *x*₂ is a "yes"-instance for Q_2

Polynomial reduction

A decision problem *Q*¹ is said to *polynomially reduces* to (or simply *reduces* to) another decision problem Q_2 if there is a polynomial time ($O(|x_1|^k)$) algorithm ${\cal F}$ taking an instance x_1 for Q_1 and computing an instance x_2 for Q_2 such that:

 \blacksquare x_1 is a "yes"-instance for Q_1 iff x_2 is a "yes"-instance for Q_2

(Implications) If Q_1 polynomially reduces to Q_2 :

- \blacksquare *Q*₁ is "no harder" than *Q*₂ in the sense that
- Any polynomial-time algorithm $\mathcal A$ for $\mathcal O_2$ can be used to solve $\mathcal O_1$ in polynomial-time, by doing:
	- ▶ Given an instance x_1 of Q_1 , use $\mathcal F$ to compute an instance x_2 of Q_2
	- ▶ Then use $\mathcal A$ to decide whether x_2 is a "yes"-instance for Q_2
	- ▶ Return "yes" if $\mathcal A$ returns "yes", and return "no" if $\mathcal A$ returns "no",
- So if O_2 can be solved in polynomial time, then O_1 also can

So whether a problem Q_1 reduces to another problem Q_2 completely relies on whether you can find a "reduction algorithm" $\mathcal F$

Example:

- Q_1 : Given a string x_1 , does x_1 contain the letter "a"?
- Q_2 : Given a string x_2 , does x_2 contain the letter "b"?

So whether a problem O_1 reduces to another problem O_2 completely relies on whether you can find a "reduction algorithm" $\mathcal F$

Example:

- Q_1 : Given a string x_1 , does x_1 contain the letter "a"?
- Q_2 : Given a string x_2 , does x_2 contain the letter "b"?
- \Box *Q*₁ reduces to *Q*₂ with the reduction algorithm: given an instance x_1 of *Q*₂, replace each occurrence of "a" in *x*¹ with "b" and each occurrence of "b" in *x*¹ with "a" and produce an instance x_2 of O_2

The Complexity Class *NPC*

- A problem *Q* ∈ *NP* is called *NP-Complete* if *all* problems in *NP* reduce to *Q*
- **■** The complexity class **NPC** ⊆ **NP** is the set of all NP-Complete problems

The Complexity Class *NPC*

- A problem *Q* ∈ *NP* is called *NP-Complete* if *all* problems in *NP* reduce to *Q*
- **■** The complexity class **NPC** ⊆ **NP** is the set of all NP-Complete problems

Proposition *P* ⊆ *NP*

The Complexity Class *NPC*

- A problem *Q* ∈ *NP* is called *NP-Complete* if *all* problems in *NP* reduce to *Q*
- **■** The complexity class **NPC** ⊆ **NP** is the set of all NP-Complete problems

Proposition

P ⊆ *NP*

proof:

- Let *Q* be a problem in **P**
- **Then there is an algorithm A solving Q in polynomial time**

The Complexity Class *NPC*

- A problem *Q* ∈ *NP* is called *NP-Complete* if *all* problems in *NP* reduce to *Q*
- **■** The complexity class **NPC** ⊆ **NP** is the set of all NP-Complete problems

Proposition

P ⊆ *NP*

proof:

- Let *Q* be a problem in **P**
- Then there is an algorithm $\mathcal A$ solving Q in polynomial time
- To show that *Q* ∈ *NP*, we only need to design a polynomial-time verifier C(*x*, *y*) for *Q*
- To do this, in C, we only need to invoke $\mathcal A$ on x, and return the answer of $\mathcal A$ (certificate γ is completely ignored)

I **S** $P = NP$?

- The biggest question in CS: Is $P = NP$?
- **This question was raised in the 1970's, and there is not an answer till this day**
- The common belief is that $P! = NP$
- \blacksquare The key lies in those NP-Complete problems, because if you can find an algorithm for a single NP-Complete problem, then all problems in *NP*, including all the other NP-Complete problems, can be solved in polynomial time (so $P = NP$)
- However, there are tons of NP-Complete problems out there, and *no one* has ever found a polynomial-time algorithm *for any of them* till this day

I **s** $P = NP$?

Proposition

If an NP-Complete problem can be solve in polynomial time, then all problems in *NP* can be solved in polynomial time (so $P = NP$)

I **s** $P = NP$?

Proposition

If an NP-Complete problem can be solve in polynomial time, then all problems in *NP* can be solved in polynomial time (so $P = NP$)

proof:

- Let *Q* be an NP-Complete problem and let A be a polynomial-time algorithm for *Q*
- Let *Q* ′ be an arbitrary problem in *NP*
- Since Q' reduces to Q , we have a polynomial-time reduction algorithm $\mathcal F$ from Q' to Q
- Then we can have a polynomial-time algorithm for *Q* ′ : given an instance *x* ′ of *Q* ′ , compute an instance *x* of *Q* using the algorithm \mathcal{F} , then you just return whatever \mathcal{A} returns on *x*

- **P**: Decision problems for which there is a polynomial-time algorithm
- *NP*: Decision problems for which there is a polynomial-time verifier

- **P**: Decision problems for which there is a polynomial-time algorithm
- *NP*: Decision problems for which there is a polynomial-time verifier
- *EXP*: Decision problems for which there is an *exponential-time* algorithm

- **P**: Decision problems for which there is a polynomial-time algorithm
- *NP*: Decision problems for which there is a polynomial-time verifier
- *EXP*: Decision problems for which there is an *exponential-time* algorithm

Proposition *NP* ⊆ *EXP*

- P: Decision problems for which there is a polynomial-time algorithm
- *NP*: Decision problems for which there is a polynomial-time verifier
- *EXP*: Decision problems for which there is an **exponential-time** algorithm

Proposition

NP ⊆ *EXP*

proof:

- **E** Let *Q* be a problem in **NP** with a verifier $C(x, y)$
- Given an instance *x* of *Q*, we enumerate all possible certificates for *x* and see whether there is one certificate *v* making $C(x, y)$ return "ves"
- If there is such a certificate, we return "yes" for x, otherwise, we return "no"
- Notice that we only need to enumerate certificates of up to a size $m = poly(|x|)$, because any certificate beyond size *m* will not be helpful to us (see the "decoding" process for certificates)
- Total time would be $2^{poly(|x|)}f(|x|)$, where $f(|x|)$ is the time complexity of $C(x, y)$

The million-dollar question

(Figure from [K&T] slides)

Some remarks

- \blacksquare The term "NP" does not stand for "non-polynomial time" (we don't know whether these problems can or cannot be solved in polynomial time)
- It stands for "non-deterministic polynomial-time solvable" (the verification algorithm we write is indeed a "non-deterministic algorithm")
- As mentioned, if you have shown that a problem is NP-complete, then you should do something else rather trying to find a polynomial-time algorithm for it
- **But people on this planet** *haven't proved* that an NP-Complete problem does not have a polynomial-time algorithm
- \blacksquare Only that people believe so because there are tons of NP-Complete problems and no one has ever found a polynomial-time algorithm for *any* of them

How to show that a problem is NP-Complete?

How to show that a problem *Q* is NP-Complete?

- 1. Show that *Q* ∈ *NP* by providing a polynomial-time verifier
- 2. Show that *Q* is "*NP-hard*", i.e., all problems in *NP* reduce to *Q*

How to show that a problem is NP-Complete?

How to show that a problem *Q* is NP-Complete?

- 1. Show that *Q* ∈ *NP* by providing a polynomial-time verifier
- 2. Show that *Q* is "*NP-hard*", i.e., all problems in *NP* reduce to *Q*
- To do that, you need a "first" NP-hard problem *Q* ∗
- Then you only need to show that *Q* ∗ reduces to *Q*
	- ▶ Due to the *transitivity* of reducibilities (Q_1 reduces to Q_2 , Q_2 reduces to Q_3 ⇒ Q_1 reduces to *Q*3)

How to show that a problem is NP-Complete?

How to show that a problem *Q* is NP-Complete?

- 1. Show that *Q* ∈ *NP* by providing a polynomial-time verifier
- 2. Show that *Q* is "*NP-hard*", i.e., all problems in *NP* reduce to *Q*
- To do that, you need a "first" NP-hard problem *Q* ∗
- Then you only need to show that *Q* ∗ reduces to *Q*
	- ▶ Due to the *transitivity* of reducibilities (Q_1 reduces to Q_2 , Q_2 reduces to Q_3 ⇒ Q_1 reduces to *Q*3)
- So the general strategy for showing a problem *Q* to be NP-hard is to first find a problem *Q* ∗ known to be NP-hard, and then reduce *Q* ∗ to *Q*