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Shortest Path Problem

Problem Definition
Given a weighted (directed or undirected) graph G = (V, E), a source vertex s and a target
vertex t in G, compute a path from s to t ofminimumweight (i.e., the shortest path)

The weight is a functionw : E → Ò on the edges
The weight of a path is the sum of weights of all edges on the path

Two variations:

Single-source Shortest Paths
Given a source vertex s of G, compute the shortest paths from s to all other vertices

All-pair Shortest Paths
Compute the shortest paths for all pairs of vertices



Example
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A shortest path from s to t is: s → e → b → f → t of weight 6
In reality, the weight can be the length, cost, or time of roads, transportation lines etc.



More definitions

The weight of the shortest path from s to t is called the distance, or shortest-path
distance, from s to t and is denoted as δ(s, t).
We have δ(s, t) = ∞ if there is no path from s to t

In the problem, edge weights can be negative.
However, if there is a negative-weight cycle on the path from s to t, δ(s, t) (as well as the
problem) is not well-defined:
▶ We can choose go through the cycles for arbitrary times and the weight of the path can
arbitrarily lowered.
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Single-source Shortest Paths
Algorithms

BFS (Review)
Dijkstra’s algorithm
Bellman-Ford
An algorithm for DAG

Graph data structures
We assume adjacency list as data structures for graphs

Representing shortest paths from s
Through a shortest-path tree rooted at s, where the (unique) simple path from s to any vertex
v in the tree is a shortest path from s to v

There must be no cycles in a shortest path
▶ The problem is not well-defined with negative-weight cycles
▶ There can be no cycles with non-negative weight in a shortest path

Shortest paths have the optimal substructure property
We use P[v] to record the parent of v in the tree (like in BFS/DFS)



Example of shortest path tree



Breadth-First Search

One of the simplest but also a fundamental algorithm
▶ Somemore advance graph algorithm such as Prim’s and Dijkstra’s can be considered as built
on BFS

Input: G = (V, E) and a source vertex s ∈ V
▶ explores the graph starting from s, touching all vertices that are reachable from s
▶ computes the distance of each vertex from s (‘distance’ means minimum number of edges)
▶ iterates through the vertices at increasing distance

▶ the algorithm discovers all vertices at distance k from s before discovering any vertices at
distance k+ 1 (hence the name)

▶ produces a BFS tree rooted at s
▶ An edge (u, v) in the tree means that v is ‘discovered’ by visiting u

▶ works on both directed and undirected graphs

Breadth-first search computes the single-source shortest paths for swithweights of all
edges being 1.
▶ The BFS tree is the shortest-path tree in this case
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Breadth-First Search: High-level idea

A central data structure: A (FIFO) Queue

Two phases of accessing a vertex u
Discovering: put u into the queue waiting to be visited
Visiting: access the adjacency list of u and try to discover each adjacent vertex

Process
Initially, the seed s is the only vertex discovered (i.e., in the queue)
Each iteration takes a vertex u from from the queue and visits u, until the queue is empty

Coloring for vertices:
white: ‘undiscovered’, initial color
gray: ‘discovered’, but haven’t been ‘visited’
black: finished ‘visiting’
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BFS Algorithm

BFS(G, s)
1 for each vertex u ∈ V(G) \ {s}
2 color[u] = WHITE
3 d[u] = ∞
4 π[u] = NIL
5 color[s] = GRAY
6 d[s] = 0
7 π[s] = NIL
8 Q = ∅
9 ENQUEUE(Q, s)
10 while Q , ∅
11 u = DEQUEUE(Q)
12 for each v ∈ Adj[u]
13 if color[v] == WHITE
14 color[v] = GRAY
15 d[v] = d[u] + 1
16 π[v] = u
17 ENQUEUE(Q, v)
18 color[u] = BLACK

Coloring for vertices:
▶ white: ‘undiscovered’, initial color
▶ gray: ‘discovered’, but haven’t been ‘visited’
▶ black: finished ‘visiting’
▶ ‘discovering’ means first encountered by the search
▶ ‘visiting’ means to try to discover all adjacent vertices
which are undiscovered

Central data structure: a queue (first-in, first-out):
▶ Contains gray vertices

Some records we keep:
▶ color[u]: color of a vertex u
▶ d[u]: distance from s to u
▶ π[u]: a vertex s.t. (π[u], u) forms an edge in the BFS tree
(there is another interpretation which we will see in
Dijkstra’s)



BFS Algorithm

BFS(G, s)
1 for each vertex u ∈ V(G) \ {s}
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6 d[s] = 0
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8 Q = ∅
9 ENQUEUE(Q, s)
10 while Q , ∅
11 u = DEQUEUE(Q)
12 for each v ∈ Adj[u]
13 if color[v] == WHITE
14 color[v] = GRAY
15 d[v] = d[u] + 1
16 π[v] = u
17 ENQUEUE(Q, v)
18 color[u] = BLACK

Initially, s is set as ‘discovered’: enqueued, gray
All other vertices are ‘undiscovered’ (white)

Each iteration:
▶ Dequeues a vertex u and tries to ‘discover’ (enqueue;
mark as gray) all its adjacent vertices which are
‘undiscovered’

▶ Whenever we discover a vertex v, we add the edge (u, v)
to the BFS-tree (called a tree edge)

▶ After this, we finished visiting u andmark u as black.
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BFS(G, s)
1 for each vertex u ∈ V(G) \ {s}
2 color[u] = WHITE
3 d[u] = ∞
4 π[u] = NIL
5 color[s] = GRAY
6 d[s] = 0
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9 ENQUEUE(Q, s)
10 while Q , ∅
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BFS(G, s)
1 for each vertex u ∈ V(G) \ {s}
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3 d[u] = ∞
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5 color[s] = GRAY
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9 ENQUEUE(Q, s)
10 while Q , ∅
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13 if color[v] == WHITE
14 color[v] = GRAY
15 d[v] = d[u] + 1
16 π[v] = u
17 ENQUEUE(Q, v)
18 color[u] = BLACK
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10 while Q , ∅
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BFS(G, s)
1 for each vertex u ∈ V(G) \ {s}
2 color[u] = WHITE
3 d[u] = ∞
4 π[u] = NIL
5 color[s] = GRAY
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3 d[u] = ∞
4 π[u] = NIL
5 color[s] = GRAY
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8 Q = ∅
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10 while Q , ∅
11 u = DEQUEUE(Q)
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BFS(G, s)
1 for each vertex u ∈ V(G) \ {s}
2 color[u] = WHITE
3 d[u] = ∞
4 π[u] = NIL
5 color[s] = GRAY
6 d[s] = 0
7 π[s] = NIL
8 Q = ∅
9 ENQUEUE(Q, s)
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12 for each v ∈ Adj[u]
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17 ENQUEUE(Q, v)
18 color[u] = BLACK
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BFS(G, s)
1 for each vertex u ∈ V(G) \ {s}
2 color[u] = WHITE
3 d[u] = ∞
4 π[u] = NIL
5 color[s] = GRAY
6 d[s] = 0
7 π[s] = NIL
8 Q = ∅
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10 while Q , ∅
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BFS(G, s)
1 for each vertex u ∈ V(G) \ {s}
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3 d[u] = ∞
4 π[u] = NIL
5 color[s] = GRAY
6 d[s] = 0
7 π[s] = NIL
8 Q = ∅
9 ENQUEUE(Q, s)
10 while Q , ∅
11 u = DEQUEUE(Q)
12 for each v ∈ Adj[u]
13 if color[v] == WHITE
14 color[v] = GRAY
15 d[v] = d[u] + 1
16 π[v] = u
17 ENQUEUE(Q, v)
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BFS Algorithm

BFS(G, s)
1 for each vertex u ∈ V(G) \ {s}
2 color[u] = WHITE
3 d[u] = ∞
4 π[u] = NIL
5 color[s] = GRAY
6 d[s] = 0
7 π[s] = NIL
8 Q = ∅
9 ENQUEUE(Q, s)
10 while Q , ∅
11 u = DEQUEUE(Q)
12 for each v ∈ Adj[u]
13 if color[v] == WHITE
14 color[v] = GRAY
15 d[v] = d[u] + 1
16 π[v] = u
17 ENQUEUE(Q, v)
18 color[u] = BLACK
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BFS Algorithm

BFS(G, s)
1 for each vertex u ∈ V(G) \ {s}
2 color[u] = WHITE
3 d[u] = ∞
4 π[u] = NIL
5 color[s] = GRAY
6 d[s] = 0
7 π[s] = NIL
8 Q = ∅
9 ENQUEUE(Q, s)
10 while Q , ∅
11 u = DEQUEUE(Q)
12 for each v ∈ Adj[u]
13 if color[v] == WHITE
14 color[v] = GRAY
15 d[v] = d[u] + 1
16 π[v] = u
17 ENQUEUE(Q, v)
18 color[u] = BLACK
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5 6 7 8

9 10 11 12

u = 3

Q = {8, 11, 4}



BFS Algorithm

BFS(G, s)
1 for each vertex u ∈ V(G) \ {s}
2 color[u] = WHITE
3 d[u] = ∞
4 π[u] = NIL
5 color[s] = GRAY
6 d[s] = 0
7 π[s] = NIL
8 Q = ∅
9 ENQUEUE(Q, s)
10 while Q , ∅
11 u = DEQUEUE(Q)
12 for each v ∈ Adj[u]
13 if color[v] == WHITE
14 color[v] = GRAY
15 d[v] = d[u] + 1
16 π[v] = u
17 ENQUEUE(Q, v)
18 color[u] = BLACK
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u = 8

Q = {11, 4}



BFS Algorithm

BFS(G, s)
1 for each vertex u ∈ V(G) \ {s}
2 color[u] = WHITE
3 d[u] = ∞
4 π[u] = NIL
5 color[s] = GRAY
6 d[s] = 0
7 π[s] = NIL
8 Q = ∅
9 ENQUEUE(Q, s)
10 while Q , ∅
11 u = DEQUEUE(Q)
12 for each v ∈ Adj[u]
13 if color[v] == WHITE
14 color[v] = GRAY
15 d[v] = d[u] + 1
16 π[v] = u
17 ENQUEUE(Q, v)
18 color[u] = BLACK
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u = 8

Q = {11, 4, 12}



BFS Algorithm

BFS(G, s)
1 for each vertex u ∈ V(G) \ {s}
2 color[u] = WHITE
3 d[u] = ∞
4 π[u] = NIL
5 color[s] = GRAY
6 d[s] = 0
7 π[s] = NIL
8 Q = ∅
9 ENQUEUE(Q, s)
10 while Q , ∅
11 u = DEQUEUE(Q)
12 for each v ∈ Adj[u]
13 if color[v] == WHITE
14 color[v] = GRAY
15 d[v] = d[u] + 1
16 π[v] = u
17 ENQUEUE(Q, v)
18 color[u] = BLACK
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u = 11

Q = {4, 12}



BFS Algorithm

BFS(G, s)
1 for each vertex u ∈ V(G) \ {s}
2 color[u] = WHITE
3 d[u] = ∞
4 π[u] = NIL
5 color[s] = GRAY
6 d[s] = 0
7 π[s] = NIL
8 Q = ∅
9 ENQUEUE(Q, s)
10 while Q , ∅
11 u = DEQUEUE(Q)
12 for each v ∈ Adj[u]
13 if color[v] == WHITE
14 color[v] = GRAY
15 d[v] = d[u] + 1
16 π[v] = u
17 ENQUEUE(Q, v)
18 color[u] = BLACK
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u = 4

Q = {12}



BFS Algorithm

BFS(G, s)
1 for each vertex u ∈ V(G) \ {s}
2 color[u] = WHITE
3 d[u] = ∞
4 π[u] = NIL
5 color[s] = GRAY
6 d[s] = 0
7 π[s] = NIL
8 Q = ∅
9 ENQUEUE(Q, s)
10 while Q , ∅
11 u = DEQUEUE(Q)
12 for each v ∈ Adj[u]
13 if color[v] == WHITE
14 color[v] = GRAY
15 d[v] = d[u] + 1
16 π[v] = u
17 ENQUEUE(Q, v)
18 color[u] = BLACK
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5 6 7 8

9 10 11 12

u = 12

Q = ∅



BFS Algorithm

BFS(G, s)
1 for each vertex u ∈ V(G) \ {s}
2 color[u] = WHITE
3 d[u] = ∞
4 π[u] = NIL
5 color[s] = GRAY
6 d[s] = 0
7 π[s] = NIL
8 Q = ∅
9 ENQUEUE(Q, s)
10 while Q , ∅
11 u = DEQUEUE(Q)
12 for each v ∈ Adj[u]
13 if color[v] == WHITE
14 color[v] = GRAY
15 d[v] = d[u] + 1
16 π[v] = u
17 ENQUEUE(Q, v)
18 color[u] = BLACK

1 2 3 4

5 6 7 8

9 10 11 12



Complexity of BFS

BFS(G, s)
1 for each vertex u ∈ V(G) \ {s}
2 color[u] = WHITE
3 d[u] = ∞
4 π[u] = NIL
5 color[s] = GRAY
6 d[s] = 0
7 π[s] = NIL
8 Q = ∅
9 ENQUEUE(Q, s)
10 while Q , ∅
11 u = DEQUEUE(Q)
12 for each v ∈ Adj[u]
13 if color[v] == WHITE
14 color[v] = GRAY
15 d[v] = d[u] + 1
16 π[v] = u
17 ENQUEUE(Q, v)
18 color[u] = BLACK

We enqueue a vertex only if it is white, and we
immediately color it gray; thus, we enqueue every
vertex at most once

This means that we also dequeue every vertex at
most once

So, the (dequeue) while loop executes O(|V|) times

The inner loop: For each vertex u, the inner loop
executes for nomore than out-deg(u) times, for a
total of

∑
u∈V out-deg(u) =|E| times

So, O(|V| + |E|) (because |E|may be less than |V|)
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1 for each vertex u ∈ V(G) \ {s}
2 color[u] = WHITE
3 d[u] = ∞
4 π[u] = NIL
5 color[s] = GRAY
6 d[s] = 0
7 π[s] = NIL
8 Q = ∅
9 ENQUEUE(Q, s)
10 while Q , ∅
11 u = DEQUEUE(Q)
12 for each v ∈ Adj[u]
13 if color[v] == WHITE
14 color[v] = GRAY
15 d[v] = d[u] + 1
16 π[v] = u
17 ENQUEUE(Q, v)
18 color[u] = BLACK

We enqueue a vertex only if it is white, and we
immediately color it gray; thus, we enqueue every
vertex at most once

This means that we also dequeue every vertex at
most once

So, the (dequeue) while loop executes O(|V|) times

The inner loop: For each vertex u, the inner loop
executes for nomore than out-deg(u) times, for a
total of

∑
u∈V out-deg(u) =|E| times

So, O(|V| + |E|) (because |E|may be less than |V|)
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BFS(G, s)
1 for each vertex u ∈ V(G) \ {s}
2 color[u] = WHITE
3 d[u] = ∞
4 π[u] = NIL
5 color[s] = GRAY
6 d[s] = 0
7 π[s] = NIL
8 Q = ∅
9 ENQUEUE(Q, s)
10 while Q , ∅
11 u = DEQUEUE(Q)
12 for each v ∈ Adj[u]
13 if color[v] == WHITE
14 color[v] = GRAY
15 d[v] = d[u] + 1
16 π[v] = u
17 ENQUEUE(Q, v)
18 color[u] = BLACK

We enqueue a vertex only if it is white, and we
immediately color it gray; thus, we enqueue every
vertex at most once

This means that we also dequeue every vertex at
most once

So, the (dequeue) while loop executes O(|V|) times

The inner loop: For each vertex u, the inner loop
executes for nomore than out-deg(u) times, for a
total of

∑
u∈V out-deg(u) =|E| times

So, O(|V| + |E|) (because |E|may be less than |V|)



Complexity of BFS

BFS(G, s)
1 for each vertex u ∈ V(G) \ {s}
2 color[u] = WHITE
3 d[u] = ∞
4 π[u] = NIL
5 color[s] = GRAY
6 d[s] = 0
7 π[s] = NIL
8 Q = ∅
9 ENQUEUE(Q, s)
10 while Q , ∅
11 u = DEQUEUE(Q)
12 for each v ∈ Adj[u]
13 if color[v] == WHITE
14 color[v] = GRAY
15 d[v] = d[u] + 1
16 π[v] = u
17 ENQUEUE(Q, v)
18 color[u] = BLACK

We enqueue a vertex only if it is white, and we
immediately color it gray; thus, we enqueue every
vertex at most once

This means that we also dequeue every vertex at
most once

So, the (dequeue) while loop executes O(|V|) times

The inner loop: For each vertex u, the inner loop
executes for nomore than out-deg(u) times, for a
total of
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BFS(G, s)
1 for each vertex u ∈ V(G) \ {s}
2 color[u] = WHITE
3 d[u] = ∞
4 π[u] = NIL
5 color[s] = GRAY
6 d[s] = 0
7 π[s] = NIL
8 Q = ∅
9 ENQUEUE(Q, s)
10 while Q , ∅
11 u = DEQUEUE(Q)
12 for each v ∈ Adj[u]
13 if color[v] == WHITE
14 color[v] = GRAY
15 d[v] = d[u] + 1
16 π[v] = u
17 ENQUEUE(Q, v)
18 color[u] = BLACK

We enqueue a vertex only if it is white, and we
immediately color it gray; thus, we enqueue every
vertex at most once
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Complexity of BFS

BFS(G, s)
1 for each vertex u ∈ V(G) \ {s}
2 color[u] = WHITE
3 d[u] = ∞
4 π[u] = NIL
5 color[s] = GRAY
6 d[s] = 0
7 π[s] = NIL
8 Q = ∅
9 ENQUEUE(Q, s)
10 while Q , ∅
11 u = DEQUEUE(Q)
12 for each v ∈ Adj[u]
13 if color[v] == WHITE
14 color[v] = GRAY
15 d[v] = d[u] + 1
16 π[v] = u
17 ENQUEUE(Q, v)
18 color[u] = BLACK

We enqueue a vertex only if it is white, and we
immediately color it gray; thus, we enqueue every
vertex at most once

This means that we also dequeue every vertex at
most once

So, the (dequeue) while loop executes O(|V|) times

The inner loop: For each vertex u, the inner loop
executes for nomore than out-deg(u) times, for a
total of

∑
u∈V out-deg(u) =|E| times

So, O(|V| + |E|) (because |E|may be less than |V|)



BFS gives the shortest-path distance
Claim
Let δ(s, v) be the minimum numbers of edges of any path from s to v. Then, we claim that
d[v] = δ(s, v).

Reason:
First, we observe that, before a vertex with distance k+ 1 is visited, all vertices with
distance ≤ k have been visited
▶ At the beginning, there is only one vertex swith distance ≤ 0, and s is the first vertex visited.
When visiting s, we discover all vertices with distance ≤ 1

▶ When visiting vertices with distance 1, we discover all vertices with distance ≤ 2
▶ ... (The predecessor of every vertex with distance kmust be a vertex with distance k − 1)

For contradiction, suppose the claim is not true, and consider the first vertex v visited by
BFS s.t. δ(s, v) , d[v]
Assume v is discovered when visiting u. We have d[v] = d[u] + 1.
Since δ(s, v) ≤ d[v], we have that δ(s, v) < d[v].
Letw be the predecessor of v on a shortest path from s to v. We have δ(s,w) = δ(s, v) − 1.
So δ(s,w) < d[v] − 1 = d[u] = δ(s, u).
This means thatwmust be visited before u, and when we visitw, we must have marked v
as gray. This contradicts the fact that when we visit u, the color of v is still white.



BFS gives the shortest-path distance
Claim
Let δ(s, v) be the minimum numbers of edges of any path from s to v. Then, we claim that
d[v] = δ(s, v).

Reason:
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This means thatwmust be visited before u, and when we visitw, we must have marked v
as gray. This contradicts the fact that when we visit u, the color of v is still white.
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Claim
Let δ(s, v) be the minimum numbers of edges of any path from s to v. Then, we claim that
d[v] = δ(s, v).

Reason:
First, we observe that, before a vertex with distance k+ 1 is visited, all vertices with
distance ≤ k have been visited
▶ At the beginning, there is only one vertex swith distance ≤ 0, and s is the first vertex visited.
When visiting s, we discover all vertices with distance ≤ 1

▶ When visiting vertices with distance 1, we discover all vertices with distance ≤ 2
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Assume v is discovered when visiting u. We have d[v] = d[u] + 1.
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This means thatwmust be visited before u, and when we visitw, we must have marked v
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BFS gives the shortest-path distance
Claim
Let δ(s, v) be the minimum numbers of edges of any path from s to v. Then, we claim that
d[v] = δ(s, v).

Reason:
First, we observe that, before a vertex with distance k+ 1 is visited, all vertices with
distance ≤ k have been visited
▶ At the beginning, there is only one vertex swith distance ≤ 0, and s is the first vertex visited.
When visiting s, we discover all vertices with distance ≤ 1

▶ When visiting vertices with distance 1, we discover all vertices with distance ≤ 2
▶ ... (The predecessor of every vertex with distance kmust be a vertex with distance k − 1)

For contradiction, suppose the claim is not true, and consider the first vertex v visited by
BFS s.t. δ(s, v) , d[v]
Assume v is discovered when visiting u. We have d[v] = d[u] + 1.
Since δ(s, v) ≤ d[v], we have that δ(s, v) < d[v].
Letw be the predecessor of v on a shortest path from s to v. We have δ(s,w) = δ(s, v) − 1.
So δ(s,w) < d[v] − 1 = d[u] = δ(s, u).
This means thatwmust be visited before u, and when we visitw, we must have marked v
as gray. This contradicts the fact that when we visit u, the color of v is still white.



Why the edges (π[v], v) form a tree?

Here we prove that the underlying undirected graph is an (undirected) tree

Consider only vertices connected to s (i.e., in the connected component containing s),
and let the number of vertices connected to s be n0
The number of tree edges: n0 − 1

The underlying undirected graph formed by these vertices and edges is definitely
connected (because we are only attaching an edge to the partial graph we are building)
Previous fact: A connected, undirected graph with n vertices and n−1 edges is a tree
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The underlying undirected graph formed by these vertices and edges is definitely
connected (because we are only attaching an edge to the partial graph we are building)
Previous fact: A connected, undirected graph with n vertices and n−1 edges is a tree
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Here we prove that the underlying undirected graph is an (undirected) tree
Consider only vertices connected to s (i.e., in the connected component containing s),
and let the number of vertices connected to s be n0
The number of tree edges:

n0 − 1

The underlying undirected graph formed by these vertices and edges is definitely
connected (because we are only attaching an edge to the partial graph we are building)
Previous fact: A connected, undirected graph with n vertices and n−1 edges is a tree
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Here we prove that the underlying undirected graph is an (undirected) tree
Consider only vertices connected to s (i.e., in the connected component containing s),
and let the number of vertices connected to s be n0
The number of tree edges: n0 − 1

The underlying undirected graph formed by these vertices and edges is definitely
connected (because we are only attaching an edge to the partial graph we are building)

Previous fact: A connected, undirected graph with n vertices and n−1 edges is a tree



Why the edges (π[v], v) form a tree?

Here we prove that the underlying undirected graph is an (undirected) tree
Consider only vertices connected to s (i.e., in the connected component containing s),
and let the number of vertices connected to s be n0
The number of tree edges: n0 − 1

The underlying undirected graph formed by these vertices and edges is definitely
connected (because we are only attaching an edge to the partial graph we are building)
Previous fact: A connected, undirected graph with n vertices and n−1 edges is a tree



Dijkstra’s Algorithm

Assumes all edges have non-negativeweights
A greedy algorithm



Dijkstra’s Algorithm

DIJKSTRA(G, s,w)
1 N = ∅
2 for each vertex v ∈ V(G)
3 D[v] = ∞
4 P[v] = NIL
5 D[s] = 0
6 while N , V(G)
7 find u < N such that D[u] is minimal
8 N = N ∪ {u}
9 for all v ∈ Adj(u) \ N
10 if D[u] + w(u, v) < D[v]
11 D[v] = D[u] + w(u, v)
12 P[v] = u

(all algorithms for S-S have the same
initialization and relaxation process)

Grows a shortest-path tree from s
▶ N: vertices in the (partial) shortest
path tree

▶ P[v]: parent of v in the (partial) shortest
path tree (also the vertex preceding v
on the shortest path from s)

Maintains an ‘estimate’ of the distance
to v
▶ D[v]: weight of the shortest path from s
to vwhere all edges other than the last
is from the partial tree

In each step, makes a greedy choice by
adding to the tree a vertex uwith
minimum value of D
After adding u to the tree, updates D[v]
for the neighbors of u outside the tree if
needed (relaxation)
Stops when the tree spans the graph
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Dijkstra’s Algorithm: Complexity

DIJKSTRA(G, s,w)
1 N = ∅
2 for each vertex v ∈ V(G)
3 D[v] = ∞
4 P[v] = NIL
5 D[s] = 0
6 while N , V(G)
7 find u < N such that D[u] is minimal
8 N = N ∪ {u}
9 for all v ∈ Adj(u) \ N
10 if D[u] + w(u, v) < D[v]
11 D[v] = D[u] + w(u, v)
12 P[v] = u

Use a heap H for storing D
▶ Line 7: EXTRACT-MIN from H
▶ Line 11: UPDATE-KEY in H

Time complexity: O(|E| log |V|)



Dijkstra’s Algorithm: Correctness

Some facts:
If there is no path from s to a v, then D[v] = ∞ at all time in the algorithm:
▶ Observe the following: whenever D[v] < ∞, it always corresponds to a path from s to v

δ(s, v) ≤ D[v] for all v
▶ Again, whenever D[v] < ∞, it always corresponds to a path from s to v



Dijkstra’s Algorithm: Correctness
Loop variant:
At the start of each iteration of thewhile loop, D[v] = δ(s, v) for each v ∈ N

Proof:
Initially, N = ∅ and this is trivially true
We only need to show that the invariant is true for all the following iterations
For contradiction, let u be the first vertex for which D[u] , δ(s, u)when it is added to N
▶ Wemust have u , s because s is the first vertex added to N and δ(s, s) = D[s] = 0; we also
have that N , ∅ before u is added to N

Since D[u] , δ(s, u), there must be a path from s to u, because otherwise D[u] = ∞ for
always (previous facts) and D[u] = δ(s, u) = ∞
Let p be the shortest path from s to u
Consider the N before adding u: Since the start of p is s ∈ N and the end of p is u < N, we
can let y be the first vertex along p such that y < N, and let x be predecessor of y along p
(x ∈ N).
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Dijkstra’s Algorithm: Correctness

(Figure from CLRS)

Because u is the first vertex added to N for which D[u] , δ(s, u), we have D[x] = δ(s, x)
when xwas added
From the path p, we know that δ(s, y) = δ(s, x) + w(x, y). So when xwas added to N,
D[y] = δ(s, y) after the update in Line 9-11
From the path p, we know that δ(s, y) ≤ δ(s, u). So

D[y] = δ(s, y) ≤ δ(s, u) ≤ D[u]

Because both u and ywere not in Nwhen uwas chosen in Line 7, we have D[u] ≤ D[y]. So
the above become equalities

D[y] = δ(s, y) = δ(s, u) = D[u]

A contradiction!
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Bellman-Ford algorithm

Themost general-purpose algorithm for computing single-source shortest paths: allows
negative weights on edges, and works for any graphs
Returns a boolean value indicating whether or not there is a negative-weight cycle that is
reachable from the source
▶ If there is such a cycle, the algorithm indicates that no solution exists.
▶ If there is no such cycle, the algorithm produces the shortest paths and their weights.

The idea of the algorithm is simple, after the initialization (common to all S-S shortest
path algorithms), it has |V| − 1 rounds, where each round relaxes all the edges



Bellman-Ford algorithm

BELLMAN-FORD(G = (V, E), s,w)
1 for each vertex v ∈ V
2 D[v] = ∞
3 P[v] = NIL
4 D[s] = 0
5 for i = 1, . . . , |V| − 1
6 for each edge (u, v) ∈ E
7 RELAX(u, v)
8 for each edge (u, v) ∈ E
9 if D[u] + w(u, v) < D[v]
10 return FALSE
11 return TRUE

RELAX(u, v)
1 if D[u] + w(u, v) < D[v]
2 D[v] = D[u] + w(u, v)
3 P[v] = u

Time complexity: O(|V| × |E|)



(Example from CLRS)



Correctness of Bellman-Ford

Proposition 1
We always have D[v] ≥ δ(s, v) in the algorithm. Furthermore, after D[v] = δ(s, v), D[v] does not
change nomatter what relaxations we perform in the algorithm.

Proof:
We have seen the argument for D[v] ≥ δ(s, v) before, i.e., D[v] always corresponds to the
weight of an actual path from s to v (or else D[v] = ∞), and so it cannot be less than the
optimal one, δ(s, v).
For the second part, notice that a relaxation always decreases D[x] for a vertex x. If we
already have D[v] = δ(s, v), then D[v] cannot be further decreased because D[v] ≥ δ(s, v).



Correctness of Bellman-Ford
Path-relaxation property
Let p = ⟨v0 = s, v1, . . . , vk⟩ be a shortest path from s to vk. After relaxing the edges in the order
(v0, v1), (v1, v2), . . . , (vk−1, vk), we have D[vk] = δ(s, vk). This property holds even if there are
relaxations of other edges intermixed with relaxations of the edges on p.

Proof:
We prove by induction that, for each i, before relaxing (vi, vi+1), we have D[vi] = δ(s, vi),
and after the relaxation, we have D[vi+1] = δ(s, vi+1).
Unlike other proofs by inductions, we prove the induction step first.
Assume for i − 1, the claim is true. We have that after relaxing (vi−1, vi), D[vi] = δ(s, vi)
(inductive assumption).
After that, no matter what relaxations we perform, we always have D[vi] = δ(s, vi)
(Proposition 1).
Then, before relaxing (vi, vi+1), we have D[vi] = δ(s, vi) (first part is true)
When relaxing (vi, vi+1), if D[vi+1] = δ(s, vi+1) already, then we have nothing to prove.
If D[vi+1] > δ(s, vi+1), then
D[vi+1] > δ(s, vi+1) = δ(s, vi) + w(vi, vi+1) = D[vi] + w(vi, vi+1), so D[vi+1]must be
updated to D[vi] + w(vi, vi+1) = δ(s, vi+1) by the relaxation.
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Correctness of Bellman-Ford

The two lemmas combined indicate that Bellman-Ford is correct:

Lemma 1
If G contains no negative-weight cycles reachable from s, then the algorithm returns TRUE,
and we have D[v] = δ(s, v) for every vertex v ∈ V.

Lemma 2
If G contains a negative-weight cycle reachable from s, then the algorithm returns FALSE.



Correctness of Bellman-Ford

Lemma 1
If G contains no negative-weight cycles reachable from s, then the algorithm returns TRUE,
and we have D[v] = δ(s, v) for every vertex v ∈ V.

Proof:

If a vertex v is reachable from s, then let p = ⟨u0 = s, u1, . . . , uk = v⟩ be a shortest path
from s to v.
Since p contains no cycle, then the number of vertices on the path is k+ 1 ≤ |V| (i.e,
k ≤ |V| − 1).
So we have
▶ The first round (i = 1) relaxes (u0, u1)
▶ The second round (i = 2) relaxes (u1, u2)
▶ ...
▶ The k-th round (i = k ≤ |V| − 1) relaxes (uk−1, uk)

After the relaxations, D[v] = δ(s, v) (by Path-relaxation property)
If a vertex v is not reachable from s, then we have that D[v] = ∞ = δ(s, v) always.
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k ≤ |V| − 1).
So we have
▶ The first round (i = 1) relaxes (u0, u1)
▶ The second round (i = 2) relaxes (u1, u2)
▶ ...
▶ The k-th round (i = k ≤ |V| − 1) relaxes (uk−1, uk)

After the relaxations, D[v] = δ(s, v) (by Path-relaxation property)
If a vertex v is not reachable from s, then we have that D[v] = ∞ = δ(s, v) always.



Correctness of Bellman-Ford

Lemma 1
If G contains no negative-weight cycles reachable from s, then the algorithm returns TRUE,
and we have D[v] = δ(s, v) for every vertex v ∈ V.

Proof:
We still need to prove that the algorithm returns TRUE.

For each edge (u, v), we have

D[v] = δ(s, v) (1)
≤ δ(s, u) + w(u, v) (2)
= D[u] + w(u, v) (3)

(1)-(2) follows from ‘triangle inequality’
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Correctness of Bellman-Ford
Lemma 2
If G contains a negative-weight cycle reachable from s, then the algorithm returns FALSE.

Proof:

Let c = ⟨v0, v1, . . . , vk⟩ be a negative-weight cycle reachable from swhere v0 = vk.
We have

∑k
i=1 w(vi−1, vi) < 0.

For contradiction, assume the algorithm returns TRUE.
Then, D[vi] ≤ D[vi−1] + w(vi−1, vi), for i = 1, . . . , k
Summing all the above inequalities:

k∑
i=1

D[vi] ≤
k∑

i=1

(D[vi−1] + w(vi−1, vi))

=
k∑

i=1

D[vi−1] +
k∑

i=1

w(vi−1, vi)

Since v0 = vk, we have
∑k

i=1 D[vi] =
∑k

i=1 D[vi−1]

So the inequality becomes 0 ≤ ∑k
i=1 w(vi−1, vi) (contradiction)
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Single-source shortest paths in DAG

Assumes the graph is a DAG (directed acyclic graph)
Edges can have negativeweights
▶ Since we are dealing with DAG, no (negative-weight) cycles can exist

Finding the shortest-path distance for vertices based on the order of topological sort



Single-source shortest paths in DAG

DAG-SHORTEST-PATHS(G, s,w)
1 topologically sort vertices in G
2 for each vertex v ∈ V(G)
3 D[v] = ∞
4 P[v] = NIL
5 D[s] = 0
6 for each vertex u ∈ G, in topologically sorted order
7 for all v ∈ Adj(u)
8 RELAX(u, v)

Time complexity: O(|V| + |E|)
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Proof of correctness

Hint: The single-source shortest paths algorithm for DAG can be viewed as a ‘smarter’
way of doing Bellman-Ford, and therefore you can adjust the justification for
Bellman-Ford to show the correctness of the DAG-algorithm.


