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Shortest Path Problem

Problem Definition
Given a weighted (directed or undirected) graph G = (V, E), a source vertex s and a target
vertex tin G, compute a path from s to t of minimum weight (i.e., the shortest path)

m The weightis a function w : E — R on the edges
m The weight of a path is the sum of weights of all edges on the path

Two variations:
Single-source Shortest Paths

Given a source vertex s of G, compute the shortest paths from s to all other vertices

All-pair Shortest Paths
Compute the shortest paths for all pairs of vertices



Example

Ashortest path fromstotis:s > e — b — f — t of weight 6
m In reality, the weight can be the length, cost, or time of roads, transportation lines etc.



More definitions

m The weight of the shortest path from s to tis called the distance, or shortest-path
distance, from sto t and is denoted as &(s, t).

m We have §(s, t) = o if there is no path fromsto t



More definitions

m The weight of the shortest path from s to tis called the distance, or shortest-path
distance, from sto t and is denoted as &(s, t).

m We have §(s, t) = o if there is no path fromsto t
m In the problem, edge weights can be negative.

m However, if there is a negative-weight cycle on the path from sto t, §(s, t) (as well as the
problem) is not well-defined:

» We can choose go through the cycles for arbitrary times and the weight of the path can
arbitrarily lowered.



Single-source Shortest Paths
Algorithms

m BFS (Review)

m Dijkstra’s algorithm
m Bellman-Ford

m An algorithm for DAG

Graph data structures
We assume adjacency list as data structures for graphs

Representing shortest paths from s
Through a shortest-path tree rooted at s, where the (unique) simple path from s to any vertex
vinthe tree is a shortest path fromsto v

m There must be no cycles in a shortest path

» The problem is not well-defined with negative-weight cycles
» There can be no cycles with non-negative weight in a shortest path

m Shortest paths have the optimal substructure property
m We use P[v] to record the parent of v in the tree (like in BFS/DFS)



Example of shortest path tree




Breadth-First Search

m One of the simplest but also a fundamental algorithm

» Some more advance graph algorithm such as Prim’s and Dijkstra’s can be considered as built
on BFS



Breadth-First Search

m One of the simplest but also a fundamental algorithm

>

Some more advance graph algorithm such as Prim’s and Dijkstra’s can be considered as built
on BFS

m Input: G = (V,E) and a source vertexs € V

>

>

>

explores the graph starting from s, touching all vertices that are reachable from s
computes the distance of each vertex from s (‘distance’ means minimum number of edges)
iterates through the vertices at increasing distance

> the algorithm discovers all vertices at distance k from s before discovering any vertices at
distance k + 1 (hence the name)

produces a BFS tree rooted at s
> An edge (u,v) in the tree means that v is ‘discovered’ by visiting u

works on both directed and undirected graphs



Breadth-First Search

m One of the simplest but also a fundamental algorithm

» Some more advance graph algorithm such as Prim’s and Dijkstra’s can be considered as built
on BFS

m Input: G = (V,E) and a source vertexs € V

» explores the graph starting from s, touching all vertices that are reachable from s
» computes the distance of each vertex from s (‘distance’ means minimum number of edges)
» iterates through the vertices at increasing distance

> the algorithm discovers all vertices at distance k from s before discovering any vertices at
distance k + 1 (hence the name)

» produces a BFS tree rooted at s
> An edge (u,v) in the tree means that v is ‘discovered’ by visiting u

» works on both directed and undirected graphs
B Breadth-first search computes the single-source shortest paths for s with weights of all
edges being 1.

» The BFS tree is the shortest-path tree in this case



Breadth-First Search: High-level idea

A central data structure: A (FIFO) Queue

Two phases of accessing a vertex u
m Discovering: put u into the queue waiting to be visited
m Visiting: access the adjacency list of u and try to discover each adjacent vertex



Breadth-First Search: High-level idea

A central data structure: A (FIFO) Queue

Two phases of accessing a vertex u
m Discovering: put u into the queue waiting to be visited
m Visiting: access the adjacency list of u and try to discover each adjacent vertex

Process
m Initially, the seed s is the only vertex discovered (i.e., in the queue)
m Each iteration takes a vertex u from from the queue and visits u, until the queue is empty



Breadth-First Search: High-level idea
A central data structure: A (FIFO) Queue

Two phases of accessing a vertex u
m Discovering: put u into the queue waiting to be visited

m Visiting: access the adjacency list of u and try to discover each adjacent vertex

Process

m Initially, the seed s is the only vertex discovered (i.e., in the queue)
m Each iteration takes a vertex u from from the queue and visits u, until the queue is empty

Coloring for vertices:
m white: ‘undiscovered’, initial color
m gray: ‘discovered’, but haven’t been ‘visited’
m black: finished ‘visiting’
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BFS Algorithm

BFS(G,s) Coloring f o

1 foreachvertexu € V(G) \ {s} mto Orm?? or Verfuces' o

2 color{u] = WHITE » white: ‘undiscovered’, initial color

3 du] = o » gray: ‘discovered’, but haven’t been ‘visited’

4 w[u] = NIL » black: finished ‘visiting’

Z z[osl]mis]o: GRAY m > ‘discovering’ means first encountered by the search

7 xls] = NiL » ‘visiting’ means to try to discover all adjacent vertices
8 Q=0 which are undiscovered

9 ENQUEUE(Q,Ss) m Central data structure: a queue (first-in, first-out):
11(1) while Q ¢D® © » Contains gray vertices

u = DEQUEUE

12 for each v € Adj[u] m Some records we keep:
13 if color[v] == wHITE » color{u]: color of a vertex u
14 color{v] = GRAY » d[u]: distance fromsto u

18 dlv] = dlu] +1 » m[u]: avertexs.t. (x[u], u) forms an edge in the BFS tree
1? ZLV‘L;UUE(Q Y (there is another interpretation which we will see in
18 color{u] = BLACK Dijkstra’s)




BFS(G,s)

1

for each vertex u € V(G) \ {s}
color{u] = WHITE
du] =
x[u] = NIL
color[s] = GRAY
dis] =0
z[s] = NIL
Q=0
ENQUEUE(Q, s)
whileQ # @
u = DEQUEUE(Q)
for each v € Adju]
if color|v] == WHITE
color[v] = GRAY
dv] = dlu] +1
vl = u
ENQUEUE(Q, V)
color{u] = BLACK

BFS Algorithm

m Initially, s is set as ‘discovered’: enqueued, gray
All other vertices are ‘undiscovered’ (white)



BFS Algorithm

BFS(G,s)

I for each vertexu € V(G) \ {s} m Initially, s is set as ‘discovered’: enqueued, gray

All other vertices are ‘undiscovered’ (white)

2 color{u] = WHITE

3 dlu] = = m Eachiteration:

“ #lu] = N » Dequeues a vertex u and tries to ‘discover’ (enqueue;
Z 2[051]0715]0: GRAY mark as gray) all its adjacent vertices which are

7 xfs] = niL ‘undiscovered’

8 Q=02

9 ENQUEUE(Q,Ss)
10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE
14 color[v] = GRAY
15 div] = dlu] + 1
16 vl = u

17 ENQUEUE(Q, V)

18 color{u] = BLACK




BFS Algorithm

BFS(G,s) . . . ,
| Gedicrewe Y@ 6 m Initially, sis sgt as dlscovgred : enqueueFI, gray
2 color{u] = WHITE All other vertices are ‘undiscovered’ (white)
3 dlu] = = m Eachiteration:
i #lu] = N » Dequeues a vertex u and tries to ‘discover’ (enqueue;
Z z[osl]ois]oz GRAY mark as gray) all its adjacent vertices which are
7 xs] = NiL ‘undiscovered’
8 0=0 » Whenever we discover a vertex v, we add the edge (u, v)

9 ENQUEUE(Q,s) to the BFS-tree (called a tree edge)

10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE
14 color[v] = GRAY
15 dv] = dlu] +1
16 vl = u

17 ENQUEVE(Q, v)

18 color{u] = BLACK




BFS Algorithm

BFS(G,s) Initially. s is set as ‘di o’ d
foreaehereaie () s] m Initially, s is set as ‘discovered’: enqueued, gray

; color{u] = WHITE All other vertices are ‘undiscovered’ (white)

3 dlu] = = m Eachiteration:

o #lu] = N » Dequeues a vertex u and tries to ‘discover’ (enqueue;

Z z[osl]mis]o: GRAY mark as gray) all its adjacent vertices which are

7 xfs] = NiL ‘undiscovered’

8 » Whenever we discover a vertex v, we add the edge (u, v)

9 SNQUiUE(Q, s) to the BFS-tree (called a tree edge)
10 whileQ # @ » After this, we finished visiting u and mark u as black.
1 u = DEQUEUE(Q)
12 for each v € Adju]
13 if color|v] == WHITE
14 color[v] = GRAY
15 dv] = dlu] +1
16 vl = u
17 ENQUEVE(Q, v)

18 color{u] = BLACK




BFS Algorithm

BFS(G,s)
1 foreachvertexu € V(G) \ {s}
2 color{u] = WHITE
3 du] =
4 x[u] = NIL
5 color[s] = GRAY
6 d[s] =0
7 x[s] = NIL
8 Q=0
9 ENQUEUE(Q,S)
10 whileQ # @
1 u = DEQUEUE(Q)
12 for each v € Adju]
13 if color|v] == WHITE
14 color[v] = GRAY
15 div] = dlu] + 1
16 vl = u
17 ENQUEUE(Q, V)
18 color{u] = BLACK




BFS(G,s)

1 foreachvertexu € V(G) \ {s}

2 color{u] = WHITE

3 du] =

4 x[u] = NIL

5 color[s] = GRAY

6 d[s] =0

7 x[s] = NIL

8 Q=0

9 ENQUEUE(Q,S)

10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE
14 color[v] = GRAY
15 div] = dlu] + 1
16 vl = u

17 ENQUEVE(Q, v)
18 color{u] = BLACK

BFS Algorithm




BFS(G,s)

1 foreachvertexu € V(G) \ {s}

2 color{u] = WHITE

3 du] =

4 x[u] = NIL

5 color[s] = GRAY

6 d[s] =0

7 x[s] = NIL

8 Q=0

9 ENQUEUE(Q,S)

10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE
14 color[v] = GRAY
15 div] = dlu] + 1
16 vl = u

17 ENQUEVE(Q, v)
18 color{u] = BLACK

BFS Algorithm




BFS(G,s)

1 foreachvertexu € V(G) \ {s}

2 color{u] = WHITE

3 du] =

4 x[u] = NIL

5 color[s] = GRAY

6 d[s] =0

7 x[s] = NIL

8 Q=0

9 ENQUEUE(Q,S)

10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE
14 color[v] = GRAY
15 div] = dlu] + 1
16 vl = u

17 ENQUEVE(Q, v)
18 color{u] = BLACK

BFS Algorithm

) =
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BFS(G,s)

1 foreachvertexu € V(G) \ {s}

2 color{u] = WHITE

3 du] =

4 x[u] = NIL

5 color[s] = GRAY

6 d[s] =0

7 x[s] = NIL

8 Q=0

9 ENQUEUE(Q,S)

10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE
14 color[v] = GRAY
15 div] = dlu] + 1
16 vl = u

17 ENQUEVE(Q, v)
18 color{u] = BLACK

BFS Algorithm




BFS(G,s)

1 foreachvertexu € V(G) \ {s}

2 color{u] = WHITE

3 du] =

4 x[u] = NIL

5 color[s] = GRAY

6 d[s] =0

7 x[s] = NIL

8 Q=0

9 ENQUEUE(Q,S)

10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE
14 color[v] = GRAY
15 div] = dlu] + 1
16 vl = u

17 ENQUEVE(Q, v)
18 color{u] = BLACK

BFS Algorithm

11
7\

8
@\@



BFS(G,s)

1 foreachvertexu € V(G) \ {s}

2 color{u] = WHITE

3 du] =

4 x[u] = NIL

5 color[s] = GRAY

6 d[s] =0

7 x[s] = NIL

8 Q=0

9 ENQUEUE(Q,S)

10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE
14 color[v] = GRAY
15 div] = dlu] + 1
16 vl = u

17 ENQUEVE(Q, v)
18 color{u] = BLACK

BFS Algorithm




BFS(G,s)

1 foreachvertexu € V(G) \ {s}

2 color{u] = WHITE

3 du] =

4 x[u] = NIL

5 color[s] = GRAY

6 d[s] =0

7 x[s] = NIL

8 Q=0

9 ENQUEUE(Q,S)

10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE
14 color[v] = GRAY
15 div] = dlu] + 1
16 vl = u

17 ENQUEVE(Q, v)
18 color{u] = BLACK

BFS Algorithm




BFS(G,s)

1 foreachvertexu € V(G) \ {s}

2 color{u] = WHITE

3 du] =

4 x[u] = NIL

5 color[s] = GRAY

6 d[s] =0

7 x[s] = NIL

8 Q=0

9 ENQUEUE(Q,S)

10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE
14 color[v] = GRAY
15 div] = dlu] + 1
16 vl = u

17 ENQUEVE(Q, v)
18 color{u] = BLACK

BFS Algorithm




BFS(G,s)

1 foreachvertexu € V(G) \ {s}

2 color{u] = WHITE

3 du] =

4 x[u] = NIL

5 color[s] = GRAY

6 d[s] =0

7 x[s] = NIL

8 Q=0

9 ENQUEUE(Q,S)

10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE
14 color[v] = GRAY
15 dv] = dlu] +1
16 vl = u

17 ENQUEVE(Q, v)
18 color{u] = BLACK
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BFS(G,s)

1 foreachvertexu € V(G) \ {s}

2 color{u] = WHITE

3 du] =

4 x[u] = NIL

5 color[s] = GRAY

6 d[s] =0

7 x[s] = NIL

8 Q=0

9 ENQUEUE(Q,S)

10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE
14 color[v] = GRAY
15 dv] = dlu] +1
16 vl = u

17 ENQUEVE(Q, v)
18 color{u] = BLACK

BFS Algorithm




BFS(G,s)

1 foreachvertexu € V(G) \ {s}

2 color{u] = WHITE

3 du] =

4 x[u] = NIL

5 color[s] = GRAY

6 d[s] =0

7 x[s] = NIL

8 Q=0

9 ENQUEUE(Q,S)

10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE
14 color[v] = GRAY
15 dv] = dlu] +1
16 vl = u

17 ENQUEVE(Q, v)
18 color{u] = BLACK

BFS Algorithm




BFS(G,s)

1 foreachvertexu € V(G) \ {s}

2 color{u] = WHITE

3 du] =

4 x[u] = NIL

5 color[s] = GRAY

6 d[s] =0

7 x[s] = NIL

8 Q=0

9 ENQUEUE(Q,S)

10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE
14 color[v] = GRAY
15 dv] = dlu] +1
16 vl = u

17 ENQUEVE(Q, v)
18 color{u] = BLACK
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BFS(G,s)

1 foreachvertexu € V(G) \ {s}

2 color{u] = WHITE

3 du] =

4 x[u] = NIL

5 color[s] = GRAY

6 d[s] =0

7 x[s] = NIL

8 Q=0

9 ENQUEUE(Q,S)

10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE
14 color[v] = GRAY
15 dv] = dlu] +1
16 vl = u

17 ENQUEVE(Q, v)
18 color{u] = BLACK
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BFS(G,s)

1 foreachvertexu € V(G) \ {s}

2 color{u] = WHITE

3 du] =

4 x[u] = NIL

5 color[s] = GRAY

6 d[s] =0

7 x[s] = NIL

8 Q=0

9 ENQUEUE(Q,S)

10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE
14 color[v] = GRAY
15 dv] = dlu] +1
16 vl = u

17 ENQUEVE(Q, v)
18 color{u] = BLACK

BFS Algorithm




BFS Algorithm

BFS(G,s)
1 foreachvertexu € V(G) \ {s}
2 color{u] = WHITE
3 du] =
4 x[u] = NIL
5 color[s] = GRAY
6 d[s] =0
7 x[s] = NIL
8 Q=0
9 ENQUEUE(Q,S)
10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE

14 color[v] = GRAY

15 dv] = dlu] +1

16 vl = u

17 ENQUEVE(Q, v) u="1
18 color{u] = BLACK

Q= {10,3,8,11}



BFS(G,s)

1 foreachvertexu € V(G) \ {s}

2 color{u] = WHITE

3 du] =

4 x[u] = NIL

5 color[s] = GRAY

6 d[s] =0

7 x[s] = NIL

8 Q=0

9 ENQUEUE(Q,S)

10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE
14 color[v] = GRAY
15 dv] = dlu] +1
16 vl = u

17 ENQUEVE(Q, v)
18 color{u] = BLACK

BFS Algorithm




BFS(G,s)

1 foreachvertexu € V(G) \ {s}

2 color{u] = WHITE

3 du] =

4 x[u] = NIL

5 color[s] = GRAY

6 d[s] =0

7 x[s] = NIL

8 Q=0

9 ENQUEUE(Q,S)

10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE
14 color[v] = GRAY
15 dv] = dlu] +1
16 vl = u

17 ENQUEVE(Q, v)
18 color{u] = BLACK

BFS Algorithm




BFS Algorithm

BFS(G,s)
1 foreachvertexu € V(G) \ {s}
2 color{u] = WHITE
3 du] =
4 x[u] = NIL
5 color[s] = GRAY
6 d[s] =0
7 x[s] = NIL
8 Q=0
9 ENQUEUE(Q,S)
10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE

14 color[v] = GRAY

15 dv] = dlu] +1

16 vl = u

17 ENQUEVE(Q, v) u=23
18 color{u] = BLACK




BFS Algorithm

BFS(G,s)
1 foreachvertexu € V(G) \ {s}
2 color{u] = WHITE
3 du] =
4 x[u] = NIL
5 color[s] = GRAY
6 d[s] =0
7 x[s] = NIL
8 Q=0
9 ENQUEUE(Q,S)
10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE

14 color[v] = GRAY

15 dv] = dlu] +1

16 vl = u

17 ENQUEVE(Q, v) u=2=8
18 color{u] = BLACK




BFS Algorithm

BFS(G,s)
1 foreachvertexu € V(G) \ {s}
2 color{u] = WHITE
3 du] =
4 x[u] = NIL
5 color[s] = GRAY
6 d[s] =0
7 x[s] = NIL
8 Q=0
9 ENQUEUE(Q,S)
10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE

14 color[v] = GRAY

15 dv] = dlu] +1

16 vl = u

17 ENQUEVE(Q, v) u=2=8
18 color{u] = BLACK

Q={11,4,12}



BFS Algorithm

BFS(G,s)
1 foreachvertexu € V(G) \ {s}
2 color{u] = WHITE
3 du] =
4 x[u] = NIL
5 color[s] = GRAY
6 d[s] =0
7 x[s] = NIL
8 Q=0
9 ENQUEUE(Q,S)
10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE

14 color[v] = GRAY

15 dv] = dlu] +1

16 vl = u

17 ENQUEVE(Q, v) u=11
18 color{u] = BLACK




BFS Algorithm

BFS(G,s)
1 foreachvertexu € V(G) \ {s}
2 color{u] = WHITE
3 du] =
4 x[u] = NIL
5 color[s] = GRAY
6 d[s] =0
7 x[s] = NIL
8 Q=0
9 ENQUEUE(Q,S)
10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE

14 color[v] = GRAY

15 dv] = dlu] +1

16 vl = u

17 ENQUEVE(Q, v) u=4
18 color{u] = BLACK




BFS(G,s)

1 foreachvertexu € V(G) \ {s}

2 color{u] = WHITE

3 diu] = =

4 x[u] = NIL

5 color[s] = GRAY

6 dis] =0

7 x[s] = NIL

8 Q=0

9 ENQUEUE(Q,S)

10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adj[u]

13 if color|v] == WHITE
14 color[v] = GRAY
15 dv] = dlu] +1
16 V] =u

17 ENQUEUE(Q, V)
18 color[u] = BLACK

BFS Algorithm




BFS(G,s)
1 foreachvertexu € V(G) \ {s}
2 color{u] = WHITE
3 diu] = =
4 x[u] = NIL
5 color[s] = GRAY
6 dis] =0
7 x[s] = NIL
8 Q=0
9 ENQUEUE(Q,S)
10 whileQ # @
1 u = DEQUEUE(Q)
12 for each v € Adj[u]
13 if color|v] == WHITE
14 color[v] = GRAY
15 dv] = dlu] +1
16 V] =u
17 ENQUEUE(Q, V)

18

color[u] = BLACK

BFS Algorithm




Complexity of BFS

BFS(G,s)
1 foreachvertexu € V(G) \ {s}
2 color{u] = WHITE
3 du] =
4 x[u] = NIL
5 color[s] = GRAY
6 d[s] =0
7 x[s] = NIL
8 Q=0
9 ENQUEUE(Q,S)
10 whileQ # @

1 u = DEQUEUE(Q)

12 for each v € Adju]

13 if color|v] == WHITE
14 color[v] = GRAY
15 div] = dlu] + 1
16 vl = u

17 ENQUEUE(Q, V)

18 color{u] = BLACK




BFS(G,s)

1

for each vertex u € V(G) \ {s}
color{u] = WHITE
du] =
x[u] = NIL
color[s] = GRAY
dis] =0
z[s] = NIL
Q=0
ENQUEUE(Q, s)
whileQ # @
u = DEQUEUE(Q)
for each v € Adju]
if color|v] == WHITE
color[v] = GRAY
dv] = dlu] +1
vl = u
ENQUEUE(Q, V)
color{u] = BLACK

Complexity of BFS

m We enqueue a vertex only if it is white, and we
immediately color it gray; thus, we enqueue every
vertex at most once



BFS(G, s)
1 foreachvertexu € V(G) \ {s}
2 color{u] = WHITE
3 du] =
4 x[u] = NIL
5 color[s] = GRAY
6 d[s] =0
7 x[s] = NIL
8 Q=02
9 ENQUEUE(Q,Ss)
10 whileQ # @
1 u = DEQUEUE(Q)
12 for each v € Adju]
13 if color|v] == WHITE
14 color[v] = GRAY
15 div] = dlu] + 1
16 vl = u
17 ENQUEVE(Q, v)

18

color{u] = BLACK

Complexity of BFS

m We enqueue a vertex only if it is white, and we
immediately color it gray; thus, we enqueue every
vertex at most once

m This means that we also dequeue every vertex at
most once

m So, the (dequeue) while loop executes O(|V]) times
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1 foreachvertexu € V(G) \ {s}
2 color{u] = WHITE
3 du] =
4 x[u] = NIL
5 color[s] = GRAY
6 d[s] =0
7 x[s] = NIL
8 Q=0
9 ENQUEUE(Q,S)
10 whileQ # @
1 u = DEQUEUE(Q)
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13 if color|v] == WHITE
14 color[v] = GRAY
15 dv] = dlu] +1
16 vl = u
17 ENQUEVE(Q, v)

18

color{u] = BLACK

Complexity of BFS

We enqueue a vertex only if it is white, and we
immediately color it gray; thus, we enqueue every
vertex at most once

This means that we also dequeue every vertex at
most once

So, the (dequeue) while loop executes O(|V]) times

The inner loop: For each vertex u, the inner loop
executes for no more than out-deg(u) times, for a
total of 3., out-deg(u) =|E| times

So, O(|V| + |E|) (because |E| may be less than |V])
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dv] = 8(s,v).

Reason:
m First, we observe that, before a vertex with distance k + 1 is visited, all vertices with
distance < k have been visited
» Atthe beginning, there is only one vertex s with distance < 0, and s is the first vertex visited.
When visiting s, we discover all vertices with distance < 1
» When visiting vertices with distance 1, we discover all vertices with distance < 2
» ... (The predecessor of every vertex with distance k must be a vertex with distance k — 1)
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Reason:
m First, we observe that, before a vertex with distance k + 1 is visited, all vertices with
distance < k have been visited
» Atthe beginning, there is only one vertex s with distance < 0, and s is the first vertex visited.
When visiting s, we discover all vertices with distance < 1
» When visiting vertices with distance 1, we discover all vertices with distance < 2
» ... (The predecessor of every vertex with distance k must be a vertex with distance k — 1)

m For contradiction, suppose the claim is not true, and consider the first vertex v visited by
BFSs.t. §(s,v) # d[V]

m Assume v is discovered when visiting u. We have d[v] = d[u] + 1.

m Since (s, v) < d[v], we have that §(s,v) < d|v].



BFS gives the shortest-path distance

Claim
Let 6(s, v) be the minimum numbers of edges of any path from s to v. Then, we claim that

dv] = 8(s,v).

Reason:
m First, we observe that, before a vertex with distance k + 1 is visited, all vertices with
distance < k have been visited
» Atthe beginning, there is only one vertex s with distance < 0, and s is the first vertex visited.
When visiting s, we discover all vertices with distance < 1
» When visiting vertices with distance 1, we discover all vertices with distance < 2
» ... (The predecessor of every vertex with distance k must be a vertex with distance k — 1)
m For contradiction, suppose the claim is not true, and consider the first vertex v visited by
BFSs.t. §(s,v) # d[V]
m Assume v is discovered when visiting u. We have d[v] = d[u] + 1.
m Since (s, v) < d[v], we have that §(s,v) < d|v].
m Let w be the predecessor of v on a shortest path from s to v. We have §(s, w) = 6(s,v) — 1.
So&(s,w) < d[v] -1 =d[u] = (s, u).
m This means that w must be visited before u, and when we visit w, we must have marked v
as gray. This contradicts the fact that when we visit u, the color of v is still white.
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Why the edges (7]v], v) form a tree?

Here we prove that the underlying undirected graph is an (undirected) tree

m Consider only vertices connected to s (i.e., in the connected component containing s),
and let the number of vertices connected to s be ng

m The number of tree edges: np — 1

m The underlying undirected graph formed by these vertices and edges is definitely
connected (because we are only attaching an edge to the partial graph we are building)

m Previous fact: A connected, undirected graph with n vertices and n—1 edges is a tree



Dijkstra’s Algorithm

m Assumes all edges have non-negative weights
m Agreedy algorithm



DIJKSTRA(G, s, W)

0 ~NOo U WN

oA -
o Do o

N=o

for each vertex v € V(G)
Dlv] = o
Plv] = NIL

D[s] =0

while N # V(G)
find u ¢ N such that D[u] is minimal
N = NU {u}
forallv e Adj(u) \ N
if D[u] + w(u,v) < D]V]
D[v] = D[u] + w(u,v)
Plv] = u

(all algorithms for S-S have the same
initialization and relaxation process)

Dijkstra’s Algorithm

Grows a shortest-path tree from s

» N: vertices in the (partial) shortest
path tree

» P[v]: parent of vin the (partial) shortest
path tree (also the vertex preceding v
on the shortest path from s)

Maintains an ‘estimate’ of the distance
tov

» D[v]: weight of the shortest path from s
to v where all edges other than the last
is from the partial tree

In each step, makes a greedy choice by
adding to the tree a vertex u with
minimum value of D

After adding u to the tree, updates D[v]
for the neighbors of u outside the tree if
needed (relaxation)

Stops when the tree spans the graph
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Dijkstra’s Algorithm: Complexity

m Use a heap H for storing D

NG5, » Line 7: EXTRACT-MIN from H
1T N=9o » Line 11: UPDATE-KEY in H
g for egc[‘tl] Virix vev©) m Time complexity: O(|E|log |V])
4 Plv] = NIL
5 D[s] =0
6 whileN # V(G)
7 find u ¢ N such that D[u] is minimal
8 N = NU {u}
9 forallv e Adj(u) \ N
10 if D[u] + w(u,v) < D]v]
1 D[v] = D[u] + w(u,v)
12 Plv] = u




Dijkstra’s Algorithm: Correctness

Some facts:
m If thereis no path from s to a v, then D[v] = co at all time in the algorithm:
» Observe the following: whenever D[v] < oo, it always corresponds to a path from s to v
m 5(s,v) < D[v|forallv
» Again, whenever D[v] < oo, it always corresponds to a path fromstov
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Loop variant:
At the start of each iteration of the while loop, D[v] = &(s,v) foreachv e N
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Dijkstra’s Algorithm: Correctness

Loop variant:
At the start of each iteration of the while loop, D[v] = &(s,v) foreachv e N

Proof:
m Initially, N = @ and this is trivially true
m We only need to show that the invariant is true for all the following iterations

m For contradiction, let u be the first vertex for which D[u] # &(s, u) when itis added to N

» We must have u # s because s is the first vertex added to N and 6(s, s) = D[s] = 0; we also
have that N # @ before v is added to N

m Since D[u] # &(s, u), there must be a path from s to u, because otherwise D[u] = oo for
always (previous facts) and D[u] = 6(s,u) = oo
m Let p be the shortest path from sto u

m Consider the N before adding u: Since the start of piss € Nand theend of pisu ¢ N, we
can let y be the first vertex along p such that y ¢ N, and let x be predecessor of y along p
(x € N).
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(Figure from CLRS)
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m Because u is the first vertex added to N for which D[u] # &(s, u), we have D[x] = &(s, x)
when x was added
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m Because u is the first vertex added to N for which D[u] # &(s, u), we have D[x] = &(s, x)
when x was added

m From the path p, we know that §(s, y) = 6(s, x) + w(x,y). So when x was added to N,
Dly] = &(s,y) after the update in Line 9-11



Dijkstra’s Algorithm: Correctness

[ | (Figure from CLRS)

m Because u is the first vertex added to N for which D[u] # &(s, u), we have D[x] = &(s, x)
when x was added

m From the path p, we know that 6(s, y) = &(s, x) + w(x, y). So when x was added to N,
Dly] = &(s,y) after the update in Line 9-11

m From the path p, we know that §(s, y) < &(s,u). So

Dly] = &6(s,y) < &(s,u) < D[u]



Dijkstra’s Algorithm: Correctness

(Figure from CLRS)
Because u is the first vertex added to N for which D[u] # (s, u), we have D[x] = (s, x)
when x was added

From the path p, we know that §(s,y) = 6(s,x) + w(x,y). So when x was added to N,
Dly] = &(s,y) after the update in Line 9-11

From the path p, we know that §(s,y) < &(s, u). So

Dly] = &6(s,y) < &(s,u) < D[u]

m Because both v and y were notin N when u was chosen in Line 7, we have D[u] < D[y|. So
the above become equalities

Dly] = &(s,y) = &(s,u) = D[u]

A contradiction!



Bellman-Ford algorithm

m The most general-purpose algorithm for computing single-source shortest paths: allows
negative weights on edges, and works for any graphs

m Returns a boolean value indicating whether or not there is a negative-weight cycle that is
reachable from the source

» Ifthereis such a cycle, the algorithm indicates that no solution exists.
» If there is no such cycle, the algorithm produces the shortest paths and their weights.

m The idea of the algorithm is simple, after the initialization (common to all S-S shortest
path algorithms), it has |V| — 1 rounds, where each round relaxes all the edges



Bellman-Ford algorithm

BELLMAN-FORD (G = (V,E),s,w) RELAX(u, V)
1 foreach vertexv e V 1 if D[u] + w(u,v) < D|v|
D[v] = 2 D[v] = D[u] + w(u,v)
Plv] = NIL 3 Plv] = u
D[s] =0
fori=1,...,|V| -1
for each edge (u,v) € E
RELAX(u, V)
for each edge (u,v) € E
if D[u] + w(u,v) < D|v]
return FALSE
return TRUE

O W o0 ~NOoO U b WN

R
J—

Time complexity: O(|V| x |E])



(Example from CLRS)



Correctness of Bellman-Ford

Proposition 1

We always have D[v] > &(s, v) in the algorithm. Furthermore, after D[v] = (s, v), D[v] does not
change no matter what relaxations we perform in the algorithm.

Proof:

m We have seen the argument for D[v] > &(s, v) before, i.e., D[v] always corresponds to the
weight of an actual path from s to v (or else D[v] = ), and so it cannot be less than the
optimalone, §(s, v).

m For the second part, notice that a relaxation always decreases D|[x] for a vertex x. If we
already have D[v] = (s, v), then D[v| cannot be further decreased because D[v] > &(s, v).



Correctness of Bellman-Ford

Path-relaxation property

Letp = (vo =S, V1, ..., V) be ashortest path from s to v. After relaxing the edges in the order
(vo, v1), (V1,v2), ..., (Vk-1, Vk), we have D|vk] = &(s, vk). This property holds even if there are
relaxations of other edges intermixed with relaxations of the edges on p.
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and after the relaxation, we have D[vi1] = (s, Vit1).

m Unlike other proofs by inductions, we prove the induction step first.

m Assume for i — 1, the claim is true. We have that after relaxing (vi_1, vi), D[vi] = 6(s,v;)
(inductive assumption).

m After that, no matter what relaxations we perform, we always have D|v;] = §(s, v;)
(Proposition 1).
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Path-relaxation property

Letp = (vo =S, V1, ..., V) be ashortest path from s to v. After relaxing the edges in the order
(vo, v1), (V1,v2), ..., (Vk-1, Vk), we have D|vk] = &(s, vk). This property holds even if there are
relaxations of other edges intermixed with relaxations of the edges on p.

Proof:

m We prove by induction that, for each i, before relaxing (vj, vi+1), we have D[v;] = §(s, vi),
and after the relaxation, we have D[vi1] = (s, Vit1).

m Unlike other proofs by inductions, we prove the induction step first.

m Assume for i — 1, the claim is true. We have that after relaxing (vi_1, vi), D[vi] = 6(s,v;)
(inductive assumption).

m After that, no matter what relaxations we perform, we always have D|v;] = §(s, v;)
(Proposition 1).

m Then, before relaxing (v;, vi+1), we have D[v;] = (s, v;) (first part is true)

m When relaxing (v;, Vit1), if D[vit1] = 6(s, viy1) already, then we have nothing to prove.



Correctness of Bellman-Ford

Path-relaxation property

Letp = (vo =S, V1, ..., V) be ashortest path from s to v. After relaxing the edges in the order
(vo, v1), (V1,v2), ..., (Vk-1, Vk), we have D|vk] = &(s, vk). This property holds even if there are
relaxations of other edges intermixed with relaxations of the edges on p.

Proof:

We prove by induction that, for each i, before relaxing (vj, vi+1), we have D|v;] = &(s, vi),
and after the relaxation, we have D[vi1] = (s, Vit1).

m Unlike other proofs by inductions, we prove the induction step first.

m Assume for i — 1, the claim is true. We have that after relaxing (vi_1, vi), D[vi] = 6(s,v;)

(inductive assumption).

After that, no matter what relaxations we perform, we always have D[v;] = §(s, v;)
(Proposition 1).

m Then, before relaxing (v;, vi+1), we have D[v;] = (s, v;) (first part is true)

m When relaxing (v;, Vit1), if D[vit1] = 6(s, viy1) already, then we have nothing to prove.
m fD[viy1] > 6(s, Vi), then

D[viy1] > 6(s,vit1) = 6(s, Vi) + w(vj, Viy1) = D|vi] + w(Vj, Vit1), SO D[viy1] must be
updated to D[v;] + w(v;, vit1) = 6(S, viy1) by the relaxation.



Correctness of Bellman-Ford

Path-relaxation property

Letp = (vo = s, Vv1,..., V) be ashortest path from s to v,. After relaxing the edges in the order
(vo,v1), (V1,Vv2), . .., (Vk—1, Vi), We have d[vi] = &(s, vk). This property holds even if there are
relaxations of other edges intermixed with relaxations of the edges on p.

Proof:
m For the base case, we first have that D[vy| = 0 always for vy ='s.
m The verification for the rest of the base case is the same as that for the induction step.



Correctness of Bellman-Ford

The two lemmas combined indicate that Bellman-Ford is correct:

Lemmal

If G contains no negative-weight cycles reachable from s, then the algorithm returns TRUE,
and we have D[v] = (s, v) for every vertex v € V.

Lemma 2
If G contains a negative-weight cycle reachable from s, then the algorithm returns FALSE.
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If G contains no negative-weight cycles reachable from s, then the algorithm returns TRUE,

and we have D[v] = (s, v) for every vertex v € V.

Proof:
m If avertexvisreachable from s, thenletp = (ug = s, uy, ..., ux = v) be a shortest path
fromstov.
m Since p contains no cycle, then the number of vertices on the pathisk + 1 < |V| (i.e,
k< |V|-1).
m So we have
» The first round (i = 1) relaxes (ug, uy)
» The second round (i = 2) relaxes (uy, us)

» The k-th round (i = k < |V| — 1) relaxes (Uk_1, Uk)
After the relaxations, D[v] = (s, v) (by Path-relaxation property)



Correctness of Bellman-Ford

Lemma 1
If G contains no negative-weight cycles reachable from s, then the algorithm returns TRUE,

and we have D[v] = (s, v) for every vertex v € V.

Proof:
m If avertexvisreachable from s, thenletp = (ug = s, uy, ..., ux = v) be a shortest path
fromstov.
m Since p contains no cycle, then the number of vertices on the pathisk + 1 < |V| (i.e,
k < |Vl -1).
m So we have

» The first round (i = 1) relaxes (ug, uy)
» The second round (i = 2) relaxes (uy, us)
» The k-th round (i = k < |V| — 1) relaxes (Uk_1, Uk)

After the relaxations, D[v] = (s, v) (by Path-relaxation property)
m If avertex vis not reachable from s, then we have that D[v] = co = 6(s, v) always.



Correctness of Bellman-Ford

Lemma 1
If G contains no negative-weight cycles reachable from s, then the algorithm returns TRUE,

and we have D[v] = (s, v) for every vertex v € V.

Proof:
m We still need to prove that the algorithm returns TRUE.



Correctness of Bellman-Ford

Lemma 1
If G contains no negative-weight cycles reachable from s, then the algorithm returns TRUE,

and we have D[v] = (s, v) for every vertex v € V.

Proof:
m We still need to prove that the algorithm returns TRUE.
m Foreach edge (u,v), we have

D] = 6&(s,v) (1
< 8(s,u) +w(u,v) (2)
= Dlul+w(u,v) (3)

(1)-(2) follows from ‘triangle inequality’



Correctness of Bellman-Ford
Lemma 2

If G contains a negative-weight cycle reachable from s, then the algorithm returns FALSE.

Proof:
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m We have fozl w(vj-1,Vv;) <O0.
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Correctness of Bellman-Ford
Lemma 2
If G contains a negative-weight cycle reachable from s, then the algorithm returns FALSE.

Proof:
m Letc = (v, Vviy,..., V) beanegative-weight cycle reachable from s where vy = vj.
m We have Zf.‘zl w(vj-1, V) < 0.
m For contradiction, assume the algorithm returns TRUE.
m Then, D|v|] < D|vj-1] + w(vi_1,Vvj),fori=1,...,k
m Summing all the above inequalities:

k

Z Dlvi] <

i=1

(D[V,'_l] + W(V,'_l, V,'))

0 -

k
Dlvis1] + ) w(vi-1,v))
i=1

I

Il
—



Correctness of Bellman-Ford
Lemma 2
If G contains a negative-weight cycle reachable from s, then the algorithm returns FALSE.

Proof:

Letc = (vp, 1, ..., V) be a negative-weight cycle reachable from s where vy = vq.
m We have Zf.‘zl w(vj-1, V) < 0.

m For contradiction, assume the algorithm returns TRUE.

[

[

Then, D[vj] < D[vj_1] + w(vi_1,Vv;),fori=1,...,k
Summing all the above inequalities:

k

Z Dlvi] <

i=1

(D[V,'_l] + W(V,'_l, V,'))

0 -

k
Dlvis1] + ) w(vi-1,v))
i=1

I

Il
—

Since vy = v4, we have Zf.‘zl Dlvi] = Zf‘zl D[vi_1]



Correctness of Bellman-Ford
Lemma 2
If G contains a negative-weight cycle reachable from s, then the algorithm returns FALSE.

Proof:
m Letc = (v, Vviy,..., V) beanegative-weight cycle reachable from s where vy = vj.
m We have Zf.‘zl w(vj-1, V) < 0.
m For contradiction, assume the algorithm returns TRUE.
m Then, D|v|] < D|vj-1] + w(vi_1,Vvj),fori=1,...,k
m Summing all the above inequalities:

k

Z Dlvi] <

i=1

(D[V,'_l] + W(V,'_l, V,'))

0 -

k
Dlvis1] + ) w(vi-1,v))
i=1

I

Il
—

Since vy = v4, we have Zf.‘zl Dlvi] = Zf‘zl D[vi_1]

So the inequality becomes 0 < Zf‘zl w(vj-1, ;) (contradiction)



Single-source shortest paths in DAG

m Assumes the graph is a DAG (directed acyclic graph)
m Edges can have negative weights
» Since we are dealing with DAG, no (negative-weight) cycles can exist

m Finding the shortest-path distance for vertices based on the order of topological sort



Single-source shortest paths in DAG

DAG-SHORTEST-PATHS(G, s, W)

1 topologically sort verticesin G

2 foreach vertexv € V(G)

3 Dlv] = =

4 Plv] = NIL

5 D[s] =0

6 foreach vertexu € G, in topologically sorted order
7 forallv e Adj(u)

8 RELAX(u, V)

Time complexity: O(|V| + |E])



Single-source shortest paths in DAG

(Example from CLRS)
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Single-source shortest paths in DAG

(Example from CLRS)



Proof of correctness

m Hint: The single-source shortest paths algorithm for DAG can be viewed as a ‘smarter’
way of doing Bellman-Ford, and therefore you can adjust the justification for
Bellman-Ford to show the correctness of the DAG-algorithm.



