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Why study it?

We can solve an all-pairs shortest-paths problem by running a single-source shortest-paths
algorithm for each vertex:

Use Dijkstra’s algorithm: O(|V| |E| log(|V|))
▶ For sparse graph, |E| = Θ(|V|): O(|V|2 log(|V|)) (not too bad)
▶ For dense graph, |E| = Θ(|V|2): O(|V|3 log(|V|)) (can do better)
▶ Not to mention that edge weights have to be non-negative

If we want to allow negative weights, we have to use Bellman-Ford
▶ Time complexity: O(|V|2 |E|)
▶ O(|V|4) for dense graphs (probably bad)

We introduce Floyd-Warshall algorithm:
Run in O(|V|3) time and allow negative weights
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Floyd-Warshall: Setting

Assume that the vertices are numbered 1, 2, . . . , nwhere n = |V|
The input is an n × nmatrixW = (wi,j) representing the edge weights (an augmentation of
adjacency matrix):

wi,j =


0 if i = j
weight of edge (i, j) if i , j and (i, j) ∈ E
∞ if i , j and (i, j) < E

Allow negative-weight edges, but assume that the input graph contains no
negative-weight cycles

Returns an n × nmatrix D = (di,j), where di,j = δ(i, j)
Also returns a predecessor matrixΠ = (πi,j)

πi,j =

{
Nil i = j or no path from i to j
Predecessor of j on a shortest path from i to j otherwise

▶ i-th row ofΠ defines a shortest-paths tree rooted at i (the procedure to print a shortest path
from i should be evident from previous contents)
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Floyd-Warshall: DP Ingredients

A dynamic-programming approach utilizing the optimal substructure property of
shortest paths
As can be imagined, the parameter of the OPT function contains:
i and j, the start and end vertices

However, if your OPT contains only i, j, then:

d(i, j) = min
{
{d(i, ℓ) + d(ℓ, j) | ℓ ∈ V} ∪ {d(i, j)}

}
It would be nearly impossible to find a valid evaluation order
▶ There is no natural definition of ‘size’ for the problems d(i, j): they are all ‘equal’; no one is a
natural ‘subproblem’ of another

▶ Also no natural base cases
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Floyd-Warshall: DP Ingredients

The solution is that, we introduce another parameter k, and consider all paths from i to j
whose intermediate vertices are ≤ k
▶ E.g., path p = ⟨v1 = i, v2, . . . , vq−1, vq = j⟩ where v2, . . . , vq−1 ≤ k

OPT function: Let d(k)i,j := d(i, j, k) be the minimumweight of all paths from i to jwith
intermediate vertices ≤ k
We have the following immediate evidence why this definition makes sense:
(1) We could easily identify the base case: d(0)i,j = wi,j

(2) There is a natural notion of “size”: k

Now consider defining d(k)i,j for general k.
Paths from i to jwith intermediate vertices ≤ k fall in two sets:
▶ Does not contain k:

intermediate vertices are ≤ k − 1; the shortest one is d(k−1)i,j

▶ Contains k: the shortest one is d(k−1)i,k + d(k−1)k,j

So,

d(k)i,j =

{
wi,j k = 0

min
{
d(k−1)i,j , d(k−1)i,k + d(k−1)k,j

}
k > 0
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Floyd-Warshall: Algorithm

FLOYD-WARSHALL(W)

1 D(0) = W
2 for k = 1, . . . , n
3 D(k) :=

(
d(k)i,j

)
be a new n × nmatrix

4 for i = 1, . . . , n
5 for j = 1, . . . , n
6 d(k)i,j = min

{
d(k−1)i,j , d(k−1)i,k + d(k−1)k,j

}
Time complexity: Θ(|V|3), orΘ(n3)



Floyd-Warshall: Predecessor Matrix

Recall that we also need to compute a predecessor matrixΠ = (πi,j)

πi,j =

{
Nil i = j or no path from i to j
Predecessor of j on a shortest path from i to j otherwise

▶ i-th row ofΠ defines a shortest-paths tree rooted at i

We haveΠ(k) =
(
π
(k)
i,j

)
corresponding to each D(k)

π
(k)
i,j =


Nil i = j or no path from i to j

with intermediate vertices ≤ k

Predecessor of j on a shortest path from i to j
with intermediate vertices ≤ k otherwise

We simply letΠ = Π(n)
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Floyd-Warshall: Predecessor Matrix

Base case

π
(0)
i,j =

{
Nil if i = j or (i, j) < E
i if i , j and (i, j) ∈ E

General case

π
(k)
i,j =



π
(k−1)
i,j

if d(k−1)i,j ≤ d(k−1)i,k + d(k−1)k,j

π
(k−1)
k,j

if d(k−1)i,j > d(k−1)i,k + d(k−1)k,j
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Floyd-Warshall: WithΠmatrix update

FLOYD-WARSHALL(W)

1 Initialize D(0) andΠ(0)

2 for k = 1, . . . , n
3 for i = 1, . . . , n
4 for j = 1, . . . , n
5 if d(k−1)i,j ≤ d(k−1)i,k + d(k−1)k,j

6 d(k)i,j = d(k−1)i,j

7 π
(k)
i,j = π

(k−1)
i,j

8 else
9 d(k)i,j = d(k−1)i,k + d(k−1)k,j

10 π
(k)
i,j = π

(k−1)
k,j


