Single-source Shortest Paths

Tao Hou

Shortest Path Problem

Problem Definition
Given a weighted (directed or undirected) graph G = (V, E), a source vertex s and a target
vertex tin G, compute a path from s to t of minimum weight (i.e., the shortest path)

m The weightis a function w : E — R on the edges
m The weight of a path is the sum of weights of all edges on the path

Two variations:
Single-source Shortest Paths

Given a source vertex s of G, compute the shortest paths from s to all other vertices

All-pair Shortest Paths
Compute the shortest paths for all pairs of vertices

Example

Ashortest path fromstotis:s > e — b — f — t of weight 6
m In reality, the weight can be the length, cost, or time of roads, transportation lines etc.

More definitions

m The weight of the shortest path from s to tis called the distance, or shortest-path
distance, from sto t and is denoted as &(s, t).

m We have §(s, t) = o if there is no path fromsto t

More definitions

m The weight of the shortest path from s to tis called the distance, or shortest-path
distance, from sto t and is denoted as &(s, t).

m We have §(s, t) = o if there is no path fromsto t
m In the problem, edge weights can be negative.

m However, if there is a negative-weight cycle on the path from sto t, §(s, t) (as well as the
problem) is not well-defined:

» We can choose go through the cycles for arbitrary times and the weight of the path can
arbitrarily lowered.

Single-source Shortest Paths
Algorithms

m BFS (Review)

m Dijkstra’s algorithm
m Bellman-Ford

m An algorithm for DAG

Graph data structures
We assume adjacency list as data structures for graphs

Representing shortest paths from s
Through a shortest-path tree rooted at s, where the (unique) simple path from s to any vertex
vinthe tree is a shortest path fromsto v

m There must be no cycles in a shortest path

» The problem is not well-defined with negative-weight cycles
» There can be no cycles with non-negative weight in a shortest path

m Shortest paths have the optimal substructure property
m We use P[v] to record the parent of v in the tree (like in BFS/DFS)

Example of shortest path tree

Breadth-First Search

m One of the simplest but also a fundamental algorithm

» Some more advance graph algorithm such as Prim’s and Dijkstra’s can be considered as built
on BFS

Breadth-First Search

m One of the simplest but also a fundamental algorithm

>

Some more advance graph algorithm such as Prim’s and Dijkstra’s can be considered as built
on BFS

m Input: G = (V,E) and a source vertexs € V

>

>

>

explores the graph starting from s, touching all vertices that are reachable from s
computes the distance of each vertex from s (‘distance’ means minimum number of edges)
iterates through the vertices at increasing distance

> the algorithm discovers all vertices at distance k from s before discovering any vertices at
distance k + 1 (hence the name)

produces a BFS tree rooted at s
> An edge (u,v) in the tree means that v is ‘discovered’ by visiting u

works on both directed and undirected graphs

Breadth-First Search

m One of the simplest but also a fundamental algorithm

» Some more advance graph algorithm such as Prim’s and Dijkstra’s can be considered as built
on BFS

m Input: G = (V,E) and a source vertexs € V

» explores the graph starting from s, touching all vertices that are reachable from s
» computes the distance of each vertex from s (‘distance’ means minimum number of edges)
» iterates through the vertices at increasing distance

> the algorithm discovers all vertices at distance k from s before discovering any vertices at
distance k + 1 (hence the name)

» produces a BFS tree rooted at s
> An edge (u,v) in the tree means that v is ‘discovered’ by visiting u

» works on both directed and undirected graphs
B Breadth-first search computes the single-source shortest paths for s with weights of all
edges being 1.

» The BFS tree is the shortest-path tree in this case

Breadth-First Search: High-level idea

A central data structure: A (FIFO) Queue

Two phases of accessing a vertex u
m Discovering: put u into the queue waiting to be visited
m Visiting: access the adjacency list of u and try to discover each adjacent vertex

Breadth-First Search: High-level idea

A central data structure: A (FIFO) Queue

Two phases of accessing a vertex u
m Discovering: put u into the queue waiting to be visited
m Visiting: access the adjacency list of u and try to discover each adjacent vertex

Process
m Initially, the seed s is the only vertex discovered (i.e., in the queue)
m Each iteration takes a vertex u from from the queue and visits u, until the queue is empty

Breadth-First Search: High-level idea
A central data structure: A (FIFO) Queue

Two phases of accessing a vertex u
m Discovering: put u into the queue waiting to be visited

m Visiting: access the adjacency list of u and try to discover each adjacent vertex

Process

m Initially, the seed s is the only vertex discovered (i.e., in the queue)
m Each iteration takes a vertex u from from the queue and visits u, until the queue is empty

Coloring for vertices:
m white: ‘undiscovered’, initial color
m gray: ‘discovered’, but haven’t been ‘visited’
m black: finished ‘visiting’

Example

:/a
1/

Example

Example

JSNANAN
Pos

Example

NN
PR

Example

NN
e

Example

Qﬁii)

9 <
¥

PN

Example

® w \\O

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

n ——=12

Example

Example

Example

Example

BFS Algorithm

BFS(G,s) Coloring f o

1 foreachvertexu € V(G) \ {s} mto Orm?? or Verfuces' o

2 color{u] = WHITE » white: ‘undiscovered’, initial color

3 du] = o » gray: ‘discovered’, but haven’t been ‘visited’

4 w[u] = NIL » black: finished ‘visiting’

Z z[osl]mis]o: GRAY m > ‘discovering’ means first encountered by the search

7 xls] = NiL » ‘visiting’ means to try to discover all adjacent vertices
8 Q=0 which are undiscovered

9 ENQUEUE(Q,Ss) m Central data structure: a queue (first-in, first-out):
11(1) while Q ¢D® © » Contains gray vertices

u = DEQUEUE

12 for each v € Adj[u] m Some records we keep:
13 if color[v] == wHITE » color{u]: color of a vertex u
14 color{v] = GRAY » d[u]: distance fromsto u

18 dlv] = dlu] +1 » m[u]: avertexs.t. (x[u], u) forms an edge in the BFS tree
1? ZLV‘L;UUE(Q Y (there is another interpretation which we will see in
18 color{u] = BLACK Dijkstra’s)

BFS(G,s)

1

for each vertex u € V(G) \ {s}
color{u] = WHITE
du] =
x[u] = NIL
color[s] = GRAY
dis] =0
z[s] = NIL
Q=0
ENQUEUE(Q, s)
whileQ # @
u = DEQUEUE(Q)
for each v € Adju]
if color|v] == WHITE
color[v] = GRAY
dv] = dlu] +1
vl = u
ENQUEUE(Q, V)
color{u] = BLACK

BFS Algorithm

m Initially, s is set as ‘discovered’: enqueued, gray
All other vertices are ‘undiscovered’ (white)

BFS Algorithm

BFS(G,s)

I for each vertexu € V(G) \ {s} m Initially, s is set as ‘discovered’: enqueued, gray

All other vertices are ‘undiscovered’ (white)

2 color{u] = WHITE

3 dlu] = = m Eachiteration:

“ #lu] = N » Dequeues a vertex u and tries to ‘discover’ (enqueue;
Z 2[051]0715]0: GRAY mark as gray) all its adjacent vertices which are

7 xfs] = niL ‘undiscovered’

8 Q=02

9 ENQUEUE(Q,Ss)
10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE
14 color[v] = GRAY
15 div] = dlu] + 1
16 vl = u

17 ENQUEUE(Q, V)

18 color{u] = BLACK

BFS Algorithm

BFS(G,s) . . . ,
| Gedicrewe Y@ 6 m Initially, sis sgt as dlscovgred : enqueueFI, gray
2 color{u] = WHITE All other vertices are ‘undiscovered’ (white)
3 dlu] = = m Eachiteration:
i #lu] = N » Dequeues a vertex u and tries to ‘discover’ (enqueue;
Z z[osl]ois]oz GRAY mark as gray) all its adjacent vertices which are
7 xs] = NiL ‘undiscovered’
8 0=0 » Whenever we discover a vertex v, we add the edge (u, v)

9 ENQUEUE(Q,s) to the BFS-tree (called a tree edge)

10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE
14 color[v] = GRAY
15 dv] = dlu] +1
16 vl = u

17 ENQUEVE(Q, v)

18 color{u] = BLACK

BFS Algorithm

BFS(G,s) Initially. s is set as ‘di o’ d
foreaehereaie () s] m Initially, s is set as ‘discovered’: enqueued, gray

; color{u] = WHITE All other vertices are ‘undiscovered’ (white)

3 dlu] = = m Eachiteration:

o #lu] = N » Dequeues a vertex u and tries to ‘discover’ (enqueue;

Z z[osl]mis]o: GRAY mark as gray) all its adjacent vertices which are

7 xfs] = NiL ‘undiscovered’

8 » Whenever we discover a vertex v, we add the edge (u, v)

9 SNQUiUE(Q, s) to the BFS-tree (called a tree edge)
10 whileQ # @ » After this, we finished visiting u and mark u as black.
1 u = DEQUEUE(Q)
12 for each v € Adju]
13 if color|v] == WHITE
14 color[v] = GRAY
15 dv] = dlu] +1
16 vl = u
17 ENQUEVE(Q, v)

18 color{u] = BLACK

BFS Algorithm

BFS(G,s)
1 foreachvertexu € V(G) \ {s}
2 color{u] = WHITE
3 du] =
4 x[u] = NIL
5 color[s] = GRAY
6 d[s] =0
7 x[s] = NIL
8 Q=0
9 ENQUEUE(Q,S)
10 whileQ # @
1 u = DEQUEUE(Q)
12 for each v € Adju]
13 if color|v] == WHITE
14 color[v] = GRAY
15 div] = dlu] + 1
16 vl = u
17 ENQUEUE(Q, V)
18 color{u] = BLACK

BFS(G,s)

1 foreachvertexu € V(G) \ {s}

2 color{u] = WHITE

3 du] =

4 x[u] = NIL

5 color[s] = GRAY

6 d[s] =0

7 x[s] = NIL

8 Q=0

9 ENQUEUE(Q,S)

10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE
14 color[v] = GRAY
15 div] = dlu] + 1
16 vl = u

17 ENQUEVE(Q, v)
18 color{u] = BLACK

BFS Algorithm

BFS(G,s)

1 foreachvertexu € V(G) \ {s}

2 color{u] = WHITE

3 du] =

4 x[u] = NIL

5 color[s] = GRAY

6 d[s] =0

7 x[s] = NIL

8 Q=0

9 ENQUEUE(Q,S)

10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE
14 color[v] = GRAY
15 div] = dlu] + 1
16 vl = u

17 ENQUEVE(Q, v)
18 color{u] = BLACK

BFS Algorithm

BFS(G,s)

1 foreachvertexu € V(G) \ {s}

2 color{u] = WHITE

3 du] =

4 x[u] = NIL

5 color[s] = GRAY

6 d[s] =0

7 x[s] = NIL

8 Q=0

9 ENQUEUE(Q,S)

10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE
14 color[v] = GRAY
15 div] = dlu] + 1
16 vl = u

17 ENQUEVE(Q, v)
18 color{u] = BLACK

BFS Algorithm

) =
@/w

BFS(G,s)

1 foreachvertexu € V(G) \ {s}

2 color{u] = WHITE

3 du] =

4 x[u] = NIL

5 color[s] = GRAY

6 d[s] =0

7 x[s] = NIL

8 Q=0

9 ENQUEUE(Q,S)

10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE
14 color[v] = GRAY
15 div] = dlu] + 1
16 vl = u

17 ENQUEVE(Q, v)
18 color{u] = BLACK

BFS Algorithm

BFS(G,s)

1 foreachvertexu € V(G) \ {s}

2 color{u] = WHITE

3 du] =

4 x[u] = NIL

5 color[s] = GRAY

6 d[s] =0

7 x[s] = NIL

8 Q=0

9 ENQUEUE(Q,S)

10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE
14 color[v] = GRAY
15 div] = dlu] + 1
16 vl = u

17 ENQUEVE(Q, v)
18 color{u] = BLACK

BFS Algorithm

11
7\

8
@\@

BFS(G,s)

1 foreachvertexu € V(G) \ {s}

2 color{u] = WHITE

3 du] =

4 x[u] = NIL

5 color[s] = GRAY

6 d[s] =0

7 x[s] = NIL

8 Q=0

9 ENQUEUE(Q,S)

10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE
14 color[v] = GRAY
15 div] = dlu] + 1
16 vl = u

17 ENQUEVE(Q, v)
18 color{u] = BLACK

BFS Algorithm

BFS(G,s)

1 foreachvertexu € V(G) \ {s}

2 color{u] = WHITE

3 du] =

4 x[u] = NIL

5 color[s] = GRAY

6 d[s] =0

7 x[s] = NIL

8 Q=0

9 ENQUEUE(Q,S)

10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE
14 color[v] = GRAY
15 div] = dlu] + 1
16 vl = u

17 ENQUEVE(Q, v)
18 color{u] = BLACK

BFS Algorithm

BFS(G,s)

1 foreachvertexu € V(G) \ {s}

2 color{u] = WHITE

3 du] =

4 x[u] = NIL

5 color[s] = GRAY

6 d[s] =0

7 x[s] = NIL

8 Q=0

9 ENQUEUE(Q,S)

10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE
14 color[v] = GRAY
15 div] = dlu] + 1
16 vl = u

17 ENQUEVE(Q, v)
18 color{u] = BLACK

BFS Algorithm

BFS(G,s)

1 foreachvertexu € V(G) \ {s}

2 color{u] = WHITE

3 du] =

4 x[u] = NIL

5 color[s] = GRAY

6 d[s] =0

7 x[s] = NIL

8 Q=0

9 ENQUEUE(Q,S)

10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE
14 color[v] = GRAY
15 dv] = dlu] +1
16 vl = u

17 ENQUEVE(Q, v)
18 color{u] = BLACK

BFS Algorithm

BFS(G,s)

1 foreachvertexu € V(G) \ {s}

2 color{u] = WHITE

3 du] =

4 x[u] = NIL

5 color[s] = GRAY

6 d[s] =0

7 x[s] = NIL

8 Q=0

9 ENQUEUE(Q,S)

10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE
14 color[v] = GRAY
15 dv] = dlu] +1
16 vl = u

17 ENQUEVE(Q, v)
18 color{u] = BLACK

BFS Algorithm

BFS(G,s)

1 foreachvertexu € V(G) \ {s}

2 color{u] = WHITE

3 du] =

4 x[u] = NIL

5 color[s] = GRAY

6 d[s] =0

7 x[s] = NIL

8 Q=0

9 ENQUEUE(Q,S)

10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE
14 color[v] = GRAY
15 dv] = dlu] +1
16 vl = u

17 ENQUEVE(Q, v)
18 color{u] = BLACK

BFS Algorithm

BFS(G,s)

1 foreachvertexu € V(G) \ {s}

2 color{u] = WHITE

3 du] =

4 x[u] = NIL

5 color[s] = GRAY

6 d[s] =0

7 x[s] = NIL

8 Q=0

9 ENQUEUE(Q,S)

10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE
14 color[v] = GRAY
15 dv] = dlu] +1
16 vl = u

17 ENQUEVE(Q, v)
18 color{u] = BLACK

BFS Algorithm

BFS(G,s)

1 foreachvertexu € V(G) \ {s}

2 color{u] = WHITE

3 du] =

4 x[u] = NIL

5 color[s] = GRAY

6 d[s] =0

7 x[s] = NIL

8 Q=0

9 ENQUEUE(Q,S)

10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE
14 color[v] = GRAY
15 dv] = dlu] +1
16 vl = u

17 ENQUEVE(Q, v)
18 color{u] = BLACK

BFS Algorithm

BFS(G,s)

1 foreachvertexu € V(G) \ {s}

2 color{u] = WHITE

3 du] =

4 x[u] = NIL

5 color[s] = GRAY

6 d[s] =0

7 x[s] = NIL

8 Q=0

9 ENQUEUE(Q,S)

10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE
14 color[v] = GRAY
15 dv] = dlu] +1
16 vl = u

17 ENQUEVE(Q, v)
18 color{u] = BLACK

BFS Algorithm

BFS Algorithm

BFS(G,s)
1 foreachvertexu € V(G) \ {s}
2 color{u] = WHITE
3 du] =
4 x[u] = NIL
5 color[s] = GRAY
6 d[s] =0
7 x[s] = NIL
8 Q=0
9 ENQUEUE(Q,S)
10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE

14 color[v] = GRAY

15 dv] = dlu] +1

16 vl = u

17 ENQUEVE(Q, v) u="1
18 color{u] = BLACK

Q= {10,3,8,11}

BFS(G,s)

1 foreachvertexu € V(G) \ {s}

2 color{u] = WHITE

3 du] =

4 x[u] = NIL

5 color[s] = GRAY

6 d[s] =0

7 x[s] = NIL

8 Q=0

9 ENQUEUE(Q,S)

10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE
14 color[v] = GRAY
15 dv] = dlu] +1
16 vl = u

17 ENQUEVE(Q, v)
18 color{u] = BLACK

BFS Algorithm

BFS(G,s)

1 foreachvertexu € V(G) \ {s}

2 color{u] = WHITE

3 du] =

4 x[u] = NIL

5 color[s] = GRAY

6 d[s] =0

7 x[s] = NIL

8 Q=0

9 ENQUEUE(Q,S)

10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE
14 color[v] = GRAY
15 dv] = dlu] +1
16 vl = u

17 ENQUEVE(Q, v)
18 color{u] = BLACK

BFS Algorithm

BFS Algorithm

BFS(G,s)
1 foreachvertexu € V(G) \ {s}
2 color{u] = WHITE
3 du] =
4 x[u] = NIL
5 color[s] = GRAY
6 d[s] =0
7 x[s] = NIL
8 Q=0
9 ENQUEUE(Q,S)
10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE

14 color[v] = GRAY

15 dv] = dlu] +1

16 vl = u

17 ENQUEVE(Q, v) u=23
18 color{u] = BLACK

BFS Algorithm

BFS(G,s)
1 foreachvertexu € V(G) \ {s}
2 color{u] = WHITE
3 du] =
4 x[u] = NIL
5 color[s] = GRAY
6 d[s] =0
7 x[s] = NIL
8 Q=0
9 ENQUEUE(Q,S)
10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE

14 color[v] = GRAY

15 dv] = dlu] +1

16 vl = u

17 ENQUEVE(Q, v) u=2=8
18 color{u] = BLACK

BFS Algorithm

BFS(G,s)
1 foreachvertexu € V(G) \ {s}
2 color{u] = WHITE
3 du] =
4 x[u] = NIL
5 color[s] = GRAY
6 d[s] =0
7 x[s] = NIL
8 Q=0
9 ENQUEUE(Q,S)
10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE

14 color[v] = GRAY

15 dv] = dlu] +1

16 vl = u

17 ENQUEVE(Q, v) u=2=8
18 color{u] = BLACK

Q={11,4,12}

BFS Algorithm

BFS(G,s)
1 foreachvertexu € V(G) \ {s}
2 color{u] = WHITE
3 du] =
4 x[u] = NIL
5 color[s] = GRAY
6 d[s] =0
7 x[s] = NIL
8 Q=0
9 ENQUEUE(Q,S)
10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE

14 color[v] = GRAY

15 dv] = dlu] +1

16 vl = u

17 ENQUEVE(Q, v) u=11
18 color{u] = BLACK

BFS Algorithm

BFS(G,s)
1 foreachvertexu € V(G) \ {s}
2 color{u] = WHITE
3 du] =
4 x[u] = NIL
5 color[s] = GRAY
6 d[s] =0
7 x[s] = NIL
8 Q=0
9 ENQUEUE(Q,S)
10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE

14 color[v] = GRAY

15 dv] = dlu] +1

16 vl = u

17 ENQUEVE(Q, v) u=4
18 color{u] = BLACK

BFS(G,s)

1 foreachvertexu € V(G) \ {s}

2 color{u] = WHITE

3 diu] = =

4 x[u] = NIL

5 color[s] = GRAY

6 dis] =0

7 x[s] = NIL

8 Q=0

9 ENQUEUE(Q,S)

10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adj[u]

13 if color|v] == WHITE
14 color[v] = GRAY
15 dv] = dlu] +1
16 V] =u

17 ENQUEUE(Q, V)
18 color[u] = BLACK

BFS Algorithm

BFS(G,s)
1 foreachvertexu € V(G) \ {s}
2 color{u] = WHITE
3 diu] = =
4 x[u] = NIL
5 color[s] = GRAY
6 dis] =0
7 x[s] = NIL
8 Q=0
9 ENQUEUE(Q,S)
10 whileQ # @
1 u = DEQUEUE(Q)
12 for each v € Adj[u]
13 if color|v] == WHITE
14 color[v] = GRAY
15 dv] = dlu] +1
16 V] =u
17 ENQUEUE(Q, V)

18

color[u] = BLACK

BFS Algorithm

Complexity of BFS

BFS(G,s)
1 foreachvertexu € V(G) \ {s}
2 color{u] = WHITE
3 du] =
4 x[u] = NIL
5 color[s] = GRAY
6 d[s] =0
7 x[s] = NIL
8 Q=0
9 ENQUEUE(Q,S)
10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE
14 color[v] = GRAY
15 div] = dlu] + 1
16 vl = u

17 ENQUEUE(Q, V)

18 color{u] = BLACK

BFS(G,s)

1

for each vertex u € V(G) \ {s}
color{u] = WHITE
du] =
x[u] = NIL
color[s] = GRAY
dis] =0
z[s] = NIL
Q=0
ENQUEUE(Q, s)
whileQ # @
u = DEQUEUE(Q)
for each v € Adju]
if color|v] == WHITE
color[v] = GRAY
dv] = dlu] +1
vl = u
ENQUEUE(Q, V)
color{u] = BLACK

Complexity of BFS

m We enqueue a vertex only if it is white, and we
immediately color it gray; thus, we enqueue every
vertex at most once

BFS(G, s)
1 foreachvertexu € V(G) \ {s}
2 color{u] = WHITE
3 du] =
4 x[u] = NIL
5 color[s] = GRAY
6 d[s] =0
7 x[s] = NIL
8 Q=02
9 ENQUEUE(Q,Ss)
10 whileQ # @
1 u = DEQUEUE(Q)
12 for each v € Adju]
13 if color|v] == WHITE
14 color[v] = GRAY
15 div] = dlu] + 1
16 vl = u
17 ENQUEVE(Q, v)

18

color{u] = BLACK

Complexity of BFS

m We enqueue a vertex only if it is white, and we
immediately color it gray; thus, we enqueue every
vertex at most once

m This means that we also dequeue every vertex at
most once

m So, the (dequeue) while loop executes O(|V]) times

BFS(G,s)
1 foreachvertexu € V(G) \ {s}
2 color{u] = WHITE
3 du] =
4 x[u] = NIL
5 color[s] = GRAY
6 d[s] =0
7 x[s] = NIL
8 Q=0
9 ENQUEUE(Q,S)
10 whileQ # @
1 u = DEQUEUE(Q)
12 for each v € Adju]
13 if color|v] == WHITE
14 color[v] = GRAY
15 dv] = dlu] +1
16 vl = u
17 ENQUEVE(Q, v)

18

color{u] = BLACK

Complexity of BFS

We enqueue a vertex only if it is white, and we
immediately color it gray; thus, we enqueue every
vertex at most once

This means that we also dequeue every vertex at
most once

So, the (dequeue) while loop executes O(|V]) times

The inner loop: For each vertex u, the inner loop
executes for no more than out-deg(u) times, for a
total of 3,y out-deg(u) =

BFS(G,s)
1 foreachvertexu € V(G) \ {s}
2 color{u] = WHITE
3 du] =
4 x[u] = NIL
5 color[s] = GRAY
6 d[s] =0
7 x[s] = NIL
8 Q=0
9 ENQUEUE(Q,S)
10 whileQ # @
1 u = DEQUEUE(Q)
12 for each v € Adju]
13 if color|v] == WHITE
14 color[v] = GRAY
15 dv] = dlu] +1
16 vl = u
17 ENQUEVE(Q, v)

18

color{u] = BLACK

Complexity of BFS

We enqueue a vertex only if it is white, and we
immediately color it gray; thus, we enqueue every
vertex at most once

This means that we also dequeue every vertex at
most once

So, the (dequeue) while loop executes O(|V]) times

The inner loop: For each vertex u, the inner loop
executes for no more than out-deg(u) times, for a
total of 3., out-deg(u) =|E| times

BFS(G,s)
1 foreachvertexu € V(G) \ {s}
2 color{u] = WHITE
3 du] =
4 x[u] = NIL
5 color[s] = GRAY
6 d[s] =0
7 x[s] = NIL
8 Q=0
9 ENQUEUE(Q,S)
10 whileQ # @
1 u = DEQUEUE(Q)
12 for each v € Adju]
13 if color|v] == WHITE
14 color[v] = GRAY
15 dv] = dlu] +1
16 vl = u
17 ENQUEVE(Q, v)

18

color{u] = BLACK

Complexity of BFS

We enqueue a vertex only if it is white, and we
immediately color it gray; thus, we enqueue every
vertex at most once

This means that we also dequeue every vertex at
most once

So, the (dequeue) while loop executes O(|V]) times

The inner loop: For each vertex u, the inner loop
executes for no more than out-deg(u) times, for a
total of 3., out-deg(u) =|E| times

So, O(|V| + |E|) (because |E| may be less than |V])

BFS gives the shortest-path distance

Claim
Let 6(s, v) be the minimum numbers of edges of any path from s to v. Then, we claim that
dv] = 8(s,v).

BFS gives the shortest-path distance

Claim
Let 6(s, v) be the minimum numbers of edges of any path from s to v. Then, we claim that

dv] = 8(s,v).

Reason:
m First, we observe that, before a vertex with distance k + 1 is visited, all vertices with
distance < k have been visited
» Atthe beginning, there is only one vertex s with distance < 0, and s is the first vertex visited.
When visiting s, we discover all vertices with distance < 1
» When visiting vertices with distance 1, we discover all vertices with distance < 2
» ... (The predecessor of every vertex with distance k must be a vertex with distance k — 1)

BFS gives the shortest-path distance

Claim
Let 6(s, v) be the minimum numbers of edges of any path from s to v. Then, we claim that

dv] = 8(s,v).

Reason:
m First, we observe that, before a vertex with distance k + 1 is visited, all vertices with
distance < k have been visited
» Atthe beginning, there is only one vertex s with distance < 0, and s is the first vertex visited.
When visiting s, we discover all vertices with distance < 1
» When visiting vertices with distance 1, we discover all vertices with distance < 2
» ... (The predecessor of every vertex with distance k must be a vertex with distance k — 1)

m For contradiction, suppose the claim is not true, and consider the first vertex v visited by
BFSs.t. §(s,v) # d[V]

m Assume v is discovered when visiting u. We have d[v] = d[u] + 1.

m Since (s, v) < d[v], we have that §(s,v) < d|v].

BFS gives the shortest-path distance

Claim
Let 6(s, v) be the minimum numbers of edges of any path from s to v. Then, we claim that

dv] = 8(s,v).

Reason:
m First, we observe that, before a vertex with distance k + 1 is visited, all vertices with
distance < k have been visited
» Atthe beginning, there is only one vertex s with distance < 0, and s is the first vertex visited.
When visiting s, we discover all vertices with distance < 1
» When visiting vertices with distance 1, we discover all vertices with distance < 2
» ... (The predecessor of every vertex with distance k must be a vertex with distance k — 1)
m For contradiction, suppose the claim is not true, and consider the first vertex v visited by
BFSs.t. §(s,v) # d[V]
m Assume v is discovered when visiting u. We have d[v] = d[u] + 1.
m Since (s, v) < d[v], we have that §(s,v) < d|v].
m Let w be the predecessor of v on a shortest path from s to v. We have §(s, w) = 6(s,v) — 1.
So&(s,w) < d[v] -1 =d[u] = (s, u).
m This means that w must be visited before u, and when we visit w, we must have marked v
as gray. This contradicts the fact that when we visit u, the color of v is still white.

Why the edges (7]v], v) form a tree?

Here we prove that the underlying undirected graph is an (undirected) tree

Why the edges (7]v], v) form a tree?

Here we prove that the underlying undirected graph is an (undirected) tree

m Consider only vertices connected to s (i.e., in the connected component containing s),
and let the number of vertices connected to s be ng

Why the edges (7]v], v) form a tree?

Here we prove that the underlying undirected graph is an (undirected) tree

m Consider only vertices connected to s (i.e., in the connected component containing s),
and let the number of vertices connected to s be ng

m The number of tree edges:

Why the edges (7]v], v) form a tree?

Here we prove that the underlying undirected graph is an (undirected) tree

m Consider only vertices connected to s (i.e., in the connected component containing s),
and let the number of vertices connected to s be ng

m The number of tree edges: np — 1

Why the edges (7]v], v) form a tree?

Here we prove that the underlying undirected graph is an (undirected) tree

m Consider only vertices connected to s (i.e., in the connected component containing s),
and let the number of vertices connected to s be ng

m The number of tree edges: np — 1

m The underlying undirected graph formed by these vertices and edges is definitely
connected (because we are only attaching an edge to the partial graph we are building)

Why the edges (7]v], v) form a tree?

Here we prove that the underlying undirected graph is an (undirected) tree

m Consider only vertices connected to s (i.e., in the connected component containing s),
and let the number of vertices connected to s be ng

m The number of tree edges: np — 1

m The underlying undirected graph formed by these vertices and edges is definitely
connected (because we are only attaching an edge to the partial graph we are building)

m Previous fact: A connected, undirected graph with n vertices and n—1 edges is a tree

Dijkstra’s Algorithm

m Assumes all edges have non-negative weights
m Agreedy algorithm

DIJKSTRA(G, s, W)

0 ~NOo U WN

oA -
o Do o

N=o

for each vertex v € V(G)
Dlv] = o
Plv] = NIL

D[s] =0

while N # V(G)
find u ¢ N such that D[u] is minimal
N = NU {u}
forallv e Adj(u) \ N
if D[u] + w(u,v) < D]V]
D[v] = D[u] + w(u,v)
Plv] = u

(all algorithms for S-S have the same
initialization and relaxation process)

Dijkstra’s Algorithm

Grows a shortest-path tree from s

» N: vertices in the (partial) shortest
path tree

» P[v]: parent of vin the (partial) shortest
path tree (also the vertex preceding v
on the shortest path from s)

Maintains an ‘estimate’ of the distance
tov

» D[v]: weight of the shortest path from s
to v where all edges other than the last
is from the partial tree

In each step, makes a greedy choice by
adding to the tree a vertex u with
minimum value of D

After adding u to the tree, updates D[v]
for the neighbors of u outside the tree if
needed (relaxation)

Stops when the tree spans the graph

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Dijkstra’s Algorithm: Complexity

m Use a heap H for storing D

NG5, » Line 7: EXTRACT-MIN from H
1T N=9o » Line 11: UPDATE-KEY in H
g for egc[‘tl] Virix vev©) m Time complexity: O(|E|log |V])
4 Plv] = NIL
5 D[s] =0
6 whileN # V(G)
7 find u ¢ N such that D[u] is minimal
8 N = NU {u}
9 forallv e Adj(u) \ N
10 if D[u] + w(u,v) < D]v]
1 D[v] = D[u] + w(u,v)
12 Plv] = u

Dijkstra’s Algorithm: Correctness

Some facts:
m If thereis no path from s to a v, then D[v] = co at all time in the algorithm:
» Observe the following: whenever D[v] < oo, it always corresponds to a path from s to v
m 5(s,v) < D[v|forallv
» Again, whenever D[v] < oo, it always corresponds to a path fromstov

Dijkstra’s Algorithm: Correctness

Loop variant:
At the start of each iteration of the while loop, D[v] = &(s,v) foreachv e N

Dijkstra’s Algorithm: Correctness

Loop variant:
At the start of each iteration of the while loop, D[v] = &(s,v) foreachv e N

Proof:
m Initially, N = @ and this is trivially true
m We only need to show that the invariant is true for all the following iterations

Dijkstra’s Algorithm: Correctness

Loop variant:
At the start of each iteration of the while loop, D[v] = &(s,v) foreachv e N

Proof:
m Initially, N = @ and this is trivially true
m We only need to show that the invariant is true for all the following iterations

m For contradiction, let u be the first vertex for which D[u] # &(s, u) when itis added to N

» We must have u # s because s is the first vertex added to N and 6(s, s) = D[s] = 0; we also
have that N # @ before v is added to N

Dijkstra’s Algorithm: Correctness

Loop variant:
At the start of each iteration of the while loop, D[v] = &(s,v) foreachv e N

Proof:
m Initially, N = @ and this is trivially true
m We only need to show that the invariant is true for all the following iterations

m For contradiction, let u be the first vertex for which D[u] # &(s, u) when itis added to N

» We must have u # s because s is the first vertex added to N and 6(s, s) = D[s] = 0; we also
have that N # @ before v is added to N

m Since D[u] # &(s, u), there must be a path from s to u, because otherwise D[u] = co for
always (previous facts) and D[u] = 6(s,u) = oo

Dijkstra’s Algorithm: Correctness

Loop variant:
At the start of each iteration of the while loop, D[v] = &(s,v) foreachv e N

Proof:
m Initially, N = @ and this is trivially true
m We only need to show that the invariant is true for all the following iterations

m For contradiction, let u be the first vertex for which D[u] # &(s, u) when itis added to N

» We must have u # s because s is the first vertex added to N and 6(s, s) = D[s] = 0; we also
have that N # @ before v is added to N

m Since D[u] # &(s, u), there must be a path from s to u, because otherwise D[u] = oo for
always (previous facts) and D[u] = 6(s,u) = oo
m Let p be the shortest path from sto u

m Consider the N before adding u: Since the start of piss € Nand theend of pisu ¢ N, we
can let y be the first vertex along p such that y ¢ N, and let x be predecessor of y along p
(x € N).

Dijkstra’s Algorithm: Correctness

(Figure from CLRS)

Dijkstra’s Algorithm: Correctness

[| (Figure from CLRS)

m Because u is the first vertex added to N for which D[u] # &(s, u), we have D[x] = &(s, x)
when x was added

Dijkstra’s Algorithm: Correctness

[| (Figure from CLRS)

m Because u is the first vertex added to N for which D[u] # &(s, u), we have D[x] = &(s, x)
when x was added

m From the path p, we know that §(s, y) = 6(s, x) + w(x,y). So when x was added to N,
Dly] = &(s,y) after the update in Line 9-11

Dijkstra’s Algorithm: Correctness

[| (Figure from CLRS)

m Because u is the first vertex added to N for which D[u] # &(s, u), we have D[x] = &(s, x)
when x was added

m From the path p, we know that 6(s, y) = &(s, x) + w(x, y). So when x was added to N,
Dly] = &(s,y) after the update in Line 9-11

m From the path p, we know that §(s, y) < &(s,u). So

Dly] = &6(s,y) < &(s,u) < D[u]

Dijkstra’s Algorithm: Correctness

(Figure from CLRS)
Because u is the first vertex added to N for which D[u] # (s, u), we have D[x] = (s, x)
when x was added

From the path p, we know that §(s,y) = 6(s,x) + w(x,y). So when x was added to N,
Dly] = &(s,y) after the update in Line 9-11

From the path p, we know that §(s,y) < &(s, u). So

Dly] = &6(s,y) < &(s,u) < D[u]

m Because both v and y were notin N when u was chosen in Line 7, we have D[u] < D[y|. So
the above become equalities

Dly] = &(s,y) = &(s,u) = D[u]

A contradiction!

Bellman-Ford algorithm

m The most general-purpose algorithm for computing single-source shortest paths: allows
negative weights on edges, and works for any graphs

m Returns a boolean value indicating whether or not there is a negative-weight cycle that is
reachable from the source

» Ifthereis such a cycle, the algorithm indicates that no solution exists.
» If there is no such cycle, the algorithm produces the shortest paths and their weights.

m The idea of the algorithm is simple, after the initialization (common to all S-S shortest
path algorithms), it has |V| — 1 rounds, where each round relaxes all the edges

Bellman-Ford algorithm

BELLMAN-FORD (G = (V,E),s,w) RELAX(u, V)
1 foreach vertexv e V 1 if D[u] + w(u,v) < D|v|
D[v] = 2 D[v] = D[u] + w(u,v)
Plv] = NIL 3 Plv] = u
D[s] =0
fori=1,...,|V| -1
for each edge (u,v) € E
RELAX(u, V)
for each edge (u,v) € E
if D[u] + w(u,v) < D|v]
return FALSE
return TRUE

O W o0 ~NOoO U b WN

R
J—

Time complexity: O(|V| x |E])

(Example from CLRS)

Correctness of Bellman-Ford

Proposition 1

We always have D[v] > &(s, v) in the algorithm. Furthermore, after D[v] = (s, v), D[v] does not
change no matter what relaxations we perform in the algorithm.

Proof:

m We have seen the argument for D[v] > &(s, v) before, i.e., D[v] always corresponds to the
weight of an actual path from s to v (or else D[v] =), and so it cannot be less than the
optimalone, §(s, v).

m For the second part, notice that a relaxation always decreases D|[x] for a vertex x. If we
already have D[v] = (s, v), then D[v| cannot be further decreased because D[v] > &(s, v).

Correctness of Bellman-Ford

Path-relaxation property

Letp = (vo =S, V1, ..., V) be ashortest path from s to v. After relaxing the edges in the order
(vo, v1), (V1,v2), ..., (Vk-1, Vk), we have D|vk] = &(s, vk). This property holds even if there are
relaxations of other edges intermixed with relaxations of the edges on p.

Correctness of Bellman-Ford

Path-relaxation property

Letp = (vo =S, V1, ..., V) be ashortest path from s to v. After relaxing the edges in the order
(vo, v1), (V1,v2), ..., (Vk-1, Vk), we have D|vk] = &(s, vk). This property holds even if there are
relaxations of other edges intermixed with relaxations of the edges on p.

Proof:
m We prove by induction that, for each i, before relaxing (vj, vi+1), we have D[v;] = §(s, vi),
and after the relaxation, we have D[vi1] = (s, Vit1).

Correctness of Bellman-Ford

Path-relaxation property

Letp = (vo =S, V1, ..., V) be ashortest path from s to v. After relaxing the edges in the order
(vo, v1), (V1,v2), ..., (Vk-1, Vk), we have D|vk] = &(s, vk). This property holds even if there are
relaxations of other edges intermixed with relaxations of the edges on p.

Proof:

m We prove by induction that, for each i, before relaxing (vj, vi+1), we have D[v;] = §(s, vi),
and after the relaxation, we have D[vi1] = (s, Vit1).

m Unlike other proofs by inductions, we prove the induction step first.

m Assume for i — 1, the claim is true. We have that after relaxing (vi_1, vi), D[vi] = 6(s,v;)
(inductive assumption).

m After that, no matter what relaxations we perform, we always have D|v;] = §(s, v;)
(Proposition 1).

Correctness of Bellman-Ford

Path-relaxation property

Letp = (vo =S, V1, ..., V) be ashortest path from s to v. After relaxing the edges in the order
(vo, v1), (V1,v2), ..., (Vk-1, Vk), we have D|vk] = &(s, vk). This property holds even if there are
relaxations of other edges intermixed with relaxations of the edges on p.

Proof:

m We prove by induction that, for each i, before relaxing (vj, vi+1), we have D[v;] = §(s, vi),
and after the relaxation, we have D[vi1] = (s, Vit1).

m Unlike other proofs by inductions, we prove the induction step first.

m Assume for i — 1, the claim is true. We have that after relaxing (vi_1, vi), D[vi] = 6(s,v;)
(inductive assumption).

m After that, no matter what relaxations we perform, we always have D|v;] = §(s, v;)
(Proposition 1).

m Then, before relaxing (v;, vi+1), we have D[v;] = (s, v;) (first part is true)

Correctness of Bellman-Ford

Path-relaxation property

Letp = (vo =S, V1, ..., V) be ashortest path from s to v. After relaxing the edges in the order
(vo, v1), (V1,v2), ..., (Vk-1, Vk), we have D|vk] = &(s, vk). This property holds even if there are
relaxations of other edges intermixed with relaxations of the edges on p.

Proof:

m We prove by induction that, for each i, before relaxing (vj, vi+1), we have D[v;] = §(s, vi),
and after the relaxation, we have D[vi1] = (s, Vit1).

m Unlike other proofs by inductions, we prove the induction step first.

m Assume for i — 1, the claim is true. We have that after relaxing (vi_1, vi), D[vi] = 6(s,v;)
(inductive assumption).

m After that, no matter what relaxations we perform, we always have D|v;] = §(s, v;)
(Proposition 1).

m Then, before relaxing (v;, vi+1), we have D[v;] = (s, v;) (first part is true)

m When relaxing (v;, Vit1), if D[vit1] = 6(s, viy1) already, then we have nothing to prove.

Correctness of Bellman-Ford

Path-relaxation property

Letp = (vo =S, V1, ..., V) be ashortest path from s to v. After relaxing the edges in the order
(vo, v1), (V1,v2), ..., (Vk-1, Vk), we have D|vk] = &(s, vk). This property holds even if there are
relaxations of other edges intermixed with relaxations of the edges on p.

Proof:

We prove by induction that, for each i, before relaxing (vj, vi+1), we have D|v;] = &(s, vi),
and after the relaxation, we have D[vi1] = (s, Vit1).

m Unlike other proofs by inductions, we prove the induction step first.

m Assume for i — 1, the claim is true. We have that after relaxing (vi_1, vi), D[vi] = 6(s,v;)

(inductive assumption).

After that, no matter what relaxations we perform, we always have D[v;] = §(s, v;)
(Proposition 1).

m Then, before relaxing (v;, vi+1), we have D[v;] = (s, v;) (first part is true)

m When relaxing (v;, Vit1), if D[vit1] = 6(s, viy1) already, then we have nothing to prove.
m fD[viy1] > 6(s, Vi), then

D[viy1] > 6(s,vit1) = 6(s, Vi) + w(vj, Viy1) = D|vi] + w(Vj, Vit1), SO D[viy1] must be
updated to D[v;] + w(v;, vit1) = 6(S, viy1) by the relaxation.

Correctness of Bellman-Ford

Path-relaxation property

Letp = (vo = s, Vv1,..., V) be ashortest path from s to v,. After relaxing the edges in the order
(vo,v1), (V1,Vv2), . .., (Vk—1, Vi), We have d[vi] = &(s, vk). This property holds even if there are
relaxations of other edges intermixed with relaxations of the edges on p.

Proof:
m For the base case, we first have that D[vy| = 0 always for vy ='s.
m The verification for the rest of the base case is the same as that for the induction step.

Correctness of Bellman-Ford

The two lemmas combined indicate that Bellman-Ford is correct:

Lemmal

If G contains no negative-weight cycles reachable from s, then the algorithm returns TRUE,
and we have D[v] = (s, v) for every vertex v € V.

Lemma 2
If G contains a negative-weight cycle reachable from s, then the algorithm returns FALSE.

Correctness of Bellman-Ford

Lemma 1
If G contains no negative-weight cycles reachable from s, then the algorithm returns TRUE,

and we have D[v] = (s, v) for every vertex v € V.

Proof:

Correctness of Bellman-Ford

Lemma 1
If G contains no negative-weight cycles reachable from s, then the algorithm returns TRUE,

and we have D[v] = (s, v) for every vertex v € V.

Proof:
m If avertexvisreachable from s, thenletp = (ug = s, uy, ..., ux = v) be a shortest path
fromstov.
m Since p contains no cycle, then the number of vertices on the pathisk + 1 < |V| (i.e,
k< |V|-1).
m So we have
» The first round (i = 1) relaxes (ug, uy)
» The second round (i = 2) relaxes (uy, us)

» The k-th round (i = k < |V| — 1) relaxes (Uk_1, Uk)
After the relaxations, D[v] = (s, v) (by Path-relaxation property)

Correctness of Bellman-Ford

Lemma 1
If G contains no negative-weight cycles reachable from s, then the algorithm returns TRUE,

and we have D[v] = (s, v) for every vertex v € V.

Proof:
m If avertexvisreachable from s, thenletp = (ug = s, uy, ..., ux = v) be a shortest path
fromstov.
m Since p contains no cycle, then the number of vertices on the pathisk + 1 < |V| (i.e,
k < |Vl -1).
m So we have

» The first round (i = 1) relaxes (ug, uy)
» The second round (i = 2) relaxes (uy, us)
» The k-th round (i = k < |V| — 1) relaxes (Uk_1, Uk)

After the relaxations, D[v] = (s, v) (by Path-relaxation property)
m If avertex vis not reachable from s, then we have that D[v] = co = 6(s, v) always.

Correctness of Bellman-Ford

Lemma 1
If G contains no negative-weight cycles reachable from s, then the algorithm returns TRUE,

and we have D[v] = (s, v) for every vertex v € V.

Proof:
m We still need to prove that the algorithm returns TRUE.

Correctness of Bellman-Ford

Lemma 1
If G contains no negative-weight cycles reachable from s, then the algorithm returns TRUE,

and we have D[v] = (s, v) for every vertex v € V.

Proof:
m We still need to prove that the algorithm returns TRUE.
m Foreach edge (u,v), we have

D] = 6&(s,v) (1
< 8(s,u) +w(u,v) (2)
= Dlul+w(u,v) (3)

(1)-(2) follows from ‘triangle inequality’

Correctness of Bellman-Ford
Lemma 2

If G contains a negative-weight cycle reachable from s, then the algorithm returns FALSE.

Proof:

Correctness of Bellman-Ford
Lemma 2

If G contains a negative-weight cycle reachable from s, then the algorithm returns FALSE.

Proof:
m Letc = (v, Vviy,..., V) beanegative-weight cycle reachable from s where vy = vj.
m We have fozl w(vj-1,Vv;) <O0.

Correctness of Bellman-Ford
Lemma 2
If G contains a negative-weight cycle reachable from s, then the algorithm returns FALSE.

Proof:
m Letc = (v, Vviy,..., V) beanegative-weight cycle reachable from s where vy = vj.
m We have Zf.‘zl w(vj-1, V) < 0.
m For contradiction, assume the algorithm returns TRUE.
m Then, D|v|] < D|vj-1] + w(vi_1,Vvj),fori=1,...,k

Correctness of Bellman-Ford
Lemma 2
If G contains a negative-weight cycle reachable from s, then the algorithm returns FALSE.

Proof:
m Letc = (v, Vviy,..., V) beanegative-weight cycle reachable from s where vy = vj.
m We have Zf.‘zl w(vj-1, V) < 0.
m For contradiction, assume the algorithm returns TRUE.
m Then, D|v|] < D|vj-1] + w(vi_1,Vvj),fori=1,...,k
m Summing all the above inequalities:

k

Z Dlvi] <

i=1

(D[V,'_l] + W(V,'_l, V,'))

0 -

k
Dlvis1] +) w(vi-1,v))
i=1

I

Il
—

Correctness of Bellman-Ford
Lemma 2
If G contains a negative-weight cycle reachable from s, then the algorithm returns FALSE.

Proof:

Letc = (vp, 1, ..., V) be a negative-weight cycle reachable from s where vy = vq.
m We have Zf.‘zl w(vj-1, V) < 0.

m For contradiction, assume the algorithm returns TRUE.

[

[

Then, D[vj] < D[vj_1] + w(vi_1,Vv;),fori=1,...,k
Summing all the above inequalities:

k

Z Dlvi] <

i=1

(D[V,'_l] + W(V,'_l, V,'))

0 -

k
Dlvis1] +) w(vi-1,v))
i=1

I

Il
—

Since vy = v4, we have Zf.‘zl Dlvi] = Zf‘zl D[vi_1]

Correctness of Bellman-Ford
Lemma 2
If G contains a negative-weight cycle reachable from s, then the algorithm returns FALSE.

Proof:
m Letc = (v, Vviy,..., V) beanegative-weight cycle reachable from s where vy = vj.
m We have Zf.‘zl w(vj-1, V) < 0.
m For contradiction, assume the algorithm returns TRUE.
m Then, D|v|] < D|vj-1] + w(vi_1,Vvj),fori=1,...,k
m Summing all the above inequalities:

k

Z Dlvi] <

i=1

(D[V,'_l] + W(V,'_l, V,'))

0 -

k
Dlvis1] +) w(vi-1,v))
i=1

I

Il
—

Since vy = v4, we have Zf.‘zl Dlvi] = Zf‘zl D[vi_1]

So the inequality becomes 0 < Zf‘zl w(vj-1, ;) (contradiction)

Single-source shortest paths in DAG

m Assumes the graph is a DAG (directed acyclic graph)
m Edges can have negative weights
» Since we are dealing with DAG, no (negative-weight) cycles can exist

m Finding the shortest-path distance for vertices based on the order of topological sort

Single-source shortest paths in DAG

DAG-SHORTEST-PATHS(G, s, W)

1 topologically sort verticesin G

2 foreach vertexv € V(G)

3 Dlv] = =

4 Plv] = NIL

5 D[s] =0

6 foreach vertexu € G, in topologically sorted order
7 forallv e Adj(u)

8 RELAX(u, V)

Time complexity: O(|V| + |E])

Single-source shortest paths in DAG

(Example from CLRS)

Single-source shortest paths in DAG

(Example from CLRS)

Single-source shortest paths in DAG

(Example from CLRS)

Single-source shortest paths in DAG

(Example from CLRS)

Single-source shortest paths in DAG

(Example from CLRS)

Single-source shortest paths in DAG

(Example from CLRS)

Single-source shortest paths in DAG

(Example from CLRS)

Proof of correctness

m Hint: The single-source shortest paths algorithm for DAG can be viewed as a ‘smarter’
way of doing Bellman-Ford, and therefore you can adjust the justification for
Bellman-Ford to show the correctness of the DAG-algorithm.

