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Why study it?

We can solve an all-pairs shortest-paths problem by running a single-source shortest-paths
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m Use Dijkstra’s algorithm: O(|V||E|log(]V]))
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» Not to mention that edge weights have to be non-negative
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We introduce Floyd-Warshall algorithm:
m Runin O(]V]?) time and allow negative weights



Floyd-Warshall: Setting

m Assume that the vertices are numbered 1, 2, ..., nwheren = |V|
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adjacency matrix):

0 ifi =]
wij = { weightofedge (i,j) ifi#jand(i,j) € E
00 ifi #jand (i,j) ¢ E
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m Assume that the vertices are numbered 1, 2, ..., nwheren = |V|

m Theinputisannx nmatrix W = (w;;) representing the edge weights (an augmentation of
adjacency matrix):

0 ifi=j
wij = { weightof edge (i,j) ifi ¢;and (i,j) € E
o0 ifi #jand (i,j) ¢ E
m Allow negative-weight edges, but assume that the input graph contains no
negative-weight cycles
m Returns ann x n matrix D = (d;;), where d;; = 6(i,))
m Also returns a predecessor matrix 11 = (r;;)

— Nil i = jorno pathfromitoj
Y 7| Predecessor of jon a shortest path fromitoj otherwise

» i-th row of IT defines a shortest-paths tree rooted at i (the procedure to print a shortest path
from i should be evident from previous contents)
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m Adynamic-programming approach utilizing the optimal substructure property of
shortest paths

m As can be imagined, the parameter of the OPT function contains:
i and j, the start and end vertices

m However, if your OPT contains only j, j, then:

d(i,j) = min {{d(i, €) + d(£.,j) | € € V} U{d(i,j)}}

m It would be nearly impossible to find a valid evaluation order
» There is no natural definition of ‘size’ for the problems d(j, j): they are all ‘equal’; no oneis a
natural ‘subproblem’ of another
» Also no natural base cases
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Floyd-Warshall: DP Ingredients

The solution is that, we introduce another parameter k, and consider all paths from i to j
whose intermediate vertices are < k

» Eg,pathp =(vi =i va,...,Vg_1,Vqg =j) Wherevy, ... ,vq_1 < k

OPT function: Let dl.(;) := d(i, J, k) be the minimum weight of all paths from i to j with
intermediate vertices < k

We have the following immediate evidence why this definition makes sense:

(1) We could easily identify the base case: d?

i
(2) There is a natural notion of “size”: k
Now consider defining dl.(;{) for general k.

Paths from i to j with intermediate vertices < k fall in two sets:

» Does not contain k: intermediate vertices are < k — 1; the shortest one is d,.(jl.(fl)
» Contains k: the shortest one is dff;l) + d,(f;fl)

So,

Wi k=0
G min {di Y dl Y iV k>0



Floyd-Warshall: Algorithm

FLOYD-WARSHALL(IV)

1 DO =w

2 fork=1,...,n

3 D) .= (dl(f)) be a new n x n matrix
4 fori=1,...,n

5 forj=1,...,n
6

(0 _ i [0 gD gD
d) = min {7V, gV + g7}

Time complexity: O(|V|?), or ©(n?)
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Floyd-Warshall: Predecessor Matrix

m Recall that we also need to compute a predecessor matrix 11 = (r;;)
~ | Nil i =jorno pathfromijtoj
H Predecessor of j on a shortest path fromitoj otherwise
» i-th row of IT defines a shortest-paths tree rooted at /
m We have ITK) = ( (j)) corresponding to each D)

i =jorno pathfromitoj

Ni Ll . .
il with intermediate vertices < k

Predecessor of j on a shortest path from i toj

o . . otherwise
with intermediate vertices < k

m We simply let IT = I1(")
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m Base case
L0 _ [ NiLifi=jor(ij) ¢ E
o i ifi#tjand (i,j) € E

m General case

o (k-1) (k-1) (k-1)
" { ifd, " <dy, " +dy;
.. =
h .o (k=1) (k-1) (k-1)
ifd; > di ) +d,;



Floyd-Warshall: Predecessor Matrix

m Base case
L0 _ [ NiLifi=jor(ij) ¢ E
o i ifi#tjand (i,j) € E

m General case

(k) o ki
b/ ij

{ R0 i 0D ¢ gl | )

(k=1) .¢ (k-1) (k-1) (k-1)
e ifd Y > d + d



Floyd-Warshall: With II matrix update

FLOYD-WARSHALL(IV)

1 Initialize D and I1(®)

2 fork=1,...,n

3 fori=1,...,n

4 forj=1,.

5 |fd(k o d(k D dpt
6 d(k) d(k 1)

7 (k k 1)

8 else K

9 d® = d(k D4 d(k 1)
10 (" = kj 1




