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Outline

m Graphs: definitions (Review+New)
m Representations (Review)
m Topological sort

m DFS (mostly New)
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Definitions (Review)

Agraph
G = (V,E)

m Vis the set of vertices (also called nodes)

m Eisthe set of edges

» anedgee = (u,v) from E is a pair of vertices whereu € Vand v e V

m directed graph: an edge (u, v) is from u to v and has a direction
m undirected graph: no directions for the edges (so (u,v) = (v, u))

Sometimes given a graph G, we also let V/(G) denote the vertex set and E(G) denote the
edge set

In this course, unless otherwise noted, we assume graphs are simple graphs, i.e., no self
loops or parallel edges.
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Given agraph G = (V, E),
m WecallG’' = (V',E’) asubgraph of Gif V/ C Vand E’ C E.

m For a subset of vertices V' C V, the subgraph G’ = (V', E’) induced by V' has an edge set
consisting of all edges of G whose vertices arein V', i.e.,

E'={(u,v)eE|lueV andv eV}

m Apathin Gis asequence of vertices vy, vo, . . ., v S.t. each (v, viy1) forms an edgein G

» This applies to both directed and undirected graphs
» Sometime a path also refers to the sequence of edges on the path
» Apathis called simple if there are no duplicate vertices on the path

m Acycleis a path starting and ending at the same vertex

» Acycleis called simple if there are no duplicate vertices on the cycle other than the starting
and ending vertices
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More Definitions (Review)
For a directed graph G = (V, E),
B The out-degree of a vertex x € Vis the number of edges starting with x, i.e,
out-deg(x) = |{(u,v) € E| u=x}|
m Thein-degree of a vertex x € Vis the number of edges ending with x, i.e,

in-deg(x) = [{(u,v) € E | v=x}|
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For an undirected graph G = (V, E),
m The degree of a vertex x € Vis the number of edges having x as a vertex, i.e,

deg(x) = [{(u,v) € E|u=xorv=ux}|

Z deg(v) = 2|E|

veV

m We have
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Connectivity (Review)

Given an undirected graph G = (V,E),
m Two vertices u, v are connected in G if there is a path fromutovin G

m A connected component U C V of G is a maximal set of vertices where each pair are
connected by a path in G (maximal means you cannot add more vertices to U anymore)

» Sometimes, a connected component also refers to the subgraph induced by U.
m Gis called connected if it contains a single connected component (i.e., every two vertices

are connected by a path)

The version of ‘connected components’ for directed graphs are called strongly connected
components, which we do not touch
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Tree

m Atreeis an acyclic, undirected, connected graph.

» Here ‘acyclic’ means having no edge-disjoint cycles, i.e., there is not a cycle containing
distinct edges

m Aforestis an acyclic, undirected graph

» Each connected component is a tree (so a forest nothing but a disjoint-union of trees)

m Arooted tree is a directed graph derived from a tree (which is undirected) by choosing a
root vertex first, and then directing edges s.t. each edge points from a parent to its child.

» One way to understand the ‘directing’ process: perform a DFS on the tree starting from the
root. The directed edges always point from a vertex visited earlier to a vertex visited later

» Specifically, the root vertex is visited the earliest, so edges are always pointing from the root
to other vertices

» Most ‘tree data structures’ are indeed rooted trees, e.g., binary trees, heaps, B-tree

m More on rooted tree:

» Each vertex has exactly one in-coming edge from its parent except the root, which has no
in-coming edges.
» Ifthereis a path from u to v, then u is an ancestor of v and v is a descendant of u
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Some facts about trees

Observation
A tree with n vertices has n — 1 edges.

Proof:
m Consider that initially we only have the n vertices of the tree, and we add each of then — 1

edges one by one.
m When we add each edge, exactly one of the following two things can happen:
(1) Two connected components in the graph merge into one connected component (number of
connected components decrease by 1);
(2) Acycleis created (number of connected components stays the same).

m Number of edges cannot be < n — 1:
» If the number of edges is < n — 1, then the number of connected components cannot
decrease to one (adding each edge decreases the number of connected component by at

most one)

m Number of edges cannotbe > n — 1:
» If the number of edgesis > n — 1, consider adding the first n — 1 edges.
» Since the tree has no cycle, only situation (1) can happen.
» So after adding the n — 1 edges, there is only one connected component.
» This means that when we add the n-th edge, it must create a cycle.



Some facts about trees

Fact
A connected, undirected graph with n vertices and n — 1 edges is a tree



Graph Representation (Review)

m How do we represent a graph G = (V, E) in a computer?
Adjacency-list representation:
mV={L2...,|V|}

m G consists of an array Adj

m Avertexu € Visrepresented by an element in the array Adj

m Adjlu] is the adjacency list of vertex u
» the list of the vertices that are adjacent to u
» i.e,thelistof all vsuch that (u,v) € E

» Notice the difference between directed and undirected graphs
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Using the Adjacency List (Review)

m lteration through E? o(|V| + |E]) Adj
> okay (not optimal) L 115161
2| e+ 31> 7 o
m Checking (u,v) € E? o(IV]) i o i g B
’ ' 4| e 7 o1
» looks bad, but it depends 5] o 9 e+
6| et—{ 2 e=[ 7 e[ 9 e
7| -] 8 ef={10e-{ 1164
8| et 11ef={1204
9| et—{10e+
10| o—i
11] o
12[ o




Adjacency-Matrix Representation (Review)
Adjacency-matrix representation:
mV={L2...|V]}
m G consistsof a |V| x |V| matrix A

m A = (a;) such that

1 if (i,j) e E
aj = .
0 otherwise
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Using the Adjacency Matrix (Review)

m Iteration through E? o(|V|?)
123456 789101112
» possibly very bad 1 171
2 1 1
3 1 1
m Checking (u,v) € E? 0(1) 4 1
» optimal 2 . . 1
7 K
8 101
9 1
10
11 1
12




Space Complexity (Review)

m Adjacency-list representation

oIVl + IE])

optimal

m Adjacency-matrix representation

o(IV1?)

possibly very bad



Choosing a Graph Representation (Review)

m Adjacency-list representation

» generally good, especially for its optimal space complexity
» bad for dense graphs and algorithms that require random access to edges

» preferable for sparse graphs or graphs with low degree

m Adjacency-matrix representation

» suffers from a bad space complexity
» good for algorithms that require random access to edges

» preferable for dense graphs

m Sparse vs. dense graph
» Sparse graph: [E| = O(|V])
» Dense graph: |E| = O(|V|?)
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m Problem: (topological sort)
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» find an ordering of vertices such that you only end up with forward edges

» in another word, if there is an edge (u, v), then u appears before v in the ordering
(that’s also the reason why we can do this only on DAG instead of general graphs)
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Topological Sort

m Problem: (topological sort)

Given a directed acyclic graph (DAG)

» find an ordering of vertices such that you only end up with forward edges

» in another word, if there is an edge (u, v), then u appears before v in the ordering
(that’s also the reason why we can do this only on DAG instead of general graphs)

» Note: The ‘acyclic’ here is for directed graphs and therefore means only ‘no cycles’ (we don’t
need to say ‘no edge-disjoint cycles’ here)

m Example: dependencies in software packages

» find an installation order for a set of software packages

» such that every package is installed only after all the packages it depends on



Example
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(Example from CLRS)



Topological Sort Algorithm
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Argument of correctness:
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m Thus, when a vertex v has in-degree 0, this means that all vertices pointing to v (if any)
have been output, so that we can also safely output v



Topological Sort Algorithm

TOPOLOGICAL-SORT(G)

1 while 3v € Vsit. in-deg(v) = 0
2 output v
3 remove v and all its out-going edges from G

Argument of correctness:
m We remove an edge only when its starting vertex has been output in the order

m Thus, when a vertex v has in-degree 0, this means that all vertices pointing to v (if any)
have been output, so that we can also safely output v

Question:
m Why should there always be a vertex with 0 in-degree?
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TOPOLOGICAL-SORT(G)

1 DFS(G)
2 output Vsorted in reverse order of f]]




Topological Sort: Alternative Algorithm

TOPOLOGICAL-SORT(G)
1 DFS(G)
2 output Vsorted in reverse order of f[]

We will see why this algorithm works later on.
Some comments:

m The first algorithm is mainly of theoretical value (helps you to understand the whole
procedure)

m In practice, you should utilize DFS to compute topological sorting for DAGs because it’s
much simpler (you don’t need to bother to delete the edges)

m So topological sort can be done in O(|V| + |E]) time
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Depth-First Search

Input: G = (V, E), which can be directed or undirected
Explores the graph starting from s, touching all vertices that are reachable from s
» We also enumerate all possible seeds and traverse the entire graph eventually

Visiting of vertices is done in recursive fashion:
» When we visit a vertex u, we immediately visit an adjacent vertex v of u without finishing the
visiting of u
» We finish visiting u when all adjacent vertices has been visited (hence the finishing of the
visiting is defined recursively)
» We backtrack when we finish visiting a vertex (done automatically by recursion)

Produces a DFS forest, consisting of all the DFS trees rooted at the seeds

Coloring for vertices:

» white: not yet visited
» grey: being visited, but haven’t finished visiting
» black: finished visiting

Associates two time-stamps to each vertex

» d[u] records when DFS starts visiting u (turns grey)
» flu] records when DFS finishes visiting u and therefore backtracks from u (turns black)



DFS(G)

1 foreach vertex u € V(G)

2 color|u] = WHITE

3 w[u] = NIL

4 time = 0 // “global” variable
5 foreach vertex u € V(G)

6 if color{u] == WHITE

7 DFS-VisIT(u)

DFS-VIsIT(u)

1

O W ~NOoO U b WwWN

—_

DFS Algorithm

color|u] = GREY

time = time + 1

du] = time

for each v € Adj[u]

if color{v] == WHITE

zlv] = u
DFS-VisIT(v)

color|u] = BLACK

time = time + 1

flu] = time




DFS Algorithm

DFS(G) DFS-VIsIT(u)
1 for each vertexu € V(G) 1 color{u] = GREY
2 color|u] = WHITE 2 time = time+ 1
3 w[u] = NIL 3 d[u] = time
4 time = 0 // “global” variable 4 foreachv e Adju]
5 foreach vertex u € V(G) 5 if color[v] == WHITE
6 if color{u] == WHITE 6 zlv] = u
7 DFS-VisIT(u) 7 DFS-VisIT(v)
8 color{u] = BLACK
9 time = time+1
10 flu] = time

m Afirst very silly question: Can DFS ever end?



(a)

(Example from CLRS)

DFS: Example



Complexity of DFS



Complexity of DFS

m The loop in DFS-ViIsIT(u) (lines 4-7) executes for O(out-deg(u)) times

m We call DFS-VisiT(u) once for each vertex u

» eitherin DFS, or recursively in DFS-ViIsIT

» because we call it only if color{u] = wWHITE, but then we immediately set color{u] = GREY

m So, the overall complexity is O(|V| + |E|)



Parenthesis Theorem

Parenthesis Theorem
In a DFS on a (directed or undirected) graph G, for any two vertices u and v, exactly one of the
following two holds:
1. Theintervals [d[u], flu]] and [d[v],f]v]] are entirely disjoint, and neither one is a
descendant of the other in the DFS forest
2. Oneintervalis entirely contained in the other interval, and the vertex is a descendant of
another (e.g., [d[v], flv]] € [d[u], flu]] and v is a descendant of u)
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following two holds:
1. Theintervals [d[u], flu]] and [d[v],f]v]] are entirely disjoint, and neither one is a
descendant of the other in the DFS forest
2. One interval is entirely contained in the other interval, and the vertex is a descendant of
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Example (from CLRS):
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In a DFS on a (directed or undirected) graph G, for any two vertices u and v, exactly one of the
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proof:
m Without loss of generality, assume d[u] < d[v]
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Parenthesis Theorem

Parenthesis Theorem
In a DFS on a (directed or undirected) graph G, for any two vertices u and v, exactly one of the
following two holds:

1.

The intervals [d[u], flu]] and [d[v], f]v]] are entirely disjoint, and neither oneis a
descendant of the other in the DFS forest

. Oneinterval is entirely contained in the other interval, and the vertex is a descendant of

another (e.g., [d[v], flv]] € [d[u], flu]] and v is a descendant of u)

proof:

Without loss of generality, assume d[u] < d[v]

Then, by comparing d[v] with flu], we have two case: (1) d[v] < flu]; (2) d[v] > flu]

First consider d[v] < flu] (aka. d[u] < d[v] < flu])

Observe: the grey vertices in DFS always form a linear chain of descendants (in the DFS
tree) corresponding to the stack of active DFS-VISIT invocations

m This means that vis a descendant of v in the DFS forest

m Also, the visiting of u cannot finish before we finish visiting u (this is how recursive calls

work), so flv] < flu] (aka. d[u] < d|v] < flv] < flu])



Parenthesis Theorem

m Now consider d[v] > f[u]
m Obviously, d[u] < flu] < d|v] < f]v], so the two intervals are disjoint



White-Path Theorem

White-Path Theorem
In a DFS forest of a (directed or undirected) graph G, a vertex v is a descendant of a vertex u if
and only if at time d[u], there is a path from u to v on G consisting of only white vertices



White-Path Theorem

White-Path Theorem
In a DFS forest of a (directed or undirected) graph G, a vertex v is a descendant of a vertex u if

and only if at time d[u], there is a path from u to v on G consisting of only white vertices

proof:
m “=": let w be any descendant of u in the DFS tree
m By the previous Parenthesis Theorem, we have that d[u] < d[w]|, so we u is discovered, w
is still white
m Notice that on the path from u to vin the DFS tree, all vertices are descendants of v, so all
of them are white at time d[u]
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proof (continue):
m “<": Use proof by contradiction, suppose that there is a “white path” from u to v at time
d[u], but vis not a descendant of u in the DFS tree
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White-Path Theorem
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process (because if you haven’t finish visiting w, you definitely haven’t finished visiting u)



White-Path Theorem

White-Path Theorem
In a DFS forest of a (directed or undirected) graph G, a vertex v is a descendant of a vertex u if
and only if at time d[u], there is a path from u to v consisting of only white vertices

proof (continue):

m “<": Use proof by contradiction, suppose that there is a “white path” from u to v at time
d[u], but vis not a descendant of u in the DFS tree

m Let x be the first vertex on the path that is not a descendant of u (why such an x exists?)

m Let w be the predecessor of x on the path (so that w is a descendant of u; notice that w
could be u itself)

m Since d[u] < d[x], by the Parenthesis Theorem, we must have d[u] < flu] < d[x] (because x
is not descendant of u)

m Consider the time the search visits w, we must have that x is white during the whole
process (because if you haven’t finish visiting w, you definitely haven’t finished visiting u)

m Butif thisis true, then x must be a descendant of w and in turn a descendant of u (a
contradiction)



Four Types of Edges in DFS on Undirected Graphs

m Tree edge: Edges on the DFS forest
B Back edge: Connecting a vertex to its ancestor in the DFS forest
m Forward edge: Non-tree edges connecting a vertex to its descendant in the DFS forest

m Cross edge: all other edges

(Example from CLRS)



Detecting cycles in an undirected graph using DFS

Lemma
A directed graph G has a cycle if and only if a depth-first search on G yields a back edge
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Detecting cycles in an undirected graph using DFS

Lemma
A directed graph G has a cycle if and only if a depth-first search on G yields a back edge

proof:
m “<": easy
Now we try to show the forward direction “="
Suppose that G contains a cycle ¢

|
|

m Without loss of generality, assume cis a simple cycle

m Let v be the first vertex on c discovered by DFS , and let u be the vertex pointing tovon ¢
|

When vis discovered, we have that all vertices on path from v to u (on c¢) are white
(undiscovered)



Detecting cycles in an undirected graph using DFS

Lemma
A directed graph G has a cycle if and only if a depth-first search on G yields a back edge

proof:
m “<": easy
Now we try to show the forward direction “="
Suppose that G contains a cycle ¢

|
|

m Without loss of generality, assume cis a simple cycle

m Let v be the first vertex on c discovered by DFS , and let u be the vertex pointing tovon ¢
|

When vis discovered, we have that all vertices on path from v to u (on c¢) are white
(undiscovered)

m By the White-Path Theorem, u must be a descendant of v in the depth-first forest



Detecting cycles in an undirected graph using DFS

Lemma
A directed graph G has a cycle if and only if a depth-first search on G yields a back edge

proof:
m “<": easy
Now we try to show the forward direction “="
Suppose that G contains a cycle ¢

|
|

m Without loss of generality, assume cis a simple cycle

m Let v be the first vertex on c discovered by DFS , and let u be the vertex pointing tovon ¢
|

When vis discovered, we have that all vertices on path from v to u (on c¢) are white
(undiscovered)

m By the White-Path Theorem, u must be a descendant of v in the depth-first forest
m Therefore, (u,v) is a back edge
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m It suffices to show that for any edge (u, v) € G, flv] < flu]

m First observe: the grey vertices in DFS always form a linear chain of descendants (in the
DFS tree) corresponding to the stack of active DFS-VISIT invocations

m When we are visiting u and exploring the edge (u, v) in DFS, we have that v cannot be grey
because otherwise (u, v) would be a back edge (notice that u must be at the stack top
when we are exploring (u, v)), contradicting the previous Lemma saying that DFS on DAG
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m Then v must be white or black

m If vis white, then we shall visit v as a result of exploring the edge (u, v). By DFS, we cannot
finish visiting u before finishing visiting v. So flv] < f[u].



Topological Sort: Alternative Algorithm

TOPOLOGICAL-SORT(G)
1 DFS(G)
2 output Vsorted in reverse order of f[]

Proof of correctness:

It suffices to show that for any edge (u, v) € G, f]v] < flu]

First observe: the grey vertices in DFS always form a linear chain of descendants (in the
DFS tree) corresponding to the stack of active DFS-VISIT invocations

When we are visiting u and exploring the edge (u, v) in DFS, we have that v cannot be grey
because otherwise (u, v) would be a back edge (notice that u must be at the stack top
when we are exploring (u, v)), contradicting the previous Lemma saying that DFS on DAG
yields no back edges

Then v must be white or black

If vis white, then we shall visit v as a result of exploring the edge (u, v). By DFS, we cannot
finish visiting u before finishing visiting v. So flv] < f[u].

If vis black, we have already finished visiting v. But the visiting of u is not finished. So we
obviously have flv] < flu].
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If there is a path from a vertex u to a vertex v in an undirected graph G (aka. u, v are in the same
connected component), then u, v must be in the same DFS tree after performing a depth-first
search on G.
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Observation

Observation

If there is a path from a vertex u to a vertex v in an undirected graph G (aka. u, v are in the same
connected component), then u, v must be in the same DFS tree after performing a depth-first
search on G.

Comment: The opposite is also true. Think about what these observations implies

Proof:
m Consider a path P connectingu,vin G
m Let x be the first vertex on P visited by DFS. Apparently, we can reach u and v from x

m By the description of DFS, the DFS visit on x will touch all vertices that are reachable from
x. So we will reach u and v from visiting x.

m Therefore, u, v, x are all in the same DFS tree.



