All-Pairs Shortest Paths

Tao Hou

Why study it?

We can solve an all-pairs shortest-paths problem by running a single-source shortest-paths algorithm *for each vertex*:

- Use Dijkstra's algorithm: $O(|V||E|\log(|V|))$
 - For sparse graph, $|E| = \Theta(|V|)$: $O(|V|^2 \log(|V|))$ (not too bad)
 - For dense graph, $|E| = \Theta(|V|^2)$: $O(|V|^3 \log(|V|))$ (can do better)
 - Not to mention that edge weights have to be non-negative

Why study it?

We can solve an all-pairs shortest-paths problem by running a single-source shortest-paths algorithm *for each vertex*:

- Use Dijkstra's algorithm: $O(|V||E|\log(|V|))$
 - For sparse graph, $|E| = \Theta(|V|)$: $O(|V|^2 \log(|V|))$ (not too bad)
 - For dense graph, $|E| = \Theta(|V|^2)$: $O(|V|^3 \log(|V|))$ (can do better)
 - Not to mention that edge weights have to be non-negative
- If we want to allow negative weights, we have to use Bellman-Ford
 - Time complexity: $O(|V|^2|E|)$
 - $O(|V|^4)$ for dense graphs (probably bad)

Why study it?

We can solve an all-pairs shortest-paths problem by running a single-source shortest-paths algorithm *for each vertex*:

- Use Dijkstra's algorithm: $O(|V||E|\log(|V|))$
 - For sparse graph, $|E| = \Theta(|V|)$: $O(|V|^2 \log(|V|))$ (not too bad)
 - For dense graph, $|E| = \Theta(|V|^2)$: $O(|V|^3 \log(|V|))$ (can do better)
 - Not to mention that edge weights have to be non-negative
- If we want to allow negative weights, we have to use Bellman-Ford
 - Time complexity: $O(|V|^2|E|)$
 - $O(|V|^4)$ for dense graphs (probably bad)

We introduce *Floyd-Warshall* algorithm:

Run in $O(|V|^3)$ time and allow negative weights

Floyd-Warshall: Setting

- Assume that the vertices are numbered 1, 2, ..., n where n = |V|
- The input is an $n \times n$ matrix $W = (w_{i,j})$ representing the edge weights (an *augmentation* of adjacency matrix):

$$w_{i,j} = \begin{cases} 0 & \text{if } i = j \\ \text{weight of edge } (i,j) & \text{if } i \neq j \text{ and } (i,j) \in E \\ \infty & \text{if } i \neq j \text{ and } (i,j) \notin E \end{cases}$$

Allow negative-weight edges, but assume that the input graph contains no negative-weight cycles

Floyd-Warshall: Setting

- Assume that the vertices are numbered 1, 2, ..., n where n = |V|
- The input is an $n \times n$ matrix $W = (w_{i,j})$ representing the edge weights (an *augmentation* of adjacency matrix):

$$w_{i,j} = \begin{cases} 0 & \text{if } i = j \\ \text{weight of edge } (i,j) & \text{if } i \neq j \text{ and } (i,j) \in E \\ \infty & \text{if } i \neq j \text{ and } (i,j) \notin E \end{cases}$$

- Allow negative-weight edges, but assume that the input graph contains no negative-weight cycles
- Returns an $n \times n$ matrix $D = (d_{i,j})$, where $d_{i,j} = \delta(i,j)$
- Also returns a *predecessor matrix* $\Pi = (\pi_{i,j})$

$$\pi_{ij} = \begin{cases} \text{Nil} & i = j \text{ or no path from } i \text{ to } j \\ \text{Predecessor of } j \text{ on a shortest path from } i \text{ to } j & \text{otherwise} \end{cases}$$

i-th row of ∏ defines a shortest-paths tree rooted at i (the procedure to print a shortest path from i should be evident from previous contents)

- A dynamic-programming approach utilizing the *optimal substructure property* of shortest paths
- As can be imagined, the parameter of the *OPT* function contains:

i and j, the start and end vertices

- A dynamic-programming approach utilizing the *optimal substructure property* of shortest paths
- As can be imagined, the parameter of the OPT function contains: i and j, the start and end vertices
- However, if your *OPT* contains only *i*, *j*, then:

 $d(i,j) = \min \left\{ \{ d(i, \ell) + d(\ell, j) \mid \ell \in V \} \cup \{ d(i, j) \} \right\}$

- It would be nearly *impossible* to find a valid *evaluation order*
 - ► There is no natural definition of 'size' for the problems *d*(*i*, *j*): they are all 'equal'; no one is a natural 'subproblem' of another
 - Also no natural base cases

- The solution is that, we introduce *another parameter k*, and consider all paths from *i* to *j* whose *intermediate vertices* are ≤ k
 - E.g., path $p = \langle v_1 = i, v_2, ..., v_{q-1}, v_q = j \rangle$ where $v_2, ..., v_{q-1} \le k$

- The solution is that, we introduce *another parameter k*, and consider all paths from *i* to *j* whose *intermediate vertices* are ≤ k
 - E.g., path $p = \langle v_1 = i, v_2, ..., v_{q-1}, v_q = j \rangle$ where $v_2, ..., v_{q-1} \le k$
- **OPT function**: Let $d_{i,j}^{(k)} := d(i, j, k)$ be the minimum weight of all paths from *i* to *j* with intermediate vertices $\leq k$
- We have the following immediate evidence why this definition makes sense:
 (1) We could easily identify the *base case*: d⁽⁰⁾_{i,j} = w_{i,j}
 (2) There is a natural notion of "size": k

- The solution is that, we introduce *another parameter k*, and consider all paths from *i* to *j* whose *intermediate vertices* are ≤ k
 - E.g., path $p = \langle v_1 = i, v_2, ..., v_{q-1}, v_q = j \rangle$ where $v_2, ..., v_{q-1} \le k$
- **OPT function**: Let $d_{i,j}^{(k)} := d(i, j, k)$ be the minimum weight of all paths from *i* to *j* with intermediate vertices $\leq k$
- We have the following immediate evidence why this definition makes sense:
 (1) We could easily identify the *base case*: d⁽⁰⁾_{i,j} = w_{i,j}
 (2) There is a natural notion of "size": k
- Now consider defining d^(k)_{i,j} for general k. Paths from i to j with intermediate vertices ≤ k fall in two sets:
 - Does not contain *k*:
 - Contains k:

- The solution is that, we introduce *another parameter k*, and consider all paths from *i* to *j* whose *intermediate vertices* are ≤ k
 - E.g., path $p = \langle v_1 = i, v_2, ..., v_{q-1}, v_q = j \rangle$ where $v_2, ..., v_{q-1} \le k$
- **OPT function**: Let $d_{i,j}^{(k)} := d(i, j, k)$ be the minimum weight of all paths from *i* to *j* with intermediate vertices $\leq k$
- We have the following immediate evidence why this definition makes sense:
 (1) We could easily identify the *base case*: d⁽⁰⁾_{i,j} = w_{i,j}
 (2) There is a natural notion of "size": k
- Now consider defining d^(k)_{i,j} for general k. Paths from i to j with intermediate vertices ≤ k fall in two sets:
 - Does not contain k: intermediate vertices are $\leq k 1$; the shortest one is
 - Contains k:

- The solution is that, we introduce *another parameter k*, and consider all paths from *i* to *j* whose *intermediate vertices* are ≤ k
 - E.g., path $p = \langle v_1 = i, v_2, ..., v_{q-1}, v_q = j \rangle$ where $v_2, ..., v_{q-1} \le k$
- **OPT function**: Let $d_{i,j}^{(k)} := d(i, j, k)$ be the minimum weight of all paths from *i* to *j* with intermediate vertices $\leq k$
- We have the following immediate evidence why this definition makes sense:
 (1) We could easily identify the *base case*: d⁽⁰⁾_{i,j} = w_{i,j}
 (2) There is a natural notion of "size": k
- Now consider defining d^(k)_{i,j} for general k. Paths from i to j with intermediate vertices ≤ k fall in two sets:
 - ▶ Does not contain k: intermediate vertices are $\leq k 1$; the shortest one is $d_{ii}^{(k-1)}$
 - Contains k:

- The solution is that, we introduce *another parameter k*, and consider all paths from *i* to *j* whose *intermediate vertices* are ≤ k
 - E.g., path $p = \langle v_1 = i, v_2, ..., v_{q-1}, v_q = j \rangle$ where $v_2, ..., v_{q-1} \le k$
- **OPT function**: Let $d_{i,j}^{(k)} := d(i, j, k)$ be the minimum weight of all paths from *i* to *j* with intermediate vertices $\leq k$
- We have the following immediate evidence why this definition makes sense:
 (1) We could easily identify the *base case*: d⁽⁰⁾_{i,j} = w_{i,j}
 (2) There is a natural notion of "size": k
- Now consider defining d^(k)_{i,j} for general k.
 Paths from i to j with intermediate vertices ≤ k fall in two sets:
 - ▶ Does not contain k: intermediate vertices are $\leq k 1$; the shortest one is $d_{ii}^{(k-1)}$
 - Contains k: the shortest one is $d_{i,k}^{(k-1)} + d_{k,j}^{(k-1)}$

- The solution is that, we introduce *another parameter k*, and consider all paths from *i* to *j* whose *intermediate vertices* are ≤ k
 - E.g., path $p = \langle v_1 = i, v_2, ..., v_{q-1}, v_q = j \rangle$ where $v_2, ..., v_{q-1} \le k$
- **OPT function**: Let $d_{i,j}^{(k)} := d(i, j, k)$ be the minimum weight of all paths from *i* to *j* with intermediate vertices $\leq k$
- We have the following immediate evidence why this definition makes sense:
 (1) We could easily identify the *base case*: d⁽⁰⁾_{i,j} = w_{i,j}
 (2) There is a natural notion of "size": k
- Now consider defining d^(k)_{i,j} for general k.
 Paths from i to j with intermediate vertices ≤ k fall in two sets:
 - ▶ Does not contain k: intermediate vertices are $\leq k 1$; the shortest one is $d_{i,i}^{(k-1)}$
 - Contains k: the shortest one is $d_{i,k}^{(k-1)} + d_{k,j}^{(k-1)}$

So,

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & k = 0\\ \min\left\{d_{ij}^{(k-1)}, d_{i,k}^{(k-1)} + d_{kj}^{(k-1)}\right\} & k > 0 \end{cases}$$

Floyd-Warshall: Algorithm

FLOYD-WARSHALL(W) 1 $D^{(0)} = W$ 2 for k = 1, ..., n3 $D^{(k)} := (d_{ij}^{(k)})$ be a new $n \times n$ matrix 4 for i = 1, ..., n5 for j = 1, ..., n6 $d_{ij}^{(k)} = \min \{d_{ij}^{(k-1)}, d_{i,k}^{(k-1)} + d_{kj}^{(k-1)}\}$

Time complexity: $\Theta(|V|^3)$, or $\Theta(n^3)$

Recall that we also need to compute a *predecessor matrix* $\Pi = (\pi_{ij})$

 $\pi_{i,j} = \begin{cases} \text{Nil} & i = j \text{ or no path from } i \text{ to } j \\ \text{Predecessor of } j \text{ on a shortest path from } i \text{ to } j & \text{otherwise} \end{cases}$

▶ *i*-th row of Π defines a shortest-paths tree rooted at *i*

Recall that we also need to compute a *predecessor matrix* $\Pi = (\pi_{ij})$

 $\pi_{i,j} = \begin{cases} \text{Nil} \\ \text{Predecessor of } i \text{ on a shortest path from } i \text{ to } j \end{cases}$ i = i or no path from i to j otherwise i-th row of ∏ defines a shortest-paths tree rooted at i • We have $\Pi^{(k)} = \left(\pi_{i,i}^{(k)}\right)$ corresponding to each $D^{(k)}$ i = j or no path from i to j with intermediate vertices $\leq k$ otherwise

• We simply let $\Pi = \Pi^{(n)}$

Base case

$$\pi_{i,j}^{(0)} = \begin{cases} \text{Nil} & \text{if } i = j \text{ or } (i,j) \notin E \\ i & \text{if } i \neq j \text{ and } (i,j) \in E \end{cases}$$

Base case

$$\pi_{i,j}^{(0)} = \begin{cases} \text{Nil} & \text{if } i = j \text{ or } (i,j) \notin E \\ i & \text{if } i \neq j \text{ and } (i,j) \in E \end{cases}$$

General case

$$\pi_{ij}^{(k)} = \begin{cases} & \text{if } d_{ij}^{(k-1)} \le d_{i,k}^{(k-1)} + d_{kj}^{(k-1)} \\ & \text{if } d_{ij}^{(k-1)} > d_{i,k}^{(k-1)} + d_{k,j}^{(k-1)} \end{cases}$$

Base case

$$\pi_{ij}^{(0)} = \begin{cases} \text{Nil} & \text{if } i = j \text{ or } (i,j) \notin E \\ i & \text{if } i \neq j \text{ and } (i,j) \in E \end{cases}$$

General case

$$\pi_{ij}^{(k)} = \begin{cases} \pi_{ij}^{(k-1)} & \text{if } d_{ij}^{(k-1)} \leq d_{i,k}^{(k-1)} + d_{kj}^{(k-1)} \\ \pi_{kj}^{(k-1)} & \text{if } d_{ij}^{(k-1)} > d_{i,k}^{(k-1)} + d_{k,j}^{(k-1)} \end{cases}$$

Floyd-Warshall: With Π matrix update

