All-Pairs Shortest Paths

Tao Hou

Why study it?

We can solve an all-pairs shortest-paths problem by running a single-source shortest-paths algorithm *for each vertex*:

- \blacksquare Use Dijkstra's algorithm: $O(|V||E|\log(|V|))$
	- ▶ For sparse graph, $|E| = \Theta(|V|)$: $O(|V|^2 \log(|V|))$ (not too bad)
	- ▶ For dense graph, $|E| = \Theta(|V|^2)$: $O(|V|^3 \log(|V|))$ (can do better)
	- \triangleright Not to mention that edge weights have to be non-negative

Why study it?

We can solve an all-pairs shortest-paths problem by running a single-source shortest-paths algorithm *for each vertex*:

- \blacksquare Use Dijkstra's algorithm: $O(|V||E|\log(|V|))$
	- ▶ For sparse graph, $|E| = \Theta(|V|)$: $O(|V|^2 \log(|V|))$ (not too bad)
	- ▶ For dense graph, $|E| = \Theta(|V|^2)$: $O(|V|^3 \log(|V|))$ (can do better)
	- \triangleright Not to mention that edge weights have to be non-negative
- If we want to allow negative weights, we have to use Bellman-Ford
	- Fime complexity: $O(|V|^2|E|)$
	- \triangleright $O(|V|^4)$ for dense graphs (probably bad)

Why study it?

We can solve an all-pairs shortest-paths problem by running a single-source shortest-paths algorithm *for each vertex*:

- \blacksquare Use Dijkstra's algorithm: $O(|V||E|\log(|V|))$
	- ▶ For sparse graph, $|E| = \Theta(|V|)$: $O(|V|^2 \log(|V|))$ (not too bad)
	- ▶ For dense graph, $|E| = \Theta(|V|^2)$: $O(|V|^3 \log(|V|))$ (can do better)
	- \triangleright Not to mention that edge weights have to be non-negative
- If we want to allow negative weights, we have to use Bellman-Ford
	- Fime complexity: $O(|V|^2|E|)$
	- \triangleright $O(|V|^4)$ for dense graphs (probably bad)

We introduce *Floyd-Warshall* algorithm:

Run in $O(|V|^3)$ time and allow negative weights

Floyd-Warshall: Setting

- Assume that the vertices are numbered $1, 2, \ldots, n$ where $n = |V|$
- **n** The input is an $n \times n$ matrix $W = (w_{i,j})$ representing the edge weights (an *augmentation* of adjacency matrix):

$$
w_{i,j} = \begin{cases} 0 & \text{if } i = j \\ \text{weight of edge } (i,j) & \text{if } i \neq j \text{ and } (i,j) \in E \\ \infty & \text{if } i \neq j \text{ and } (i,j) \notin E \end{cases}
$$

■ Allow negative-weight edges, but *assume that the input graph contains no negative-weight cycles*

Floyd-Warshall: Setting

- **E** Assume that the vertices are numbered $1, 2, \ldots, n$ where $n = |V|$
- The input is an $n \times n$ matrix $W = (w_{i,j})$ representing the edge weights (an *augmentation* of adjacency matrix):

$$
w_{i,j} = \begin{cases} 0 & \text{if } i = j \\ \text{weight of edge } (i,j) & \text{if } i \neq j \text{ and } (i,j) \in E \\ \infty & \text{if } i \neq j \text{ and } (i,j) \notin E \end{cases}
$$

- Allow negative-weight edges, but *assume that the input graph contains no negative-weight cycles*
- Returns an $n \times n$ matrix $D = (d_{i,j})$, where $d_{i,j} = \delta(i,j)$
- **Also returns a** *predecessor matrix* $\Pi = (\pi_{i,j})$

$$
\pi_{ij} = \begin{cases} \text{ Nil} & i = j \text{ or no path from } i \text{ to } j \\ \text{Predecessor of } j \text{ on a shortest path from } i \text{ to } j \quad \text{otherwise} \end{cases}
$$

▶ *i*-th row of Π defines a shortest-paths tree rooted at *i* (the procedure to print a shortest path from *i* should be evident from previous contents)

- A dynamic-programming approach utilizing the *optimal substructure property* of shortest paths
- As can be imagined, the parameter of the *OPT* function contains:

i and j, the start and end vertices

- A dynamic-programming approach utilizing the *optimal substructure property* of shortest paths
- As can be imagined, the parameter of the *OPT* function contains: *i and j, the start and end vertices*
- However, if your *OPT* contains only *i*, *j*, then:

d(*i*, *j*) = min {{*d*(*i*, ℓ) + *d*(ℓ , *j*) | $\ell \in V$ } ∪ {*d*(*i*, *j*)}}

- It would be nearly *impossible* to find a valid **evaluation order**
	- \triangleright There is no natural definition of 'size' for the problems $d(i, j)$: they are all 'equal'; no one is a natural 'subproblem' of another
	- ▶ Also no natural *base cases*

- The solution is that, we introduce **another parameter** *k*, and consider all paths from *i* to *j* whose *intermediate vertices* are ≤ *k*
	- ▶ E.g., path $p = (v_1 = i, v_2, \ldots, v_{q-1}, v_q = j)$ where $v_2, \ldots, v_{q-1} \leq k$

- The solution is that, we introduce **another parameter** *k*, and consider all paths from *i* to *j* whose *intermediate vertices* are ≤ *k*
	- ▶ E.g., path $p = (v_1 = i, v_2, \ldots, v_{q-1}, v_q = j)$ where $v_2, \ldots, v_{q-1} \leq k$
- *OPT function*: Let *d* (*k*) $\hat{a}^{(n)}_{ij} := d(i,j,k)$ be the minimum weight of all paths from i to j with intermediate vertices ≤ *k*
- \blacksquare We have the following immediate evidence why this definition makes sense: (1) We could easily identify the *base case:* $d_{i,j}^{(0)} = w_{i,j}$ (2) There is a natural notion of "size": *k*

- The solution is that, we introduce **another parameter** *k*, and consider all paths from *i* to *j* whose *intermediate vertices* are ≤ *k*
	- ▶ E.g., path $p = (v_1 = i, v_2, \ldots, v_{q-1}, v_q = j)$ where $v_2, \ldots, v_{q-1} \leq k$
- *OPT function*: Let *d* (*k*) $\hat{a}^{(n)}_{ij} := d(i,j,k)$ be the minimum weight of all paths from i to j with intermediate vertices ≤ *k*
- \blacksquare We have the following immediate evidence why this definition makes sense: (1) We could easily identify the *base case:* $d_{i,j}^{(0)} = w_{i,j}$ (2) There is a natural notion of "size": *k*
- Now consider defining $d_{ij}^{(k)}$ *i*,*j* for general *k*. Paths from *i* to *j* with intermediate vertices $\leq k$ fall in two sets:
	- ▶ Does not contain *k*:
	- ▶ Contains *k*:

- The solution is that, we introduce **another parameter** *k*, and consider all paths from *i* to *j* whose *intermediate vertices* are ≤ *k*
	- ▶ E.g., path $p = (v_1 = i, v_2, \ldots, v_{q-1}, v_q = j)$ where $v_2, \ldots, v_{q-1} \leq k$
- *OPT function*: Let *d* (*k*) $\hat{a}^{(n)}_{ij} := d(i,j,k)$ be the minimum weight of all paths from i to j with intermediate vertices ≤ *k*
- \blacksquare We have the following immediate evidence why this definition makes sense: (1) We could easily identify the *base case:* $d_{i,j}^{(0)} = w_{i,j}$ (2) There is a natural notion of "size": *k*
- Now consider defining $d_{ij}^{(k)}$ *i*,*j* for general *k*. Paths from *i* to *j* with intermediate vertices $\leq k$ fall in two sets:
	- ▶ Does not contain *k*: intermediate vertices are ≤ *k* − 1; the shortest one is
	- ▶ Contains *k*:

- The solution is that, we introduce **another parameter** *k*, and consider all paths from *i* to *j* whose *intermediate vertices* are ≤ *k*
	- ▶ E.g., path $p = (v_1 = i, v_2, \ldots, v_{q-1}, v_q = j)$ where $v_2, \ldots, v_{q-1} \leq k$
- *OPT function*: Let *d* (*k*) $\hat{a}^{(n)}_{ij} := d(i,j,k)$ be the minimum weight of all paths from i to j with intermediate vertices ≤ *k*
- \blacksquare We have the following immediate evidence why this definition makes sense: (1) We could easily identify the *base case:* $d_{i,j}^{(0)} = w_{i,j}$ (2) There is a natural notion of "size": *k*
- Now consider defining $d_{ij}^{(k)}$ *i*,*j* for general *k*. Paths from *i* to *j* with intermediate vertices $\leq k$ fall in two sets:
	- ▶ Does not contain *k*: intermediate vertices are ≤ *k* − 1; the shortest one is *d* (*k*−1) *i*,*j*
	- ▶ Contains *k*:

- The solution is that, we introduce **another parameter** *k*, and consider all paths from *i* to *j* whose *intermediate vertices* are ≤ *k*
	- ▶ E.g., path $p = (v_1 = i, v_2, \ldots, v_{q-1}, v_q = j)$ where $v_2, \ldots, v_{q-1} \leq k$
- *OPT function*: Let *d* (*k*) $\hat{a}^{(n)}_{ij} := d(i,j,k)$ be the minimum weight of all paths from i to j with intermediate vertices ≤ *k*
- \blacksquare We have the following immediate evidence why this definition makes sense: (1) We could easily identify the *base case:* $d_{i,j}^{(0)} = w_{i,j}$ (2) There is a natural notion of "size": *k*
- Now consider defining $d_{ij}^{(k)}$ *i*,*j* for general *k*. Paths from *i* to *j* with intermediate vertices $\leq k$ fall in two sets:
	- ▶ Does not contain *k*: intermediate vertices are ≤ *k* − 1; the shortest one is *d* (*k*−1) *i*,*j*
	- ▶ Contains *k*: the shortest one is *d* (*k*−1) $\frac{d(k-1)}{d(k, j)} + d^{(k-1)}_{k, j}$ *k*,*j*

- The solution is that, we introduce **another parameter** *k*, and consider all paths from *i* to *j* whose *intermediate vertices* are ≤ *k*
	- ▶ E.g., path $p = (v_1 = i, v_2, \ldots, v_{q-1}, v_q = j)$ where $v_2, \ldots, v_{q-1} \leq k$
- *OPT function*: Let *d* (*k*) $\hat{a}^{(n)}_{ij} := d(i,j,k)$ be the minimum weight of all paths from i to j with intermediate vertices ≤ *k*
- \blacksquare We have the following immediate evidence why this definition makes sense: (1) We could easily identify the *base case:* $d_{i,j}^{(0)} = w_{i,j}$ (2) There is a natural notion of "size": *k*
- Now consider defining $d_{ij}^{(k)}$ *i*,*j* for general *k*. Paths from *i* to *j* with intermediate vertices $\leq k$ fall in two sets:
	- ▶ Does not contain *k*: intermediate vertices are ≤ *k* − 1; the shortest one is *d* (*k*−1) *i*,*j*
	- ▶ Contains *k*: the shortest one is *d* (*k*−1) $\frac{d(k-1)}{d(k, j)} + d^{(k-1)}_{k, j}$ *k*,*j*

 \blacksquare So,

$$
d_{i,j}^{(k)} = \begin{cases} w_{i,j} & k=0\\ \min\left\{d_{i,j}^{(k-1)}, d_{i,k}^{(k-1)} + d_{k,j}^{(k-1)}\right\} & k>0 \end{cases}
$$

Floyd-Warshall: Algorithm

FLOYD-WARSHALL(*W*) 1 $D^{(0)} = W$ 2 **for** $k = 1, ..., n$ 3 $D^{(k)} := (d_{ii}^{(k)})$ *i*,*j* $\Big)$ be a new $n \times n$ matrix 4 **for** $i = 1, ..., n$ 5 **for** $j = 1, ..., n$ 6 $d_{ij}^{(k)} = \min \left\{ d_{ij}^{(k-1)} \right\}$ *i*,*j* , *d* (*k*−1) $\frac{d^{(k-1)}}{d^{(k)}} + d^{(k-1)}}_{k,j}$ *k*,*j* $\overline{)}$

Time complexity: $\Theta(|V|^3)$, or $\Theta(n^3)$

Recall that we also need to compute a *predecessor matrix* $\Pi = (\pi_{i,j})$

 $\pi_{i,j} =$ $i = j$ or no path from *i* to *j* Predecessor of *j* on a shortest path from *i* to *j* otherwise

▶ *i*-th row of Π defines a shortest-paths tree rooted at *i*

Recall that we also need to compute a *predecessor matrix* $\Pi = (\pi_{i,j})$

 $\pi_{i,j} =$ $i = j$ or no path from *i* to *j* Predecessor of *j* on a shortest path from *i* to *j* otherwise ▶ *i*-th row of Π defines a shortest-paths tree rooted at *i* We have $\Pi^{(k)} = \left(\pi^{(k)}_{ii}\right)$ *i*,*j*) corresponding to each *D* (*k*) $\pi^{(k)}_{i,j} =$ $\begin{array}{c} \hline \end{array}$ $\begin{array}{c} \n\end{array}$ Nil *ⁱ* ⁼ *^j* or no path from *ⁱ* to *^j* with intermediate vertices ≤ *k* Predecessor of *j* on a shortest path from *i* to *j* with intermediate vertices $\leq k$ otherwise

We simply let $\Pi = \Pi^{(n)}$

Base case

$$
\pi_{i,j}^{(0)} = \begin{cases} \text{Nil} & \text{if } i = j \text{ or } (i,j) \notin E \\ i & \text{if } i \neq j \text{ and } (i,j) \in E \end{cases}
$$

Base case

$$
\pi_{i,j}^{(0)} = \begin{cases} \text{Nil} & \text{if } i = j \text{ or } (i,j) \notin E \\ i & \text{if } i \neq j \text{ and } (i,j) \in E \end{cases}
$$

General case

$$
\pi_{i,j}^{(k)} = \begin{cases}\n\text{if } d_{i,j}^{(k-1)} \leq d_{i,k}^{(k-1)} + d_{k,j}^{(k-1)} \\
\text{if } d_{i,j}^{(k-1)} > d_{i,k}^{(k-1)} + d_{k,j}^{(k-1)}\n\end{cases}
$$

Base case

$$
\pi_{i,j}^{(0)} = \begin{cases} \text{Nil} & \text{if } i = j \text{ or } (i,j) \notin E \\ i & \text{if } i \neq j \text{ and } (i,j) \in E \end{cases}
$$

General case

$$
\pi_{i,j}^{(k)} = \begin{cases} \pi_{i,j}^{(k-1)} & \text{if } d_{i,j}^{(k-1)} \le d_{i,k}^{(k-1)} + d_{k,j}^{(k-1)} \\ \pi_{k,j}^{(k-1)} & \text{if } d_{i,j}^{(k-1)} > d_{i,k}^{(k-1)} + d_{k,j}^{(k-1)} \end{cases}
$$

Floyd-Warshall: With Π **matrix update**

