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Problems vs. Algorithms

So far, our study has been focusing on algorithms, which are used to solve problems
▶ Examples are merge sort, quick sort, and insertion sort, which are algorithms solving the
sorting problem

In this topic, we are turning our attention to problems themselves

Previously, for different problems we consider, we were trying to show howwe can
design efficient algorithms for solving them

Now, we are going to show for certain problems, howwe cannot design efficient
algorithms
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Hard vs. Easy Problems

“Efficient” algorithms: polynomial-time algorithms, i.e., ones with worst-case time
complexity being O(nk) for some constant k

Youmight wonder whether all problems can be solved in polynomial time — the answer
is no:

▶ There are problems, such as Turing’s famous “Halting Problem”, that cannot be solved by
any computer in finite steps

▶ There are also problems that can be solved in finite steps (e.g., in exponential time), but not
in polynomial time

Generally, we think of problems that are solvable by polynomial-time algorithms as being
tractable, or “easy”, and problems that require superpolynomial time as being
intractable, or “hard”
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NP-Complete problems

The subject of this chapter, however, is an interesting class of problems called the
“NP-complete” problems, whose status is unknown:
▶ No polynomial-time algorithm have ever been discovered for an NP-complete problem, nor
has anyone been able to prove that no polynomial-time algorithm can exist for any one of
them

This so-called P , NP question has been one of the deepest, most perplexing open
research problems in theoretical computer science since it was first posed in 1971

Notice that NP-complete problems are still in general considered “hard” problems as
most people believe you cannot find polynomial time algorithms for them
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Similar problems could have completely different hardness

Whether a problem is hard or easy can be very elusive
Two problems could look very ‘similar’ on the surface, with one being
polynomially-solvable and another being NP-complete

Ex.: Shortest vs. longest simple paths
Finding shortest paths: polynomially-solvable
Finding longest paths: NP-complete

Euler tour vs. Hamiltonian cycle:
An Euler tour of an undirected graph is a cycle that traverses each edge of the graph
exactly once (it is allowed to visit vertices more than once)
A Hamiltonian cycle of an undirected graph is a simple cycle that traverses each vertex
exactly once
We can determine whether a graph has an Euler tour in only O(|E|) time
Determining whether an undirected graph has a Hamiltonian cycle is NP-complete
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P, NP, NPC

Throughout this topic, we shall consider three classes of problems:
P: Problems that are solvable in polynomial time
NP: Problems that are “verifiable” in polynomial time
▶ We have P ⊆ NP

NPC: NP-complete problems, those problems that are as hard as any problems in the
class NP (you can also say is the hardest problem in NP)



Why dowe study it?

Understanding NP-completeness theory is critical to algorithm designers:

If you can find that a problem is NP-complete, you would then do better to spend your
time finding an approximation algorithm or solving a tractable special case

Many natural and interesting problems that on the surface seem no harder than sorting,
graph searching, or network flow are in fact NP-complete



Why dowe care polynomial time?

We focus on polynomial time algorithms for certain reasons:

Although a polynomial running time ofΘ(n100) is completely disastrous in practice, the
polynomial-time algorithms we actually encountered typically require much less time

Experience has shown that once the first polynomial-time algorithm for a problem has
been discovered,more efficient algorithms often follow

For many different machine models, a problem that can be solved in polynomial time in
onemodel can be solved in polynomial time in another
▶ E.g., a “serial random-access machine” model we typically assume, or an “abstract Turing
machine” model

Most importantly, the class of polynomial-time solvable problems has nice closure
properties, since polynomials are closed under addition, multiplication, and composition
▶ E.g., if we apply a polynomial-time algorithm for polynomially many times, we still have a
polynomial-time algorithm
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Decision Problems vs. Optimization Problems

Many problems of interest are optimization problems: each legal solution has an
associated value, and we wish to find a legal solution with the best value

(Example) SHORTEST-PATH-OPTMZ: given an undirected graph G and vertices u and v, we
wish to find a path from u to vwith the fewest edges

However, the theory of NP-Completeness focuses only on decision problems: given an
input, a program should produce “yes” or “no”

(Example) SHORTEST-PATH: given an undirected graph G, two vertices u and v, and an
integer k, is there a path from u to vwith ≤ k edges?
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WhyWe Can Only Consider Decision Problems?
For an optimization problem (which people usually care about in real life), there is
typically a corresponding version of decision problem (e.g., SHORTEST-PATH-OPTMZ vs.
SHORTEST-PATH)

The decision problem is typically “easier” than the optimization problem: we can simply
invoke the algorithm for the optimization problem and have an algorithms for the
decision problem
▶ E.g., given an instance (G, u, v, k) of SHORTEST-PATH, we can find the length ℓ of the shortest
path of (G, u, v) using an algorithm for the optimization problem, and then check if k ≥ ℓ

▶ Remark: This is indeed a first instance of “reduction” which wewill studymore in-depth later

Implication: if we show that a decision problem is “hard”, we also show that its related
optimization problem is hard
▶ If we can find a polynomial-time algorithm for the optimization problem, we can definitely
find a polynomial-time algorithm for the decision problem

▶ Equivalently, if we cannot find a polynomial-time algorithm for the decision problem, we
also cannot find a polynomial-time algorithm for the optimization problem

Thus, though NP-completeness theory restricts attention to decision problems, it often
has implications for optimization problems
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Formal Definition of Problems
Problem
A problem is an association of problem instances (inputs) and to their solutions

(Example) SHORTEST-PATH-OPTMZ:
An instance for the problem is a triple (G, u, v)
A solution is a sequence of vertices in G encoding the shortest path from u to v, with
perhaps the empty sequence denoting that no path exists
Notice: a given problem instance may be associated with more than one solution

Decision Problem
A decision problem is a problemwhere the associated solution of each instance is either “yes”
or “no”

(Example) SHORTEST-PATH:
An instance for the problem is a triple (G, u, v, k)
Return ...
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The complexity class P

Polynomial-time solvable problem
A problem is said to be polynomial-time solvable if there exist an algorithm such that:

The algorithm returns a correct associated solution to each instance of the problem
The algorithm finishes in O(nk) time for any instance of size k

Complexity class P
The complexity class P is the set of decision problems that are polynomial-time solvable
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Certificates and Verifiers

Consider two problems:

Hamiltonian cycle problem (HAM-CYCLE)
Given an undirected graph G = (V, E), does G contain a Hamiltonian cycle, i.e., a simple cycle
containing each vertex in V?

Left dodecahedron graph (taken from [K&T] slides) has a Hamiltonian cycle while the right
bipartite graph (taken fromWikipedia) does not have one
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Certificates and Verifiers

Satisfiability problem (SAT)
Given a boolean formula with n boolean variables x1, . . . , xn, is there an assignment (of
true/false values) to x1, . . . , xn making the whole formula true?

A boolean formula is made up of the boolean variables x1, . . . , xn, operators including ∧ (AND),
∨ (OR), ¬ (NOT),→ (implication),↔ (if and only if), and composite (combinations) of them
possibly with parenthesis. E.g.,:

((x1 → x2) ∨ ¬((¬x1 ↔ x3) ∨ x4)) ∧ ¬x2.
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Certificates and Verifiers

The two problems are “hard” to solve directly in the sense that no one on this earth has
come up with a polynomial-time algorithm for them (although no one ever has proven
otherwise)

Let’s consider an easier version for such a problem by solving it “indirectly” (HAM-CYCLE
as an example)

Suppose that someone tells you a given graph G is Hamiltonian and offers to prove it by
giving you a sequence of verticeswhich this person claims to be a Hamiltonian cycle

It would then be easy to verify this: simply verify whether the sequence contain all the
vertices and whether each two consecutive vertices form an edge

The “verification” process can definitely be done in polynomial time in terms of the size
of G

Formally speaking, the algorithm used for the “verification” is termed as a verification
algorithm, and the sequence of vertices you used for verification is called a certificate
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Certificates and Verifiers

Verification algorithm
For a problem Q, a verification algorithm (or simply verifier), denoted C(x, y), is an algorithm
satisfying:

C(x, y) returns “yer”/“no”
input x is an instance of Q
input y ∈ {0, 1}∗ (a binary string) is a certificate
x is an “yes”-instance of Q⇔ there exist a certificate ymaking C(x, y) return “yes”

Notice:
For a “yes”-instance x, it’s okay that C(x, y) returns “no” given some certificate y
As long as there is one certificate ymaking C(x, y) return “yes”, it is fine
But if x is a “no”-instance, then C(x, y) should return “no” for all certificates
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How toWrite a Verifier

To write a verification algorithm C(x, y) for a problem:
You first “decode” the certificate y (which is a binary string) into something “meaningful”
You then use it to verify whether y is a “yes”-instance

Notice that in order to “decode” it, you have to design an “encoding” for the certificate
When you try to decode y, if you cannot decode it into something meaningful, the verifier
simply returns “no”

(Example) A verification algorithm C(x, y) for SAT:
Notice that here x is a boolean formula with boolean variables x1, . . . , xn
Given y as a bit string, decode y into a T/F assignment to x1, . . . , xn
▶ The simplest thing to do is to take the first n bits in y and take them as the T/F assignment to
x1, . . . , xn

▶ If y has less than n bits, return “no”

Then use the T/F assignment of x1, . . . , xn from the certificate y to verify whether the
boolean formula evaluate to true; If true, return “yes”; otherwise, return “no”
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How toWrite a Verifier

(Example) A verification algorithm C(x, y) for HAM-CYCLE:
Given y as a bit string, decode y into a sequence of n vertices where n is the number of
vertices in the input graph G := x
▶ If y cannot be decoded into n vertices, return “no”
▶ Ignore the remaining bits

Then verify whether the n vertices form a valid Hamiltonian cycle



The Complexity Class NP

The Complexity Class NP
The complexity class NP is a set of decision problems such that a problem Q ∈NP if and only if
there is a verification algorithm C(x, y) for Q running in polynomial time in term of the size of
the Q’s instance x

Example: SAT, HAM-CYCLE ∈ NP
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Example: SAT, HAM-CYCLE ∈ NP



Polynomial reduction

There is one complexity class NPCwhich is yet to be defined

Roughly saying, NPC is the set of “hardest” problems in NP

But to do that, we need a way to compare the “difficulty” of problems

For that, we introduce the notion of “reducibility”, which is probably the single most
important notion in the topic



Polynomial reduction

Polynomial reduction
A decision problem Q1 is said to polynomially reduces to (or simply reduces to) another
decision problem Q2 if there is a polynomial time (O(|x1 |k)) algorithm F taking an instance x1
for Q1 and computing an instance x2 for Q2 such that:

x1 is a “yes”-instance for Q1 iff x2 is a “yes”-instance for Q2

(Implications) If Q1 polynomially reduces to Q2:
Q1 is “no harder” than Q2 in the sense that
Any polynomial-time algorithmA for Q2 can be used to solve Q1 in polynomial-time, by
doing:
▶ Given an instance x1 of Q1, use F to compute an instance x2 of Q2

▶ Then useA to decide whether x2 is a “yes”-instance for Q2

▶ Return “yes” ifA returns “yes”, and return “no” ifA returns “no”,

So if Q2 can be solved in polynomial time, then Q1 also can
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Polynomial reduction

So whether a problem Q1 reduces to another problem Q2 completely relies on whether you
can find a “reduction algorithm” F

Example:

Q1: Given a string x1, does x1 contain the letter “a”?
Q2: Given a string x2, does x2 contain the letter “b”?

Q1 reduces to Q2 with the reduction algorithm: given an instance x1 of Q2, replace each
occurrence of “a” in x1 with “b” and each occurrence of “b” in x1 with “a” and produce an
instance x2 of Q2
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The Complexity Class NPC

The Complexity Class NPC

A problem Q ∈ NP is called NP-Complete if all problems in NP reduce to Q
The complexity class NPC ⊆ NP is the set of all NP-Complete problems

Proposition
P ⊆ NP

proof:
Let Q be a problem in P
Then there is an algorithmA solving Q in polynomial time
To show that Q ∈ NP, we only need to design a polynomial-time verifier C(x, y) for Q
To do this, in C, we only need to invokeA on x, and return the answer ofA (certificate y
is completely ignored)
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Is P= NP?

The biggest question in CS: Is P= NP?

This question was raised in the 1970’s, and there is not an answer till this day

The common belief is that P ! = NP

The key lies in those NP-Complete problems, because if you can find an algorithm for a
single NP-Complete problem, then all problems in NP, including all the other
NP-Complete problems, can be solved in polynomial time (so P= NP)

However, there are tons of NP-Complete problems out there, and no one has ever found a
polynomial-time algorithm for any of them till this day



Is P= NP?

Proposition
If an NP-Complete problem can be solve in polynomial time, then all problems in NP can be
solved in polynomial time (so P= NP)

proof:
Let Q be an NP-Complete problem and letA be a polynomial-time algorithm for Q
Let Q′ be an arbitrary problem in NP
Since Q′ reduces to Q, we have a polynomial-time reduction algorithm F from Q′ to Q
Then we can have a polynomial-time algorithm for Q′: given an instance x′ of Q′, compute
an instance x of Q using the algorithm F , then you just return whateverA returns on x
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The complexity class EXP

P: Decision problems for which there is a polynomial-time algorithm
NP: Decision problems for which there is a polynomial-time verifier

EXP: Decision problems for which there is an exponential-time algorithm

Proposition
NP ⊆ EXP

proof:
Let Q be a problem in NPwith a verifier C(x, y)
Given an instance x of Q, we enumerate all possible certificates for x and see whether
there is one certificate ymaking C(x, y) return “yes”
If there is such a certificate, we return “yes” for x, otherwise, we return “no”
Notice that we only need to enumerate certificates of up to a sizem = poly(|x|), because
any certificate beyond sizemwill not be helpful to us (see the “decoding” process for
certificates)
Total time would be 2poly( |x |)f(|x|), where f(|x|) is the time complexity of C(x, y)
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Themillion-dollar question

(Figure from [K&T] slides)



Some remarks

The term “NP” does not stand for “non-polynomial time” (we don’t knowwhether these
problems can or cannot be solved in polynomial time)

It stands for “non-deterministic polynomial-time solvable” (the verification algorithmwe
write is indeed a “non-deterministic algorithm”)

As mentioned, if you have shown that a problem is NP-complete, then you should do
something else rather trying to find a polynomial-time algorithm for it

But people on this planet haven’t proved that an NP-Complete problem does not have a
polynomial-time algorithm

Only that people believe so because there are tons of NP-Complete problems and no one
has ever found a polynomial-time algorithm for any of them



How to show that a problem is NP-Complete?

How to show that a problem Q is NP-Complete?

1. Show that Q ∈ NP by providing a polynomial-time verifier

2. Show that Q is “NP-hard”, i.e., all problems in NP reduce to Q

To do that, you need a “first” NP-hard problem Q∗

Then you only need to show that Q∗ reduces to Q
▶ Due to the transitivity of reducibilities (Q1 reduces to Q2, Q2 reduces to Q3 ⇒ Q1 reduces to
Q3)

So the general strategy for showing a problem Q to be NP-hard is to first find a problem Q∗

known to be NP-hard, and then reduce Q∗ to Q
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