Single-source Shortest Paths

Tao Hou

Shortest Path Problem

Problem Definition

Given a weighted (directed or undirected) graph G = (V, E), a **source** vertex s and a **target** vertex t in G, compute a path from s to t of **minimum weight** (i.e., the **shortest** path)

- The weight is a function $w : E \to \mathbb{R}$ on the edges
- The weight of a path is the sum of weights of all edges on the path

Two variations:

Single-source Shortest Paths

Given a *source* vertex *s* of *G*, compute the shortest paths from *s* to *all other vertices*

All-pair Shortest Paths

Compute the shortest paths for all pairs of vertices

A shortest path from s to t is: $s \rightarrow e \rightarrow b \rightarrow f \rightarrow t$ of weight 6

■ In reality, the weight can be the length, cost, or time of roads, transportation lines etc.

More definitions

- The weight of the shortest path from s to t is called the *distance*, or *shortest-path distance*, from s to t and is denoted as $\delta(s, t)$.
- We have $\delta(s, t) = \infty$ if there is no path from s to t

More definitions

- The weight of the shortest path from s to t is called the *distance*, or *shortest-path distance*, from s to t and is denoted as δ(s, t).
- We have $\delta(s, t) = \infty$ if there is no path from s to t
- In the problem, edge weights can be *negative*.
- However, if there is a *negative-weight* cycle on the path from s to t, $\delta(s, t)$ (as well as the problem) is not well-defined:
 - We can choose go through the cycles for arbitrary times and the weight of the path can arbitrarily lowered.

Single-source Shortest Paths

Algorithms

- BFS (Review)
- Dijkstra's algorithm
- Bellman-Ford
- An algorithm for DAG

Graph data structures

We assume *adjacency list* as data structures for graphs

Representing shortest paths from s

Through a *shortest-path tree* rooted at *s*, where the (unique) simple path from *s* to any vertex *v* in the tree is a shortest path from *s* to *v*

- There must be no cycles in a shortest path
 - The problem is not well-defined with negative-weight cycles
 - There can be no cycles with non-negative weight in a shortest path
- Shortest paths have the *optimal substructure* property
- We use *P*[*v*] to record the parent of *v* in the tree (like in BFS/DFS)

Example of shortest path tree

Breadth-First Search

- One of the simplest but also a fundamental algorithm
 - Some more advance graph algorithm such as *Prim*'s and *Dijkstra*'s can be considered as built on BFS

Breadth-First Search

- One of the simplest but also a fundamental algorithm
 - Some more advance graph algorithm such as *Prim*'s and *Dijkstra*'s can be considered as built on BFS
- Input: G = (V, E) and a source vertex $s \in V$
 - explores the graph starting from *s*, touching all vertices that are reachable from *s*
 - computes the distance of each vertex from *s* ('distance' means minimum number of edges)
 - iterates through the vertices at increasing distance
 - ► the algorithm discovers all vertices at distance k from s before discovering any vertices at distance k + 1 (hence the name)
 - produces a BFS tree rooted at s
 - An edge (*u*, *v*) in the tree means that *v* is '*discovered*' by visiting *u*
 - works on both *directed* and *undirected* graphs

Breadth-First Search

- One of the simplest but also a fundamental algorithm
 - Some more advance graph algorithm such as *Prim*'s and *Dijkstra*'s can be considered as built on BFS
- Input: G = (V, E) and a source vertex $s \in V$
 - explores the graph starting from s, touching all vertices that are reachable from s
 - computes the distance of each vertex from s ('distance' means minimum number of edges)
 - iterates through the vertices at increasing distance
 - ► the algorithm discovers all vertices at distance k from s before discovering any vertices at distance k + 1 (hence the name)
 - produces a BFS tree rooted at s
 - An edge (*u*, *v*) in the tree means that *v* is '*discovered*' by visiting *u*
 - works on both *directed* and *undirected* graphs
- Breadth-first search computes the single-source shortest paths for s with weights of all edges being 1.
 - The BFS tree is the shortest-path tree in this case

Breadth-First Search: High-level idea

A central data structure: A (FIFO) Queue

Two phases of accessing a vertex u

- *Discovering*: put *u* into the queue waiting to be *visited*
- **Visiting**: access the adjacency list of *u* and try to *discover* each adjacent vertex

Breadth-First Search: High-level idea

A central data structure: A (FIFO) Queue

Two phases of accessing a vertex u

- **Discovering**: put *u* into the queue waiting to be *visited*
- **Visiting**: access the adjacency list of *u* and try to *discover* each adjacent vertex

Process

- Initially, the seed *s* is the only vertex discovered (i.e., in the queue)
- Each iteration takes a vertex *u* from from the queue and visits *u*, until the queue is empty

Breadth-First Search: High-level idea

A central data structure: A (FIFO) Queue

Two phases of accessing a vertex u

- **Discovering**: put *u* into the queue waiting to be *visited*
- **Visiting**: access the adjacency list of *u* and try to *discover* each adjacent vertex

Process

- Initially, the seed *s* is the only vertex discovered (i.e., in the queue)
- Each iteration takes a vertex *u* from from the queue and visits *u*, until the queue is empty

Coloring for vertices:

- *white*: 'undiscovered', initial color
- gray: 'discovered', but haven't been 'visited'
- **black**: finished 'visiting'

Example

Example

BFS(G,s)

- 1 **for** each vertex $u \in V(G) \setminus \{s\}$ 2 color[u] = WHITE
- 3 $d[u] = \infty$ 4 $\pi[u] = \text{NIL}$
- 4 $\pi[u] = \text{NIL}$ 5 color[s] = GRAY
- 5 color[s] = 06 d[s] = 0
- $\sigma \pi[s] = 0$ 7 $\pi[s] =$ NIL
- $8 \quad 0 = \emptyset$

17

18

- 9 **ENQUEUE**(Q, s)
- 10 while $Q \neq \emptyset$

```
11 u = \text{DEQUEUE}(Q)
```

```
12 for each v \in A dj[u]

13 if color[v] == WHITE

14 color[v] = GRAY
```

```
15 d[v] = d[u] + 1

16 \pi[v] = u
```

$\pi[v] = u$ ENQUEUE(Q, v)

 $color[u] = \mathsf{BLACK}$

Coloring for vertices:

- white: 'undiscovered', initial color
- gray: 'discovered', but haven't been 'visited'
- black: finished 'visiting'
- 'discovering' means first encountered by the search
 - 'visiting' means to try to discover all adjacent vertices which are undiscovered
- Central data structure: a queue (first-in, first-out):
 - Contains gray vertices
- Some records we keep:
 - color[u]: color of a vertex u
 - d[u]: distance from s to u
 - π[u]: a vertex s.t. (π[u], u) forms an edge in the BFS tree (there is another interpretation which we will see in Dijkstra's)

 $\mathbf{BFS}(G,s)$

013	(0,3)
1	for each vertex $u \in V(G) \setminus \{s\}$
2	color[u] = WHITE
3	$d[u] = \infty$
4	$\pi[u]=$ NIL
5	color[s] = gray
6	d[s] = 0
7	$\pi[s] = NIL$
8	$Q = \emptyset$
9	Enqueue(Q, s)
10	while $Q \neq \emptyset$
11	$u = \mathbf{Dequeue}(Q)$
12	for each $v \in A dj[u]$
13	if $color[v]$ == white
14	color[v] = gray
15	d[v] = d[u] + 1
16	$\pi[v] = u$
17	ENQUEUE(Q, v)
18	color[u] = black

 Initially, s is set as 'discovered': enqueued, gray All other vertices are 'undiscovered' (white)

BFS(G,s)

```
for each vertex u \in V(G) \setminus \{s\}
 1
2
          color[u] = WHITE
3
       d[u] = \infty
 4
     \pi[u] = \text{NIL}
 5
   color[s] = GRAY
   d[\mathbf{s}] = 0
 6
   \pi[s] = \text{NIL}
 7
   0 = \emptyset
8
     ENQUEUE(Q, s)
9
    while Q \neq \emptyset
10
11
          u = \mathbf{DEQUEUE}(Q)
          for each v \in A dj[u]
12
13
                if color[v] == WHITE
14
                      color[v] = GRAY
15
                     d[v] = d[u] + 1
16
                     \pi[v] = u
                     ENQUEUE(Q, v)
17
18
           color[u] = BLACK
```

- Initially, s is set as 'discovered': enqueued, gray All other vertices are 'undiscovered' (white)
- Each iteration:
 - Dequeues a vertex u and tries to 'discover' (enqueue; mark as gray) all its adjacent vertices which are 'undiscovered'

BFS(G,s)

- **for** each vertex $u \in V(G) \setminus \{s\}$ 2 color[u] = WHITE3 $d[u] = \infty$ 4 $\pi[u] = \text{NIL}$ 5 color[s] = GRAY $d[\mathbf{s}] = 0$ 6 $\pi[s] = \text{NIL}$ 7 $0 = \emptyset$ 8 **ENQUEUE**(Q, s)9 10 while $Q \neq \emptyset$ 11 $u = \mathbf{DEQUEUE}(Q)$ **for** each $v \in A dj[u]$ 12 **if** color[v] == WHITE13 14 color[v] = GRAY15 d[v] = d[u] + 116 $\pi[v] = u$ **ENQUEUE**(Q, v)17 18 color[u] = BLACK
- Initially, s is set as 'discovered': enqueued, gray All other vertices are 'undiscovered' (white)
- Each iteration:
 - Dequeues a vertex u and tries to 'discover' (enqueue; mark as gray) all its adjacent vertices which are 'undiscovered'
 - Whenever we discover a vertex v, we add the edge (u, v) to the BFS-tree (called a *tree edge*)

BFS(G,s)

- **for** each vertex $u \in V(G) \setminus \{s\}$ 2 color[u] = WHITE3 $d[u] = \infty$ 4 $\pi[u] = \text{NIL}$ 5 color[s] = GRAY $d[\mathbf{s}] = 0$ 6 $\pi[s] = \text{NIL}$ 7 $0 = \emptyset$ 8 **ENQUEUE**(Q, s)9 10 while $Q \neq \emptyset$ 11 $u = \mathbf{DEQUEUE}(Q)$ **for** each $v \in A dj[u]$ 12 **if** color[v] == WHITE13 14 color[v] = GRAY15 d[v] = d[u] + 116 $\pi[v] = u$ **ENQUEUE**(Q, v)17 18 color[u] = BLACK
- Initially, s is set as 'discovered': enqueued, gray All other vertices are 'undiscovered' (white)
- Each iteration:
 - Dequeues a vertex u and tries to 'discover' (enqueue; mark as gray) all its adjacent vertices which are 'undiscovered'
 - Whenever we discover a vertex v, we add the edge (u, v) to the BFS-tree (called a *tree edge*)
 - After this, we finished visiting *u* and mark *u* as *black*.

1	for each vertex $u \in V(G) \setminus \{s\}$
2	color[u] = WHITE
3	$d[u] = \infty$
4	$\pi[u]=$ NIL
5	color[s] = gray
6	d[s] = 0
7	$\pi[s] = NIL$
8	$Q = \emptyset$
9	ENQUEUE(Q, s)
10	while $Q \neq \emptyset$
11	$u = \mathbf{DEQUEUE}(Q)$
12	for each $v \in A dj[u]$
13	if $color[v]$ == white
14	color[v] = GRAY
15	d[v] = d[u] + 1
16	$\pi[v] = u$
17	ENQUEUE(Q, v)
18	color[u] = BLACK

BFS(*G*, *s*)

	(0,0)
1	for each vertex $u \in V(G) \setminus \{s\}$
2	color[u] = white
3	$d[u] = \infty$
4	$\pi[u] = $ NIL
5	color[s] = gray
6	$d[\mathbf{s}] = 0$
7	$\pi[s] = NIL$
8	$Q = \emptyset$
9	Enqueue(Q, s)
10	while $Q \neq \emptyset$
11	$u = \mathbf{Dequeue}(Q)$
	for a a a b u c 1 d [u]
12	for each $v \in A dj[u]$
12 13	if $color[v] == WHITE$
. –	01 3
13	if color[v] == WHITE
13 14	$\begin{array}{l} \text{if } color[v] == \text{ white} \\ color[v] = \text{ gray} \end{array}$
13 14 15	$ \begin{aligned} \text{if } color[v] &= \text{ white } \\ color[v] &= \text{ gray } \\ d[v] &= d[u] + 1 \end{aligned} $
13 14 15 16	$ \begin{aligned} \text{if } color[v] &= \text{ white } \\ color[v] &= \text{ gray } \\ d[v] &= d[u] + 1 \\ \pi[v] &= u \end{aligned} $

 $Q = \emptyset$

BFS(*G*, *s*)

	(0,0)
1	for each vertex $u \in V(G) \setminus \{s\}$
2	color[u] = white
3	$d[u] = \infty$
4	$\pi[u] = $ NIL
5	color[s] = gray
6	$d[\mathbf{s}] = 0$
7	$\pi[s] = NIL$
8	$Q = \emptyset$
9	Enqueue(Q, s)
10	while $Q \neq \emptyset$
11	$u = \mathbf{Dequeue}(Q)$
	for a a a b u c 1 d [u]
12	for each $v \in A dj[u]$
12 13	if $color[v] == WHITE$
. –	01 3
13	if color[v] == WHITE
13 14	$\begin{array}{l} \text{if } color[v] == \text{ white} \\ color[v] = \text{ gray} \end{array}$
13 14 15	$ \begin{aligned} \text{if } color[v] &= \text{ white } \\ color[v] &= \text{ gray } \\ d[v] &= d[u] + 1 \end{aligned} $
13 14 15 16	$ \begin{aligned} \text{if } color[v] &= \text{ white } \\ color[v] &= \text{ gray } \\ d[v] &= d[u] + 1 \\ \pi[v] &= u \end{aligned} $

 $Q=\{5\}$

	(-,-)
1	for each vertex $u \in V(G) \setminus \{s\}$
2	color[u] = WHITE
3	$d[u] = \infty$
4	$\pi[u]=$ NIL
5	color[s] = gray
6	d[s] = 0
7	$\pi[s] = NIL$
8	$Q = \emptyset$
9	ENQUEUE(Q, s)
10	while $Q \neq \emptyset$
11	$u = \mathbf{Dequeue}(Q)$
12	for each $v \in A dj[u]$
13	if $color[v]$ == white
14	color[v] = GRAY
15	d[v] = d[u] + 1
16	$\pi[v] = u$
17	ENQUEUE(Q, v)
18	color[u] = black

1	for each vertex $u \in V(G) \setminus \{s\}$
2	color[u] = WHITE
3	$d[u] = \infty$
4	$\pi[u] = NIL$
5	color[s] = gray
6	d[s] = 0
7	$\pi[s] = NIL$
8	$Q = \emptyset$
9	ENQUEUE(Q, s)
10	while $Q \neq \emptyset$
11	$u = \mathbf{DEQUEUE}(Q)$
12	for each $v \in A dj[u]$
13	if color[v] == WHITE
14	color[v] = GRAY
15	d[v] = d[u] + 1
16	$\pi[v] = u$
17	ENQUEUE(Q, v)
18	color[u] = BLACK

	(0,0)
1	for each vertex $u \in V(G) \setminus \{s\}$
2	color[u] = WHITE
3	$d[u] = \infty$
4	$\pi[u] = $ NIL
5	color[s] = gray
6	d[s] = 0
7	$\pi[s] = NIL$
8	$Q = \emptyset$
9	Enqueue(Q, s)
10	while $Q \neq \emptyset$
11	$u = \mathbf{Dequeue}(Q)$
12	for each $v \in A dj[u]$
13	if $color[v]$ == white
14	color[v] = gray
15	d[v] = d[u] + 1
16	$\pi[v] = u$
17	Enqueue(Q, v)
18	color[u] = black

BFS(*G*, *s*)

	(0,0)
1	for each vertex $u \in V(G) \setminus \{s\}$
2	color[u] = WHITE
3	$d[u] = \infty$
4	$\pi[u]=$ NIL
5	color[s] = gray
6	d[s] = 0
7	$\pi[s] = NIL$
8	$Q = \emptyset$
9	Enqueue(Q, s)
10	while $Q \neq \emptyset$
11	$u = \mathbf{Dequeue}(Q)$
12	for each $v \in A dj[u]$
13	if $color[v]$ == white
14	color[v] = gray
15	d[v] = d[u] + 1
16	$\pi[v] = u$
17	ENQUEUE(Q, v)
18	color[u] = black

 $Q=\{9\}$

BFS(*G*, *s*)

	(0,0)
1	for each vertex $u \in V(G) \setminus \{s\}$
2	color[u] = WHITE
3	$d[u] = \infty$
4	$\pi[u]=$ NIL
5	color[s] = gray
6	d[s] = 0
7	$\pi[s] = NIL$
8	$Q = \emptyset$
9	Enqueue(Q, s)
10	while $Q \neq \emptyset$
11	$u = \mathbf{Dequeue}(Q)$
12	for each $v \in A dj[u]$
13	if $color[v]$ == white
14	color[v] = gray
15	d[v] = d[u] + 1
16	$\pi[v] = u$
17	ENQUEUE(Q, v)
18	color[u] = black

 $Q = \{9, 2, 7\}$

BFS(*G*, *s*)

	(0,0)
1	for each vertex $u \in V(G) \setminus \{s\}$
2	color[u] = WHITE
3	$d[u] = \infty$
4	$\pi[u]=$ NIL
5	color[s] = gray
6	d[s] = 0
7	$\pi[s] = NIL$
8	$Q = \emptyset$
9	Enqueue(Q, s)
10	while $Q \neq \emptyset$
11	$u = \mathbf{Dequeue}(Q)$
12	for each $v \in A dj[u]$
13	if $color[v]$ == white
14	color[v] = gray
15	d[v] = d[u] + 1
16	$\pi[v] = u$
17	ENQUEUE(Q, v)
18	color[u] = black

 $Q = \{9, 2, 7\}$

BFS(*G*, *s*)

	(0,0)
1	for each vertex $u \in V(G) \setminus \{s\}$
2	color[u] = WHITE
3	$d[u] = \infty$
4	$\pi[u] = NIL$
5	color[s] = gray
6	d[s] = 0
7	$\pi[s] = NIL$
8	$Q = \emptyset$
9	Enqueue(Q, s)
10	while $Q \neq \emptyset$
11	$u = \mathbf{Dequeue}(Q)$
12	for each $v \in A dj[u]$
13	if $color[v]$ == white
14	color[v] = gray
15	d[v] = d[u] + 1
16	$\pi[v] = u$
17	ENQUEUE(Q, v)
18	color[u] = black

 $Q=\{2,7\}$

BFS(*G*, *s*)

	(0,0)
1	for each vertex $u \in V(G) \setminus \{s\}$
2	color[u] = WHITE
3	$d[u] = \infty$
4	$\pi[u] = NIL$
5	color[s] = gray
6	d[s] = 0
7	$\pi[s] = NIL$
8	$Q = \emptyset$
9	Enqueue(Q, s)
10	while $Q \neq \emptyset$
11	$u = \mathbf{Dequeue}(Q)$
12	for each $v \in A dj[u]$
13	if $color[v]$ == white
14	color[v] = gray
15	d[v] = d[u] + 1
16	$\pi[v] = u$
17	ENQUEUE(Q, v)
18	color[u] = black

 $Q = \{2, 7, 10\}$

	(-,-)
1	for each vertex $u \in V(G) \setminus \{s\}$
2	color[u] = white
3	$d[u] = \infty$
4	$\pi[u]=$ NIL
5	color[s] = gray
6	d[s] = 0
7	$\pi[s]=$ NIL
8	$Q = \emptyset$
9	Enqueue(Q, s)
10	while $Q \neq \emptyset$
11	$u = \mathbf{Dequeue}(Q)$
12	for each $v \in A dj[u]$
13	if $color[v]$ == white
14	color[v] = gray
15	d[v] = d[u] + 1
16	$\pi[v] = u$
17	ENQUEUE(Q, v)
18	color[u] = black

	(0,0)
1	for each vertex $u \in V(G) \setminus \{s\}$
2	color[u] = WHITE
3	$d[u] = \infty$
4	$\pi[u]=$ NIL
5	color[s] = gray
6	d[s] = 0
7	$\pi[s] = NIL$
8	$Q = \emptyset$
9	Enqueue(Q, s)
10	while $Q \neq \emptyset$
11	$u = \mathbf{Dequeue}(Q)$
12	for each $v \in A dj[u]$
13	if $color[v]$ == white
14	color[v] = gray
15	d[v] = d[u] + 1
16	$\pi[v] = u$
17	ENQUEUE(Q, v)
18	color[u] = black

	(-,-)
1	for each vertex $u \in V(G) \setminus \{s\}$
2	color[u] = white
3	$d[u] = \infty$
4	$\pi[u]=$ NIL
5	color[s] = gray
6	d[s] = 0
7	$\pi[s]=$ NIL
8	$Q = \emptyset$
9	Enqueue(Q, s)
10	while $Q \neq \emptyset$
11	$u = \mathbf{Dequeue}(Q)$
12	for each $v \in A dj[u]$
13	if $color[v]$ == white
14	color[v] = gray
15	d[v] = d[u] + 1
16	$\pi[v] = u$
17	ENQUEUE(Q, v)
18	color[u] = black

	(0,0)
1	for each vertex $u \in V(G) \setminus \{s\}$
2	color[u] = WHITE
3	$d[u] = \infty$
4	$\pi[u]=$ NIL
5	color[s] = gray
6	d[s] = 0
7	$\pi[s]=$ NIL
8	$Q = \emptyset$
9	ENQUEUE (Q, s)
10	while $Q \neq \emptyset$
11	u = Dequeue(Q)
12	for each $v \in A dj[u]$
13	if $color[v]$ == white
14	color[v] = gray
15	d[v] = d[u] + 1
16	$\pi[v] = u$
17	ENQUEUE(Q, v)
18	color[u] = black

	(0,0)
1	for each vertex $u \in V(G) \setminus \{s\}$
2	color[u] = WHITE
3	$d[u] = \infty$
4	$\pi[u] = $ NIL
5	color[s] = gray
6	d[s] = 0
7	$\pi[s] = NIL$
8	$Q = \emptyset$
9	Enqueue(Q, s)
10	while $Q \neq \emptyset$
11	$u = \mathbf{Dequeue}(Q)$
12	for each $v \in A dj[u]$
13	if $color[v]$ == white
14	color[v] = gray
15	d[v] = d[u] + 1
16	$\pi[v] = u$
17	ENQUEUE(Q, v)
18	color[u] = black

1	for each vertex $u \in V(G) \setminus \{s\}$
2	color[u] = white
3	$d[u] = \infty$
4	$\pi[u]=$ NIL
5	color[s] = gray
6	d[s] = 0
7	$\pi[s] = NIL$
8	$Q = \emptyset$
9	ENQUEUE(Q, s)
10	while $Q \neq \emptyset$
10	while $Q \neq \emptyset$
11	$u = \mathbf{DEQUEUE}(Q)$
	•
11	$u = \mathbf{DEQUEUE}(Q)$
11 12	$u = \mathbf{DEQUEUE}(Q)$ for each $v \in Adj[u]$
11 12 13	$u = \mathbf{DEQUEUE}(Q)$ for each $v \in A dj[u]$ if $color[v] == WHITE$
11 12 13 14	$u = \mathbf{DEQUEUE}(Q)$ for each $v \in A dj[u]$ if $color[v] ==$ WHITE color[v] = GRAY
11 12 13 14 15	u = DEQUEUE(Q) for each $v \in A dj[u]$ if $color[v] ==$ WHITE color[v] = GRAY d[v] = d[u] + 1
11 12 13 14 15 16	u = DEQUEUE(Q) for each $v \in A dj[u]$ if $color[v] ==$ WHITE color[v] = GRAY d[v] = d[u] + 1 $\pi[v] = u$

1	for each vertex $u \in V(G) \setminus \{s\}$
2	color[u] = WHITE
3	$d[u] = \infty$
4	$\pi[u] = NIL$
5	color[s] = gray
6	d[s] = 0
7	$\pi[s] = NIL$
8	$Q = \emptyset$
9	ENQUEUE(Q, s)
10	while $Q \neq \emptyset$
11	$u = \mathbf{Dequeue}(Q)$
12	for each $v \in A dj[u]$
13	if color[v] == WHITE
14	color[v] = GRAY
15	d[v] = d[u] + 1
16	$\pi[v] = u$
17	ENQUEUE(Q, v)
18	color[u] = BLACK

1	for each vertex $u \in V(G) \setminus \{s\}$
2	color[u] = white
3	$d[u] = \infty$
4	$\pi[u]=$ NIL
5	color[s] = gray
6	d[s] = 0
7	$\pi[s] = NIL$
8	$Q = \emptyset$
9	ENQUEUE(Q, s)
10	while $Q \neq \emptyset$
10	while $Q \neq \emptyset$
11	$u = \mathbf{DEQUEUE}(Q)$
	•
11	$u = \mathbf{DEQUEUE}(Q)$
11 12	$u = \mathbf{DEQUEUE}(Q)$ for each $v \in Adj[u]$
11 12 13	$u = \mathbf{DEQUEUE}(Q)$ for each $v \in A dj[u]$ if $color[v] == WHITE$
11 12 13 14	u = DEQUEUE(Q) for each $v \in A dj[u]$ if $color[v] ==$ WHITE color[v] = GRAY
11 12 13 14 15	u = DEQUEUE(Q) for each $v \in A dj[u]$ if $color[v] ==$ WHITE color[v] = GRAY d[v] = d[u] + 1
11 12 13 14 15 16	u = DEQUEUE(Q) for each $v \in A dj[u]$ if $color[v] ==$ WHITE color[v] = GRAY d[v] = d[u] + 1 $\pi[v] = u$

	(0,0)
1	for each vertex $u \in V(G) \setminus \{s\}$
2	color[u] = WHITE
3	$d[u] = \infty$
4	$\pi[u]=$ NIL
5	color[s] = gray
6	d[s] = 0
7	$\pi[s] = $ NIL
8	$Q = \emptyset$
9	Enqueue(Q, s)
10	while $Q \neq \emptyset$
11	$u = \mathbf{Dequeue}(Q)$
12	for each $v \in A dj[u]$
13	if $color[v]$ == white
14	color[v] = gray
15	d[v] = d[u] + 1
16	$\pi[v] = u$
17	ENQUEUE(Q, v)
18	color[u] = black

	(0,0)
1	for each vertex $u \in V(G) \setminus \{s\}$
2	color[u] = WHITE
3	$d[u] = \infty$
4	$\pi[u] = NIL$
5	color[s] = gray
6	d[s] = 0
7	$\pi[s] = NIL$
8	$Q = \emptyset$
9	Enqueue(Q, s)
10	while $Q \neq \emptyset$
11	$u = \mathbf{Dequeue}(Q)$
12	for each $v \in A dj[u]$
13	if $color[v]$ == white
14	color[v] = gray
15	d[v] = d[u] + 1
16	$\pi[v] = u$
17	ENQUEUE(Q, v)
18	color[u] = BLACK

BFS(*G*, *s*)

1	for each vertex $u \in V(G) \setminus \{s\}$
2	color[u] = WHITE
3	$d[u] = \infty$
4	$\pi[u] = NIL$
5	color[s] = gray
6	d[s] = 0
7	$\pi[s] = NIL$
8	$Q = \emptyset$
9	ENQUEUE(Q, s)
10	while $Q \neq \emptyset$
11	$u = \mathbf{Dequeue}(Q)$
12	for each $v \in A dj[u]$
13	if color[v] == WHITE
14	color[v] = GRAY
15	d[v] = d[u] + 1
16	$\pi[v] = u$
17	ENQUEUE(Q, v)
18	color[u] = BLACK

 $Q = \{4, 12\}$

BFS(*G*, *s*)

1	for each vertex $u \in V(G) \setminus \{s\}$
2	color[u] = WHITE
3	$d[u] = \infty$
4	$\pi[u] = NIL$
5	color[s] = gray
6	d[s] = 0
7	$\pi[s] = NIL$
8	$Q = \emptyset$
9	ENQUEUE(Q, s)
10	while $Q \neq \emptyset$
11	$u = \mathbf{Dequeue}(Q)$
12	for each $v \in A dj[u]$
13	if color[v] == WHITE
14	color[v] = GRAY
15	d[v] = d[u] + 1
16	$\pi[v] = u$
17	ENQUEUE(Q, v)
18	color[u] = BLACK

 $\mathsf{Q}=\{12\}$

1	for each vertex $u \in V(G) \setminus \{s\}$
2	color[u] = WHITE
3	$d[u] = \infty$
4	$\pi[u]=$ NIL
5	color[s] = gray
6	d[s] = 0
7	$\pi[s] = NIL$
8	$Q = \emptyset$
9	Enqueue(Q, s)
10	while $Q \neq \emptyset$
11	$u = \mathbf{Dequeue}(Q)$
12	for each $v \in A dj[u]$
13	if $color[v]$ == white
14	color[v] = GRAY
15	d[v] = d[u] + 1
16	$\pi[v] = u$
17	ENQUEUE(Q, v)
18	color[u] = BLACK

1	for each vertex $u \in V(G) \setminus \{s\}$
2	color[u] = WHITE
3	$d[u] = \infty$
4	$\pi[u] = $ NIL
5	color[s] = GRAY
6	d[s] = 0
7	$\pi[s] = \text{NIL}$
8	$Q = \emptyset$
9	ENQUEUE(Q, s)
10	while $Q \neq \emptyset$
11	$u = \mathbf{DEQUEUE}(Q)$
12	for each $v \in A dj[u]$
13	if color[v] == WHITE
14	color[v] = GRAY
15	d[v] = d[u] + 1
16	$\pi[v] = u$
17	ENQUEUE(Q, v)
18	color[u] = BLACK

1	for each vertex $u \in V(G) \setminus \{s\}$
2	color[u] = WHITE
3	$d[u] = \infty$
4	$\pi[u] = $ NIL
5	color[s] = gray
6	d[s] = 0
7	$\pi[s] = $ NIL
8	$Q = \emptyset$
9	ENQUEUE(Q, s)
10	while $Q \neq \emptyset$
11	$u = \mathbf{DEQUEUE}(Q)$
12	for each $v \in A dj[u]$
13	if $color[v]$ == white
14	color[v] = GRAY
15	d[v] = d[u] + 1
16	$\pi[v] = u$
17	ENQUEUE (Q, v)
18	color[u] = BLACK

BFS(G, s)

for each vertex $u \in V(G) \setminus \{s\}$ 1 2 color[u] = WHITE3 $d[u] = \infty$ 4 $\pi[u] = \text{NIL}$ 5 color[s] = GRAY $d[\mathbf{s}] = 0$ 6 7 $\pi[s] = \text{NIL}$ 8 $Q = \emptyset$ **ENQUEUE**(Q, s)9 while $Q \neq \emptyset$ 10 11 $u = \mathbf{DEQUEUE}(Q)$ **for** each $v \in A dj[u]$ 12 13 **if** *color*[**v**] == WHITE 14 color[v] = GRAY15 d[v] = d[u] + 116 $\pi[v] = u$ 17 **ENQUEUE**(Q, v)18 color[u] = BLACK

We enqueue a vertex only if it is white, and we immediately color it gray; thus, we enqueue every vertex at most once

$\mathbf{BFS}(G,s)$

for each vertex $u \in V(G) \setminus \{s\}$ 1 2 color[u] = WHITE3 $d[u] = \infty$ 4 $\pi[u] = \text{NIL}$ color[s] = GRAY5 $d[\mathbf{s}] = 0$ 6 $\pi[s] = \text{NIL}$ 7 8 $0 = \emptyset$ **ENQUEUE**(Q, s)9 while $Q \neq \emptyset$ 10 11 $u = \mathbf{DEQUEUE}(Q)$ **for** each $v \in A dj[u]$ 12 13 **if** color[v] == WHITE14 color[v] = GRAY15 d[v] = d[u] + 116 $\pi[v] = u$ **ENQUEUE**(Q, v)17 18 color[u] = BLACK

- We enqueue a vertex only if it is white, and we immediately color it gray; thus, we enqueue every vertex at most once
- This means that we also dequeue every vertex at most once
- So, the (dequeue) while loop executes O(|V|) times

$\mathbf{BFS}(G,s)$

for each vertex $u \in V(G) \setminus \{s\}$ 2 color[u] = WHITE3 $d[u] = \infty$ 4 $\pi[u] = \text{NIL}$ 5 color[s] = GRAY $d[\mathbf{s}] = 0$ 6 $\pi[s] = \text{NIL}$ 7 $0 = \emptyset$ 8 **ENQUEUE**(Q, s)9 10 while $Q \neq \emptyset$ 11 $u = \mathbf{DEQUEUE}(Q)$ **for** each $v \in A dj[u]$ 12 **if** color[v] == WHITE13 14 color[v] = GRAY15 d[v] = d[u] + 116 $\pi[v] = u$ **ENQUEUE**(Q, v)17 18 color[u] = BLACK

- We enqueue a vertex only if it is white, and we immediately color it gray; thus, we enqueue every vertex at most once
- This means that we also dequeue every vertex at most once
- **So, the (dequeue) while loop executes** O(|V|) times
- The inner loop: For each vertex u, the inner loop executes for no more than out-deg(u) times, for a total of ∑_{u∈V} out-deg(u) =

Complexity of BFS

$\mathbf{BFS}(G,s)$

for each vertex $u \in V(G) \setminus \{s\}$ 2 color[u] = WHITE3 $d[u] = \infty$ 4 $\pi[u] = \text{NIL}$ color[s] = gray5 $d[\mathbf{s}] = 0$ 6 $\pi[s] = \text{NIL}$ 7 $0 = \emptyset$ 8 **ENQUEUE**(Q, s)9 10 while $Q \neq \emptyset$ 11 $u = \mathbf{DEQUEUE}(Q)$ **for** each $v \in A dj[u]$ 12 **if** color[v] == WHITE13 14 color[v] = GRAY15 d[v] = d[u] + 116 $\pi[v] = u$ **ENQUEUE**(Q, v)17 18 color[u] = BLACK

- We enqueue a vertex only if it is white, and we immediately color it gray; thus, we enqueue every vertex at most once
- This means that we also dequeue every vertex at most once
- So, the (dequeue) while loop executes O(|V|) times
- The inner loop: For each vertex u, the inner loop executes for no more than out-deg(u) times, for a total of ∑_{u∈V} out-deg(u) =|E| times

Complexity of BFS

$\mathbf{BFS}(G,s)$

for each vertex $u \in V(G) \setminus \{s\}$ 2 color[u] = WHITE3 $d[u] = \infty$ 4 $\pi[u] = \text{NIL}$ color[s] = gray5 $d[\mathbf{s}] = 0$ 6 $\pi[s] = \text{NIL}$ 7 $0 = \emptyset$ 8 **ENQUEUE**(Q, s)9 10 while $Q \neq \emptyset$ 11 $u = \mathbf{DEQUEUE}(Q)$ **for** each $v \in A dj[u]$ 12 **if** color[v] == WHITE13 14 color[v] = GRAY15 d[v] = d[u] + 116 $\pi[v] = u$ **ENQUEUE**(Q, v)17 18 color[u] = BLACK

- We enqueue a vertex only if it is white, and we immediately color it gray; thus, we enqueue every vertex at most once
- This means that we also dequeue every vertex at most once
- So, the (dequeue) while loop executes O(|V|) times
- The inner loop: For each vertex u, the inner loop executes for no more than out-deg(u) times, for a total of ∑_{u∈V} out-deg(u) =|E| times
- So, O(|V| + |E|) (because |E| may be less than |V|)

Claim

Let $\delta(s, v)$ be the minimum numbers of edges of any path from s to v. Then, we claim that $d[v] = \delta(s, v)$.

Claim

Let $\delta(s, v)$ be the minimum numbers of edges of any path from s to v. Then, we claim that $d[v] = \delta(s, v)$.

Reason:

- First, we observe that, before a vertex with distance k + 1 is visited, all vertices with distance ≤ k have been visited
 - At the beginning, there is only one vertex *s* with distance ≤ 0, and *s* is the first vertex visited. When visiting *s*, we discover all vertices with distance ≤ 1
 - When visiting vertices with distance 1, we discover all vertices with distance ≤ 2
 - ... (The predecessor of every vertex with distance k must be a vertex with distance k 1)

Claim

Let $\delta(s, v)$ be the minimum numbers of edges of any path from s to v. Then, we claim that $d[v] = \delta(s, v)$.

Reason:

- First, we observe that, before a vertex with distance k + 1 is visited, all vertices with distance ≤ k have been visited
 - ► At the beginning, there is only one vertex *s* with distance ≤ 0, and *s* is the first vertex visited. When visiting *s*, we discover all vertices with distance ≤ 1
 - When visiting vertices with distance 1, we discover all vertices with distance ≤ 2
 - ... (The predecessor of every vertex with distance k must be a vertex with distance k 1)
- For contradiction, suppose the claim is not true, and consider the first vertex v visited by BFS s.t. $\delta(s, v) \neq d[v]$
- Assume v is discovered when visiting u. We have d[v] = d[u] + 1.
- Since $\delta(s, v) \le d[v]$, we have that $\delta(s, v) < d[v]$.

Claim

Let $\delta(s, v)$ be the minimum numbers of edges of any path from s to v. Then, we claim that $d[v] = \delta(s, v)$.

Reason:

- First, we observe that, before a vertex with distance k + 1 is visited, all vertices with distance ≤ k have been visited
 - At the beginning, there is only one vertex *s* with distance ≤ 0 , and *s* is the first vertex visited. When visiting *s*, we discover all vertices with distance ≤ 1
 - When visiting vertices with distance 1, we discover all vertices with distance ≤ 2
 - ... (The predecessor of every vertex with distance k must be a vertex with distance k 1)
- For contradiction, suppose the claim is not true, and consider the first vertex v visited by BFS s.t. $\delta(s, v) \neq d[v]$
- Assume *v* is discovered when visiting *u*. We have d[v] = d[u] + 1.
- Since $\delta(s, v) \leq d[v]$, we have that $\delta(s, v) < d[v]$.
- Let *w* be the predecessor of *v* on a shortest path from *s* to *v*. We have $\delta(s, w) = \delta(s, v) 1$. So $\delta(s, w) < d[v] - 1 = d[u] = \delta(s, u)$.
- This means that *w* must be visited before *u*, and when we visit *w*, we must have marked *v* as gray. This contradicts the fact that when we visit *u*, the color of *v* is still white.

Here we prove that the underlying undirected graph is an (undirected) tree

■ Consider only vertices connected to *s* (i.e., in the connected component containing *s*), and let the number of vertices connected to *s* be *n*₀

- Consider only vertices connected to *s* (i.e., in the connected component containing *s*), and let the number of vertices connected to *s* be *n*₀
- The number of tree edges:

- Consider only vertices connected to *s* (i.e., in the connected component containing *s*), and let the number of vertices connected to *s* be *n*₀
- The number of tree edges: $n_0 1$

- Consider only vertices connected to *s* (i.e., in the connected component containing *s*), and let the number of vertices connected to *s* be *n*₀
- The number of tree edges: $n_0 1$
- The underlying undirected graph formed by these vertices and edges is definitely connected (because we are only attaching an edge to the partial graph we are building)

- Consider only vertices connected to *s* (i.e., in the connected component containing *s*), and let the number of vertices connected to *s* be *n*₀
- The number of tree edges: $n_0 1$
- The underlying undirected graph formed by these vertices and edges is definitely connected (because we are only attaching an edge to the partial graph we are building)
- Previous fact: A connected, undirected graph with n vertices and n-1 edges is a tree

Dijkstra's Algorithm

- Assumes all edges have *non-negative* weights
- A greedy algorithm

Dijkstra's Algorithm

$\mathbf{Dijkstra}(G, s, w)$

- 1 $N = \emptyset$
- 2 **for** each vertex $v \in V(G)$
- 3 $D[v] = \infty$ 4 P[v] =NIL
- 5 D[s] = 0

12

- 6 while $N \neq V(G)$
- 7 find $u \notin N$ such that D[u] is minimal
- 8 $N = N \cup \{u\}$
- 9 for all $v \in A dj(u) \setminus N$ 0 if D[u] + w(u, v) < D[v]
- 10 if D[u] + w(u, v) < D[v]11 D[v] = D[u] + w(u, v)
 - $\begin{array}{l} D[v] = D\\ P[v] = u \end{array}$

(all algorithms for S-S have the same *initialization* and *relaxation* process)

- Grows a shortest-path tree from s
 - N: vertices in the (partial) shortest path tree
 - P[v]: parent of v in the (partial) shortest path tree (also the vertex preceding v on the shortest path from s)
- Maintains an 'estimate' of the distance to v
 - D[v]: weight of the shortest path from s to v where all edges other than the last is from the partial tree
- In each step, makes a greedy choice by adding to the tree a vertex u with minimum value of D
- After adding u to the tree, updates D[v] for the neighbors of u outside the tree if needed (relaxation)
- Stops when the tree spans the graph

Dijkstra's Algorithm: Complexity

$\mathbf{Dijkstra}(G, s, w)$

1	$N = \emptyset$
2	for each vertex $v \in V(G)$
3	$D[v] = \infty$
4	P[v] = NIL
5	D[s] = 0
6	while $N \neq V(G)$
7	find $u \notin N$ such that $D[u]$ is minimal
8	$N = N \cup \{u\}$
9	for all $v \in A dj(u) \setminus N$
10	if $D[u] + w(u, v) < D[v]$
11	D[v] = D[u] + w(u, v)
12	P[v] = u

- Use a heap *H* for storing *D*
 - Line 7: EXTRACT-MIN from H
 - Line 11: UPDATE-KEY in H
- **Time complexity:** $O(|E| \log |V|)$

Some facts:

- If there is no path from s to a v, then $D[v] = \infty$ at all time in the algorithm:
 - Observe the following: whenever $D[v] < \infty$, it always corresponds to a path from s to v
- $\bullet \delta(s, v) \le D[v] \text{ for all } v$
 - Again, whenever $D[v] < \infty$, it always corresponds to a path from s to v

Loop variant:

At the start of each iteration of the **while** loop, $D[v] = \delta(s, v)$ for each $v \in N$

Loop variant:

At the start of each iteration of the **while** loop, $D[v] = \delta(s, v)$ for each $v \in N$

- Initially, *N* = Ø and this is trivially true
- We only need to show that the invariant is true for all the following iterations

Loop variant:

At the start of each iteration of the **while** loop, $D[v] = \delta(s, v)$ for each $v \in N$

- Initially, *N* = Ø and this is trivially true
- We only need to show that the invariant is true for all the following iterations
- For contradiction, let u be the first vertex for which $D[u] \neq \delta(s, u)$ when it is added to N
 - We must have u ≠ s because s is the first vertex added to N and δ(s, s) = D[s] = 0; we also have that N ≠ Ø before u is added to N

Loop variant:

At the start of each iteration of the **while** loop, $D[v] = \delta(s, v)$ for each $v \in N$

- Initially, *N* = Ø and this is trivially true
- We only need to show that the invariant is true for all the following iterations
- For contradiction, let u be the first vertex for which $D[u] \neq \delta(s, u)$ when it is added to N
 - We must have u ≠ s because s is the first vertex added to N and δ(s, s) = D[s] = 0; we also have that N ≠ Ø before u is added to N
- Since $D[u] \neq \delta(s, u)$, there must be a path from s to u, because otherwise $D[u] = \infty$ for always (previous facts) and $D[u] = \delta(s, u) = \infty$

Loop variant:

At the start of each iteration of the **while** loop, $D[v] = \delta(s, v)$ for each $v \in N$

- Initially, *N* = Ø and this is trivially true
- We only need to show that the invariant is true for all the following iterations
- For contradiction, let u be the first vertex for which $D[u] \neq \delta(s, u)$ when it is added to N
 - We must have u ≠ s because s is the first vertex added to N and δ(s, s) = D[s] = 0; we also have that N ≠ Ø before u is added to N
- Since $D[u] \neq \delta(s, u)$, there must be a path from s to u, because otherwise $D[u] = \infty$ for always (previous facts) and $D[u] = \delta(s, u) = \infty$
- Let *p* be the shortest path from *s* to *u*
- Consider the *N* before adding *u*: Since the start of *p* is $s \in N$ and the end of *p* is $u \notin N$, we can let *y* be the first vertex along *p* such that $y \notin N$, and let *x* be predecessor of *y* along *p* $(x \in N)$.

(Figure from CLRS)

(Figure from CLRS)

Because *u* is the first vertex added to *N* for which $D[u] \neq \delta(s, u)$, we have $D[x] = \delta(s, x)$ when *x* was added

(Figure from CLRS)

- Because *u* is the first vertex added to *N* for which $D[u] \neq \delta(s, u)$, we have $D[x] = \delta(s, x)$ when *x* was added
- From the path *p*, we know that $\delta(s, y) = \delta(s, x) + w(x, y)$. So when *x* was added to *N*, $D[y] = \delta(s, y)$ after the update in Line 9-11

(Figure from CLRS)

- Because *u* is the first vertex added to *N* for which $D[u] \neq \delta(s, u)$, we have $D[x] = \delta(s, x)$ when *x* was added
- From the path *p*, we know that $\delta(s, y) = \delta(s, x) + w(x, y)$. So when *x* was added to *N*, $D[y] = \delta(s, y)$ after the update in Line 9-11
- From the path *p*, we know that $\delta(s, y) \leq \delta(s, u)$. So

 $D[y] = \delta(s, y) \le \delta(s, u) \le D[u]$

(Figure from CLRS)

- Because *u* is the first vertex added to *N* for which $D[u] \neq \delta(s, u)$, we have $D[x] = \delta(s, x)$ when *x* was added
- From the path *p*, we know that $\delta(s, y) = \delta(s, x) + w(x, y)$. So when *x* was added to *N*, $D[y] = \delta(s, y)$ after the update in Line 9-11
- From the path *p*, we know that $\delta(s, y) \leq \delta(s, u)$. So

$$D[y] = \delta(s, y) \le \delta(s, u) \le D[u]$$

Because both *u* and *y* were not in *N* when *u* was chosen in Line 7, we have $D[u] \le D[y]$. So the above become equalities

$$D[y] = \delta(s, y) = \delta(s, u) = D[u]$$

A contradiction!

Bellman-Ford algorithm

- The most general-purpose algorithm for computing single-source shortest paths: allows negative weights on edges, and works for any graphs
- Returns a *boolean* value indicating whether or not there is a negative-weight cycle that is reachable from the source
 - If there is such a cycle, the algorithm indicates that *no solution* exists.
 - If there is no such cycle, the algorithm produces the shortest paths and their weights.
- The idea of the algorithm is simple, after the initialization (common to all S-S shortest path algorithms), it has |V| 1 rounds, where each round relaxes all the edges

Bellman-Ford algorithm

$\mathbf{Bellman}\operatorname{-}\mathbf{Ford}(G = (V, E), s, w)$		
1	for each vertex $v \in V$	
2	$D[v] = \infty$	
3	P[v] = NIL	
4	D[s] = 0	
5	for $i = 1,, V - 1$	
6	for each edge $(u, v) \in E$	
7	$\mathbf{Relax}(u, v)$	
8	for each edge $(u, v) \in E$	
9	if $D[u] + w(u, v) < D[v]$	
10	return FALSE	
11	return TRUE	

$$\begin{aligned} & \textbf{RELAX}(u, v) \\ 1 \quad & \textbf{if } D[u] + w(u, v) < D[v] \\ 2 \qquad & D[v] = D[u] + w(u, v) \\ 3 \qquad & P[v] = u \end{aligned}$$

Time complexity: $O(|V| \times |E|)$

(a)

(Example from CLRS)

Proposition 1

We always have $D[v] \ge \delta(s, v)$ in the algorithm. Furthermore, after $D[v] = \delta(s, v)$, D[v] does not change no matter what relaxations we perform in the algorithm.

- We have seen the argument for $D[v] \ge \delta(s, v)$ before, i.e., D[v] always corresponds to the weight of an actual path from *s* to *v* (or else $D[v] = \infty$), and so it cannot be less than the optimal one, $\delta(s, v)$.
- For the second part, notice that a relaxation always decreases D[x] for a vertex x. If we already have $D[v] = \delta(s, v)$, then D[v] cannot be further decreased because $D[v] \ge \delta(s, v)$.

Path-relaxation property

Let $p = \langle v_0 = s, v_1, \dots, v_k \rangle$ be a shortest path from s to v_k . After relaxing the edges in the order $(v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k)$, we have $D[v_k] = \delta(s, v_k)$. This property holds even if there are relaxations of other edges intermixed with relaxations of the edges on p.

Path-relaxation property

Let $p = \langle v_0 = s, v_1, \dots, v_k \rangle$ be a shortest path from s to v_k . After relaxing the edges in the order $(v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k)$, we have $D[v_k] = \delta(s, v_k)$. This property holds even if there are relaxations of other edges intermixed with relaxations of the edges on p.

Proof:

• We prove by induction that, for each *i*, before relaxing (v_i, v_{i+1}) , we have $D[v_i] = \delta(s, v_i)$, and after the relaxation, we have $D[v_{i+1}] = \delta(s, v_{i+1})$.

Path-relaxation property

Let $p = \langle v_0 = s, v_1, \dots, v_k \rangle$ be a shortest path from s to v_k . After relaxing the edges in the order $(v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k)$, we have $D[v_k] = \delta(s, v_k)$. This property holds even if there are relaxations of other edges intermixed with relaxations of the edges on p.

- We prove by induction that, for each *i*, before relaxing (v_i, v_{i+1}) , we have $D[v_i] = \delta(s, v_i)$, and after the relaxation, we have $D[v_{i+1}] = \delta(s, v_{i+1})$.
- Unlike other proofs by inductions, we prove the **induction step** first.
- Assume for i 1, the claim is true. We have that after relaxing (v_{i-1}, v_i) , $D[v_i] = \delta(s, v_i)$ (inductive assumption).
- After that, no matter what relaxations we perform, we always have $D[v_i] = \delta(s, v_i)$ (Proposition 1).

Path-relaxation property

Let $p = \langle v_0 = s, v_1, \dots, v_k \rangle$ be a shortest path from s to v_k . After relaxing the edges in the order $(v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k)$, we have $D[v_k] = \delta(s, v_k)$. This property holds even if there are relaxations of other edges intermixed with relaxations of the edges on p.

- We prove by induction that, for each *i*, before relaxing (v_i, v_{i+1}) , we have $D[v_i] = \delta(s, v_i)$, and after the relaxation, we have $D[v_{i+1}] = \delta(s, v_{i+1})$.
- Unlike other proofs by inductions, we prove the **induction step** first.
- Assume for i 1, the claim is true. We have that after relaxing (v_{i-1}, v_i) , $D[v_i] = \delta(s, v_i)$ (inductive assumption).
- After that, no matter what relaxations we perform, we always have $D[v_i] = \delta(s, v_i)$ (Proposition 1).
- Then, before relaxing (v_i, v_{i+1}) , we have $D[v_i] = \delta(s, v_i)$ (first part is true)

Path-relaxation property

Let $p = \langle v_0 = s, v_1, \dots, v_k \rangle$ be a shortest path from s to v_k . After relaxing the edges in the order $(v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k)$, we have $D[v_k] = \delta(s, v_k)$. This property holds even if there are relaxations of other edges intermixed with relaxations of the edges on p.

- We prove by induction that, for each *i*, before relaxing (v_i, v_{i+1}) , we have $D[v_i] = \delta(s, v_i)$, and after the relaxation, we have $D[v_{i+1}] = \delta(s, v_{i+1})$.
- Unlike other proofs by inductions, we prove the **induction step** first.
- Assume for i 1, the claim is true. We have that after relaxing (v_{i-1}, v_i) , $D[v_i] = \delta(s, v_i)$ (inductive assumption).
- After that, no matter what relaxations we perform, we always have $D[v_i] = \delta(s, v_i)$ (Proposition 1).
- Then, before relaxing (v_i, v_{i+1}) , we have $D[v_i] = \delta(s, v_i)$ (first part is true)
- When relaxing (v_i, v_{i+1}) , if $D[v_{i+1}] = \delta(s, v_{i+1})$ already, then we have nothing to prove.

Path-relaxation property

Let $p = \langle v_0 = s, v_1, \dots, v_k \rangle$ be a shortest path from s to v_k . After relaxing the edges in the order $(v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k)$, we have $D[v_k] = \delta(s, v_k)$. This property holds even if there are relaxations of other edges intermixed with relaxations of the edges on p.

- We prove by induction that, for each *i*, before relaxing (v_i, v_{i+1}) , we have $D[v_i] = \delta(s, v_i)$, and after the relaxation, we have $D[v_{i+1}] = \delta(s, v_{i+1})$.
- Unlike other proofs by inductions, we prove the **induction step** first.
- Assume for i 1, the claim is true. We have that after relaxing (v_{i-1}, v_i) , $D[v_i] = \delta(s, v_i)$ (inductive assumption).
- After that, no matter what relaxations we perform, we always have $D[v_i] = \delta(s, v_i)$ (Proposition 1).
- Then, before relaxing (v_i, v_{i+1}) , we have $D[v_i] = \delta(s, v_i)$ (first part is true)
- When relaxing (v_i, v_{i+1}) , if $D[v_{i+1}] = \delta(s, v_{i+1})$ already, then we have nothing to prove.
- If $D[v_{i+1}] > \delta(s, v_{i+1})$, then $D[v_{i+1}] > \delta(s, v_{i+1}) = \delta(s, v_i) + w(v_i, v_{i+1}) = D[v_i] + w(v_i, v_{i+1})$, so $D[v_{i+1}]$ must be updated to $D[v_i] + w(v_i, v_{i+1}) = \delta(s, v_{i+1})$ by the relaxation.

Path-relaxation property

Let $p = \langle v_0 = s, v_1, \dots, v_k \rangle$ be a shortest path from s to v_k . After relaxing the edges in the order $(v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k)$, we have $d[v_k] = \delta(s, v_k)$. This property holds even if there are relaxations of other edges intermixed with relaxations of the edges on p.

- For the **base case**, we first have that $D[v_0] = 0$ always for $v_0 = s$.
- The verification for the rest of the base case is the same as that for the induction step.

The two lemmas combined indicate that Bellman-Ford is correct:

Lemma 1

If *G* contains no negative-weight cycles reachable from *s*, then the algorithm returns TRUE, and we have $D[v] = \delta(s, v)$ for every vertex $v \in V$.

Lemma 2

If G contains a negative-weight cycle reachable from s, then the algorithm returns FALSE.

Lemma 1

If *G* contains no negative-weight cycles reachable from *s*, then the algorithm returns TRUE, and we have $D[v] = \delta(s, v)$ for every vertex $v \in V$.

Lemma 1

If *G* contains no negative-weight cycles reachable from *s*, then the algorithm returns TRUE, and we have $D[v] = \delta(s, v)$ for every vertex $v \in V$.

Proof:

- If a vertex *v* is reachable from *s*, then let $p = \langle u_0 = s, u_1, ..., u_k = v \rangle$ be a shortest path from *s* to *v*.
- Since *p* contains no cycle, then the number of vertices on the path is $k + 1 \le |V|$ (i.e, $k \le |V| 1$).
- So we have
 - The first round (i = 1) relaxes (u_0, u_1)
 - The second round (i = 2) relaxes (u_1, u_2)
 - <u>۱</u>...
 - The *k*-th round ($i = k \le |V| 1$) relaxes (u_{k-1}, u_k)

After the relaxations, $D[v] = \delta(s, v)$ (by Path-relaxation property)

Lemma 1

If *G* contains no negative-weight cycles reachable from *s*, then the algorithm returns TRUE, and we have $D[v] = \delta(s, v)$ for every vertex $v \in V$.

Proof:

- If a vertex *v* is reachable from *s*, then let $p = \langle u_0 = s, u_1, ..., u_k = v \rangle$ be a shortest path from *s* to *v*.
- Since *p* contains no cycle, then the number of vertices on the path is $k + 1 \le |V|$ (i.e, $k \le |V| 1$).
- So we have
 - The first round (i = 1) relaxes (u_0, u_1)
 - The second round (i = 2) relaxes (u_1, u_2)
 - <u>۰</u>...
 - The *k*-th round ($i = k \le |V| 1$) relaxes (u_{k-1}, u_k)

After the relaxations, $D[v] = \delta(s, v)$ (by Path-relaxation property)

If a vertex v is not reachable from s, then we have that $D[v] = \infty = \delta(s, v)$ always.

Lemma 1

If *G* contains no negative-weight cycles reachable from *s*, then the algorithm returns TRUE, and we have $D[v] = \delta(s, v)$ for every vertex $v \in V$.

Proof:

■ We still need to prove that the algorithm returns TRUE.

Lemma 1

If *G* contains no negative-weight cycles reachable from *s*, then the algorithm returns TRUE, and we have $D[v] = \delta(s, v)$ for every vertex $v \in V$.

Proof:

- We still need to prove that the algorithm returns TRUE.
- For each edge (u, v), we have

$$D[v] = \delta(s, v) \tag{1}$$

$$\leq \delta(s,u) + w(u,v)$$
 (2)

$$= D[u] + w(u, v) \tag{3}$$

(1)-(2) follows from 'triangle inequality'

Lemma 2

If G contains a negative-weight cycle reachable from s, then the algorithm returns FALSE.

Lemma 2

If G contains a negative-weight cycle reachable from s, then the algorithm returns FALSE.

- Let $c = \langle v_0, v_1, \dots, v_k \rangle$ be a negative-weight cycle reachable from *s* where $v_0 = v_k$.
- We have $\sum_{i=1}^{k} w(v_{i-1}, v_i) < 0$.

Lemma 2

If G contains a negative-weight cycle reachable from s, then the algorithm returns FALSE.

- Let $c = \langle v_0, v_1, \dots, v_k \rangle$ be a negative-weight cycle reachable from *s* where $v_0 = v_k$.
- We have $\sum_{i=1}^{k} w(v_{i-1}, v_i) < 0$.
- For contradiction, assume the algorithm returns TRUE.
- Then, $D[v_i] \le D[v_{i-1}] + w(v_{i-1}, v_i)$, for i = 1, ..., k

Lemma 2

If G contains a negative-weight cycle reachable from s, then the algorithm returns FALSE.

- Let $c = \langle v_0, v_1, \dots, v_k \rangle$ be a negative-weight cycle reachable from *s* where $v_0 = v_k$.
- We have $\sum_{i=1}^{k} w(v_{i-1}, v_i) < 0$.
- For contradiction, assume the algorithm returns TRUE.
- Then, $D[v_i] \le D[v_{i-1}] + w(v_{i-1}, v_i)$, for i = 1, ..., k
- Summing all the above inequalities:

$$\sum_{i=1}^{k} D[v_i] \leq \sum_{i=1}^{k} (D[v_{i-1}] + w(v_{i-1}, v_i))$$
$$= \sum_{i=1}^{k} D[v_{i-1}] + \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

Lemma 2

If G contains a negative-weight cycle reachable from s, then the algorithm returns FALSE.

Proof:

- Let $c = \langle v_0, v_1, \dots, v_k \rangle$ be a negative-weight cycle reachable from *s* where $v_0 = v_k$.
- We have $\sum_{i=1}^{k} w(v_{i-1}, v_i) < 0$.
- For contradiction, assume the algorithm returns TRUE.
- Then, $D[v_i] \le D[v_{i-1}] + w(v_{i-1}, v_i)$, for i = 1, ..., k
- Summing all the above inequalities:

$$\sum_{i=1}^{k} D[v_i] \leq \sum_{i=1}^{k} (D[v_{i-1}] + w(v_{i-1}, v_i))$$
$$= \sum_{i=1}^{k} D[v_{i-1}] + \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

• Since $v_0 = v_k$, we have $\sum_{i=1}^k D[v_i] = \sum_{i=1}^k D[v_{i-1}]$

Lemma 2

If G contains a negative-weight cycle reachable from s, then the algorithm returns FALSE.

Proof:

- Let $c = \langle v_0, v_1, \dots, v_k \rangle$ be a negative-weight cycle reachable from *s* where $v_0 = v_k$.
- We have $\sum_{i=1}^{k} w(v_{i-1}, v_i) < 0$.
- For contradiction, assume the algorithm returns TRUE.
- Then, $D[v_i] \le D[v_{i-1}] + w(v_{i-1}, v_i)$, for i = 1, ..., k
- Summing all the above inequalities:

$$\sum_{i=1}^{k} D[v_i] \leq \sum_{i=1}^{k} (D[v_{i-1}] + w(v_{i-1}, v_i))$$
$$= \sum_{i=1}^{k} D[v_{i-1}] + \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

• Since $v_0 = v_k$, we have $\sum_{i=1}^k D[v_i] = \sum_{i=1}^k D[v_{i-1}]$

• So the inequality becomes $0 \le \sum_{i=1}^{k} w(v_{i-1}, v_i)$ (contradiction)

- Assumes the graph is a DAG (directed acyclic graph)
- Edges can have *negative* weights
 - Since we are dealing with DAG, no (negative-weight) cycles can exist
- Finding the shortest-path distance for vertices based on the order of topological sort

Time complexity: O(|V| + |E|)

Proof of correctness

Hint: The single-source shortest paths algorithm for DAG can be viewed as a 'smarter' way of doing Bellman-Ford, and therefore you can adjust the justification for Bellman-Ford to show the correctness of the DAG-algorithm.