
Elementary Graph Theory

Tao Hou

Outline

Graphs: definitions (Review+New)

Representations (Review)

Topological sort

DFS (mostly New)

Definitions (Review)

A graph
G = (V, E)

V is the set of vertices (also called nodes)
E is the set of edges
▶ an edge e = (u, v) from E is a pair of vertices where u ∈ V and v ∈ V

directed graph: an edge (u, v) is from u to v and has a direction
undirected graph: no directions for the edges (so (u, v) = (v, u))

Sometimes given a graph G, we also let V(G) denote the vertex set and E(G) denote the
edge set

In this course, unless otherwise noted, we assume graphs are simple graphs, i.e., no self
loops or parallel edges.

Definitions (Review)

A graph
G = (V, E)

V is the set of vertices (also called nodes)
E is the set of edges
▶ an edge e = (u, v) from E is a pair of vertices where u ∈ V and v ∈ V

directed graph: an edge (u, v) is from u to v and has a direction
undirected graph: no directions for the edges (so (u, v) = (v, u))

Sometimes given a graph G, we also let V(G) denote the vertex set and E(G) denote the
edge set

In this course, unless otherwise noted, we assume graphs are simple graphs, i.e., no self
loops or parallel edges.

Definitions (Review)

A graph
G = (V, E)

V is the set of vertices (also called nodes)
E is the set of edges
▶ an edge e = (u, v) from E is a pair of vertices where u ∈ V and v ∈ V

directed graph: an edge (u, v) is from u to v and has a direction
undirected graph: no directions for the edges (so (u, v) = (v, u))

Sometimes given a graph G, we also let V(G) denote the vertex set and E(G) denote the
edge set

In this course, unless otherwise noted, we assume graphs are simple graphs, i.e., no self
loops or parallel edges.

Definitions (Review)

A graph
G = (V, E)

V is the set of vertices (also called nodes)
E is the set of edges
▶ an edge e = (u, v) from E is a pair of vertices where u ∈ V and v ∈ V

directed graph: an edge (u, v) is from u to v and has a direction
undirected graph: no directions for the edges (so (u, v) = (v, u))

Sometimes given a graph G, we also let V(G) denote the vertex set and E(G) denote the
edge set

In this course, unless otherwise noted, we assume graphs are simple graphs, i.e., no self
loops or parallel edges.

Examples

More Definitions (Review)

Given a graph G = (V, E),

We call G′ = (V′, E′) a subgraph of G if V′ ⊆ V and E′ ⊆ E.

For a subset of vertices V′ ⊆ V, the subgraph G′ = (V′, E′) induced by V′ has an edge set
consisting of all edges of Gwhose vertices are in V′, i.e.,

E′ = {(u, v) ∈ E | u ∈ V′ and v ∈ V′}

A path in G is a sequence of vertices v1, v2, . . . , vk s.t. each (vi, vi+1) forms an edge in G
▶ This applies to both directed and undirected graphs
▶ Sometime a path also refers to the sequence of edges on the path
▶ A path is called simple if there are no duplicate vertices on the path

A cycle is a path starting and ending at the same vertex
▶ A cycle is called simple if there are no duplicate vertices on the cycle other than the starting
and ending vertices

More Definitions (Review)

Given a graph G = (V, E),

We call G′ = (V′, E′) a subgraph of G if V′ ⊆ V and E′ ⊆ E.
For a subset of vertices V′ ⊆ V, the subgraph G′ = (V′, E′) induced by V′ has an edge set
consisting of all edges of Gwhose vertices are in V′, i.e.,

E′ = {(u, v) ∈ E | u ∈ V′ and v ∈ V′}

A path in G is a sequence of vertices v1, v2, . . . , vk s.t. each (vi, vi+1) forms an edge in G
▶ This applies to both directed and undirected graphs
▶ Sometime a path also refers to the sequence of edges on the path
▶ A path is called simple if there are no duplicate vertices on the path

A cycle is a path starting and ending at the same vertex
▶ A cycle is called simple if there are no duplicate vertices on the cycle other than the starting
and ending vertices

More Definitions (Review)

Given a graph G = (V, E),

We call G′ = (V′, E′) a subgraph of G if V′ ⊆ V and E′ ⊆ E.
For a subset of vertices V′ ⊆ V, the subgraph G′ = (V′, E′) induced by V′ has an edge set
consisting of all edges of Gwhose vertices are in V′, i.e.,

E′ = {(u, v) ∈ E | u ∈ V′ and v ∈ V′}

A path in G is a sequence of vertices v1, v2, . . . , vk s.t. each (vi, vi+1) forms an edge in G
▶ This applies to both directed and undirected graphs
▶ Sometime a path also refers to the sequence of edges on the path

▶ A path is called simple if there are no duplicate vertices on the path

A cycle is a path starting and ending at the same vertex
▶ A cycle is called simple if there are no duplicate vertices on the cycle other than the starting
and ending vertices

More Definitions (Review)

Given a graph G = (V, E),

We call G′ = (V′, E′) a subgraph of G if V′ ⊆ V and E′ ⊆ E.
For a subset of vertices V′ ⊆ V, the subgraph G′ = (V′, E′) induced by V′ has an edge set
consisting of all edges of Gwhose vertices are in V′, i.e.,

E′ = {(u, v) ∈ E | u ∈ V′ and v ∈ V′}

A path in G is a sequence of vertices v1, v2, . . . , vk s.t. each (vi, vi+1) forms an edge in G
▶ This applies to both directed and undirected graphs
▶ Sometime a path also refers to the sequence of edges on the path
▶ A path is called simple if there are no duplicate vertices on the path

A cycle is a path starting and ending at the same vertex
▶ A cycle is called simple if there are no duplicate vertices on the cycle other than the starting
and ending vertices

More Definitions (Review)

Given a graph G = (V, E),

We call G′ = (V′, E′) a subgraph of G if V′ ⊆ V and E′ ⊆ E.
For a subset of vertices V′ ⊆ V, the subgraph G′ = (V′, E′) induced by V′ has an edge set
consisting of all edges of Gwhose vertices are in V′, i.e.,

E′ = {(u, v) ∈ E | u ∈ V′ and v ∈ V′}

A path in G is a sequence of vertices v1, v2, . . . , vk s.t. each (vi, vi+1) forms an edge in G
▶ This applies to both directed and undirected graphs
▶ Sometime a path also refers to the sequence of edges on the path
▶ A path is called simple if there are no duplicate vertices on the path

A cycle is a path starting and ending at the same vertex
▶ A cycle is called simple if there are no duplicate vertices on the cycle other than the starting
and ending vertices

More Definitions (Review)

For a directed graph G = (V, E),
The out-degree of a vertex x ∈ V is the number of edges starting with x, i.e,

out-deg(x) =
��{(u, v) ∈ E | u = x}

��
The in-degree of a vertex x ∈ V is the number of edges ending with x, i.e,

in-deg(x) =
��{(u, v) ∈ E | v = x}

��

We have ∑
v∈V

out-deg(v) =
∑
v∈V

in-deg(v) = |E|

For an undirected graph G = (V, E),
The degree of a vertex x ∈ V is the number of edges having x as a vertex, i.e,

deg(x) =
��{(u, v) ∈ E | u = x or v = x}

��
We have ∑

v∈V
deg(v) = 2|E|

More Definitions (Review)

For a directed graph G = (V, E),
The out-degree of a vertex x ∈ V is the number of edges starting with x, i.e,

out-deg(x) =
��{(u, v) ∈ E | u = x}

��
The in-degree of a vertex x ∈ V is the number of edges ending with x, i.e,

in-deg(x) =
��{(u, v) ∈ E | v = x}

��
We have ∑

v∈V
out-deg(v) =

∑
v∈V

in-deg(v) = |E|

For an undirected graph G = (V, E),
The degree of a vertex x ∈ V is the number of edges having x as a vertex, i.e,

deg(x) =
��{(u, v) ∈ E | u = x or v = x}

��
We have ∑

v∈V
deg(v) = 2|E|

More Definitions (Review)

For a directed graph G = (V, E),
The out-degree of a vertex x ∈ V is the number of edges starting with x, i.e,

out-deg(x) =
��{(u, v) ∈ E | u = x}

��
The in-degree of a vertex x ∈ V is the number of edges ending with x, i.e,

in-deg(x) =
��{(u, v) ∈ E | v = x}

��
We have ∑

v∈V
out-deg(v) =

∑
v∈V

in-deg(v) = |E|

For an undirected graph G = (V, E),
The degree of a vertex x ∈ V is the number of edges having x as a vertex, i.e,

deg(x) =
��{(u, v) ∈ E | u = x or v = x}

��

We have ∑
v∈V

deg(v) = 2|E|

More Definitions (Review)

For a directed graph G = (V, E),
The out-degree of a vertex x ∈ V is the number of edges starting with x, i.e,

out-deg(x) =
��{(u, v) ∈ E | u = x}

��
The in-degree of a vertex x ∈ V is the number of edges ending with x, i.e,

in-deg(x) =
��{(u, v) ∈ E | v = x}

��
We have ∑

v∈V
out-deg(v) =

∑
v∈V

in-deg(v) = |E|

For an undirected graph G = (V, E),
The degree of a vertex x ∈ V is the number of edges having x as a vertex, i.e,

deg(x) =
��{(u, v) ∈ E | u = x or v = x}

��
We have ∑

v∈V
deg(v) = 2|E|

Connectivity (Review)

Given an undirected graph G = (V, E),
Two vertices u, v are connected in G if there is a path from u to v in G

A connected component U ⊆ V of G is amaximal set of vertices where each pair are
connected by a path in G (maximalmeans you cannot addmore vertices to U anymore)
▶ Sometimes, a connected component also refers to the subgraph induced by U.

G is called connected if it contains a single connected component (i.e., every two vertices
are connected by a path)

The version of ‘connected components’ for directed graphs are called strongly connected
components, which we do not touch

Connectivity (Review)

Given an undirected graph G = (V, E),
Two vertices u, v are connected in G if there is a path from u to v in G
A connected component U ⊆ V of G is amaximal set of vertices where each pair are
connected by a path in G (maximalmeans you cannot addmore vertices to U anymore)

▶ Sometimes, a connected component also refers to the subgraph induced by U.

G is called connected if it contains a single connected component (i.e., every two vertices
are connected by a path)

The version of ‘connected components’ for directed graphs are called strongly connected
components, which we do not touch

Connectivity (Review)

Given an undirected graph G = (V, E),
Two vertices u, v are connected in G if there is a path from u to v in G
A connected component U ⊆ V of G is amaximal set of vertices where each pair are
connected by a path in G (maximalmeans you cannot addmore vertices to U anymore)
▶ Sometimes, a connected component also refers to the subgraph induced by U.

G is called connected if it contains a single connected component (i.e., every two vertices
are connected by a path)

The version of ‘connected components’ for directed graphs are called strongly connected
components, which we do not touch

Connectivity (Review)

Given an undirected graph G = (V, E),
Two vertices u, v are connected in G if there is a path from u to v in G
A connected component U ⊆ V of G is amaximal set of vertices where each pair are
connected by a path in G (maximalmeans you cannot addmore vertices to U anymore)
▶ Sometimes, a connected component also refers to the subgraph induced by U.

G is called connected if it contains a single connected component (i.e., every two vertices
are connected by a path)

The version of ‘connected components’ for directed graphs are called strongly connected
components, which we do not touch

Connectivity (Review)

Given an undirected graph G = (V, E),
Two vertices u, v are connected in G if there is a path from u to v in G
A connected component U ⊆ V of G is amaximal set of vertices where each pair are
connected by a path in G (maximalmeans you cannot addmore vertices to U anymore)
▶ Sometimes, a connected component also refers to the subgraph induced by U.

G is called connected if it contains a single connected component (i.e., every two vertices
are connected by a path)

The version of ‘connected components’ for directed graphs are called strongly connected
components, which we do not touch

Tree

A tree is an acyclic, undirected, connected graph.
▶ Here ‘acyclic’ means having no edge-disjoint cycles, i.e., there is not a cycle containing
distinct edges

A forest is an acyclic, undirected graph
▶ Each connected component is a tree (so a forest nothing but a disjoint-union of trees)

A rooted tree is a directed graph derived from a tree (which is undirected) by choosing a
root vertex first, and then directing edges s.t. each edge points from a parent to its child.
▶ One way to understand the ‘directing’ process: perform a DFS on the tree starting from the
root. The directed edges always point from a vertex visited earlier to a vertex visited later

▶ Specifically, the root vertex is visited the earliest, so edges are always pointing from the root
to other vertices

▶ Most ‘tree data structures’ are indeed rooted trees, e.g., binary trees, heaps, B-tree

More on rooted tree:
▶ Each vertex has exactly one in-coming edge from its parent except the root, which has no
in-coming edges.

▶ If there is a path from u to v, then u is an ancestor of v and v is a descendant of u

Tree

A tree is an acyclic, undirected, connected graph.
▶ Here ‘acyclic’ means having no edge-disjoint cycles, i.e., there is not a cycle containing
distinct edges

A forest is an acyclic, undirected graph

▶ Each connected component is a tree (so a forest nothing but a disjoint-union of trees)

A rooted tree is a directed graph derived from a tree (which is undirected) by choosing a
root vertex first, and then directing edges s.t. each edge points from a parent to its child.
▶ One way to understand the ‘directing’ process: perform a DFS on the tree starting from the
root. The directed edges always point from a vertex visited earlier to a vertex visited later

▶ Specifically, the root vertex is visited the earliest, so edges are always pointing from the root
to other vertices

▶ Most ‘tree data structures’ are indeed rooted trees, e.g., binary trees, heaps, B-tree

More on rooted tree:
▶ Each vertex has exactly one in-coming edge from its parent except the root, which has no
in-coming edges.

▶ If there is a path from u to v, then u is an ancestor of v and v is a descendant of u

Tree

A tree is an acyclic, undirected, connected graph.
▶ Here ‘acyclic’ means having no edge-disjoint cycles, i.e., there is not a cycle containing
distinct edges

A forest is an acyclic, undirected graph
▶ Each connected component is a tree (so a forest nothing but a disjoint-union of trees)

A rooted tree is a directed graph derived from a tree (which is undirected) by choosing a
root vertex first, and then directing edges s.t. each edge points from a parent to its child.
▶ One way to understand the ‘directing’ process: perform a DFS on the tree starting from the
root. The directed edges always point from a vertex visited earlier to a vertex visited later

▶ Specifically, the root vertex is visited the earliest, so edges are always pointing from the root
to other vertices

▶ Most ‘tree data structures’ are indeed rooted trees, e.g., binary trees, heaps, B-tree

More on rooted tree:
▶ Each vertex has exactly one in-coming edge from its parent except the root, which has no
in-coming edges.

▶ If there is a path from u to v, then u is an ancestor of v and v is a descendant of u

Tree

A tree is an acyclic, undirected, connected graph.
▶ Here ‘acyclic’ means having no edge-disjoint cycles, i.e., there is not a cycle containing
distinct edges

A forest is an acyclic, undirected graph
▶ Each connected component is a tree (so a forest nothing but a disjoint-union of trees)

A rooted tree is a directed graph derived from a tree (which is undirected) by choosing a
root vertex first, and then directing edges s.t. each edge points from a parent to its child.

▶ One way to understand the ‘directing’ process: perform a DFS on the tree starting from the
root. The directed edges always point from a vertex visited earlier to a vertex visited later

▶ Specifically, the root vertex is visited the earliest, so edges are always pointing from the root
to other vertices

▶ Most ‘tree data structures’ are indeed rooted trees, e.g., binary trees, heaps, B-tree

More on rooted tree:
▶ Each vertex has exactly one in-coming edge from its parent except the root, which has no
in-coming edges.

▶ If there is a path from u to v, then u is an ancestor of v and v is a descendant of u

Tree

A tree is an acyclic, undirected, connected graph.
▶ Here ‘acyclic’ means having no edge-disjoint cycles, i.e., there is not a cycle containing
distinct edges

A forest is an acyclic, undirected graph
▶ Each connected component is a tree (so a forest nothing but a disjoint-union of trees)

A rooted tree is a directed graph derived from a tree (which is undirected) by choosing a
root vertex first, and then directing edges s.t. each edge points from a parent to its child.
▶ One way to understand the ‘directing’ process: perform a DFS on the tree starting from the
root. The directed edges always point from a vertex visited earlier to a vertex visited later

▶ Specifically, the root vertex is visited the earliest, so edges are always pointing from the root
to other vertices

▶ Most ‘tree data structures’ are indeed rooted trees, e.g., binary trees, heaps, B-tree

More on rooted tree:
▶ Each vertex has exactly one in-coming edge from its parent except the root, which has no
in-coming edges.

▶ If there is a path from u to v, then u is an ancestor of v and v is a descendant of u

Tree

A tree is an acyclic, undirected, connected graph.
▶ Here ‘acyclic’ means having no edge-disjoint cycles, i.e., there is not a cycle containing
distinct edges

A forest is an acyclic, undirected graph
▶ Each connected component is a tree (so a forest nothing but a disjoint-union of trees)

A rooted tree is a directed graph derived from a tree (which is undirected) by choosing a
root vertex first, and then directing edges s.t. each edge points from a parent to its child.
▶ One way to understand the ‘directing’ process: perform a DFS on the tree starting from the
root. The directed edges always point from a vertex visited earlier to a vertex visited later

▶ Specifically, the root vertex is visited the earliest, so edges are always pointing from the root
to other vertices

▶ Most ‘tree data structures’ are indeed rooted trees, e.g., binary trees, heaps, B-tree

More on rooted tree:
▶ Each vertex has exactly one in-coming edge from its parent except the root, which has no
in-coming edges.

▶ If there is a path from u to v, then u is an ancestor of v and v is a descendant of u

Tree

A tree is an acyclic, undirected, connected graph.
▶ Here ‘acyclic’ means having no edge-disjoint cycles, i.e., there is not a cycle containing
distinct edges

A forest is an acyclic, undirected graph
▶ Each connected component is a tree (so a forest nothing but a disjoint-union of trees)

A rooted tree is a directed graph derived from a tree (which is undirected) by choosing a
root vertex first, and then directing edges s.t. each edge points from a parent to its child.
▶ One way to understand the ‘directing’ process: perform a DFS on the tree starting from the
root. The directed edges always point from a vertex visited earlier to a vertex visited later

▶ Specifically, the root vertex is visited the earliest, so edges are always pointing from the root
to other vertices

▶ Most ‘tree data structures’ are indeed rooted trees, e.g., binary trees, heaps, B-tree

More on rooted tree:
▶ Each vertex has exactly one in-coming edge from its parent except the root, which has no
in-coming edges.

▶ If there is a path from u to v, then u is an ancestor of v and v is a descendant of u

Some facts about trees

Observation
A tree with n vertices has n − 1 edges.

Proof:
Consider that initially we only have the n vertices of the tree, and we add each of the n − 1
edges one by one.
When we add each edge, exactly one of the following two things can happen:
(1) Two connected components in the graphmerge into one connected component (number of

connected components decrease by 1);
(2) A cycle is created (number of connected components stays the same).

Number of edges cannot be < n − 1:
▶ If the number of edges is < n − 1, then the number of connected components cannot
decrease to one (adding each edge decreases the number of connected component by at
most one)

Number of edges cannot be > n − 1:
▶ If the number of edges is > n − 1, consider adding the first n − 1 edges.
▶ Since the tree has no cycle, only situation (1) can happen.
▶ So after adding the n − 1 edges, there is only one connected component.
▶ This means that when we add the n-th edge, it must create a cycle.

Some facts about trees

Observation
A tree with n vertices has n − 1 edges.
Proof:

Consider that initially we only have the n vertices of the tree, and we add each of the n − 1
edges one by one.

When we add each edge, exactly one of the following two things can happen:
(1) Two connected components in the graphmerge into one connected component (number of

connected components decrease by 1);
(2) A cycle is created (number of connected components stays the same).

Number of edges cannot be < n − 1:
▶ If the number of edges is < n − 1, then the number of connected components cannot
decrease to one (adding each edge decreases the number of connected component by at
most one)

Number of edges cannot be > n − 1:
▶ If the number of edges is > n − 1, consider adding the first n − 1 edges.
▶ Since the tree has no cycle, only situation (1) can happen.
▶ So after adding the n − 1 edges, there is only one connected component.
▶ This means that when we add the n-th edge, it must create a cycle.

Some facts about trees

Observation
A tree with n vertices has n − 1 edges.
Proof:

Consider that initially we only have the n vertices of the tree, and we add each of the n − 1
edges one by one.
When we add each edge, exactly one of the following two things can happen:
(1) Two connected components in the graphmerge into one connected component (number of

connected components decrease by 1);
(2) A cycle is created (number of connected components stays the same).

Number of edges cannot be < n − 1:
▶ If the number of edges is < n − 1, then the number of connected components cannot
decrease to one (adding each edge decreases the number of connected component by at
most one)

Number of edges cannot be > n − 1:
▶ If the number of edges is > n − 1, consider adding the first n − 1 edges.
▶ Since the tree has no cycle, only situation (1) can happen.
▶ So after adding the n − 1 edges, there is only one connected component.
▶ This means that when we add the n-th edge, it must create a cycle.

Some facts about trees

Observation
A tree with n vertices has n − 1 edges.
Proof:

Consider that initially we only have the n vertices of the tree, and we add each of the n − 1
edges one by one.
When we add each edge, exactly one of the following two things can happen:
(1) Two connected components in the graphmerge into one connected component (number of

connected components decrease by 1);
(2) A cycle is created (number of connected components stays the same).

Number of edges cannot be < n − 1:

▶ If the number of edges is < n − 1, then the number of connected components cannot
decrease to one (adding each edge decreases the number of connected component by at
most one)

Number of edges cannot be > n − 1:
▶ If the number of edges is > n − 1, consider adding the first n − 1 edges.
▶ Since the tree has no cycle, only situation (1) can happen.
▶ So after adding the n − 1 edges, there is only one connected component.
▶ This means that when we add the n-th edge, it must create a cycle.

Some facts about trees

Observation
A tree with n vertices has n − 1 edges.
Proof:

Consider that initially we only have the n vertices of the tree, and we add each of the n − 1
edges one by one.
When we add each edge, exactly one of the following two things can happen:
(1) Two connected components in the graphmerge into one connected component (number of

connected components decrease by 1);
(2) A cycle is created (number of connected components stays the same).

Number of edges cannot be < n − 1:
▶ If the number of edges is < n − 1, then the number of connected components cannot
decrease to one (adding each edge decreases the number of connected component by at
most one)

Number of edges cannot be > n − 1:
▶ If the number of edges is > n − 1, consider adding the first n − 1 edges.
▶ Since the tree has no cycle, only situation (1) can happen.
▶ So after adding the n − 1 edges, there is only one connected component.
▶ This means that when we add the n-th edge, it must create a cycle.

Some facts about trees

Observation
A tree with n vertices has n − 1 edges.
Proof:

Consider that initially we only have the n vertices of the tree, and we add each of the n − 1
edges one by one.
When we add each edge, exactly one of the following two things can happen:
(1) Two connected components in the graphmerge into one connected component (number of

connected components decrease by 1);
(2) A cycle is created (number of connected components stays the same).

Number of edges cannot be < n − 1:
▶ If the number of edges is < n − 1, then the number of connected components cannot
decrease to one (adding each edge decreases the number of connected component by at
most one)

Number of edges cannot be > n − 1:

▶ If the number of edges is > n − 1, consider adding the first n − 1 edges.
▶ Since the tree has no cycle, only situation (1) can happen.
▶ So after adding the n − 1 edges, there is only one connected component.
▶ This means that when we add the n-th edge, it must create a cycle.

Some facts about trees

Observation
A tree with n vertices has n − 1 edges.
Proof:

Consider that initially we only have the n vertices of the tree, and we add each of the n − 1
edges one by one.
When we add each edge, exactly one of the following two things can happen:
(1) Two connected components in the graphmerge into one connected component (number of

connected components decrease by 1);
(2) A cycle is created (number of connected components stays the same).

Number of edges cannot be < n − 1:
▶ If the number of edges is < n − 1, then the number of connected components cannot
decrease to one (adding each edge decreases the number of connected component by at
most one)

Number of edges cannot be > n − 1:
▶ If the number of edges is > n − 1, consider adding the first n − 1 edges.

▶ Since the tree has no cycle, only situation (1) can happen.
▶ So after adding the n − 1 edges, there is only one connected component.
▶ This means that when we add the n-th edge, it must create a cycle.

Some facts about trees

Observation
A tree with n vertices has n − 1 edges.
Proof:

Consider that initially we only have the n vertices of the tree, and we add each of the n − 1
edges one by one.
When we add each edge, exactly one of the following two things can happen:
(1) Two connected components in the graphmerge into one connected component (number of

connected components decrease by 1);
(2) A cycle is created (number of connected components stays the same).

Number of edges cannot be < n − 1:
▶ If the number of edges is < n − 1, then the number of connected components cannot
decrease to one (adding each edge decreases the number of connected component by at
most one)

Number of edges cannot be > n − 1:
▶ If the number of edges is > n − 1, consider adding the first n − 1 edges.
▶ Since the tree has no cycle, only situation (1) can happen.

▶ So after adding the n − 1 edges, there is only one connected component.
▶ This means that when we add the n-th edge, it must create a cycle.

Some facts about trees

Observation
A tree with n vertices has n − 1 edges.
Proof:

Consider that initially we only have the n vertices of the tree, and we add each of the n − 1
edges one by one.
When we add each edge, exactly one of the following two things can happen:
(1) Two connected components in the graphmerge into one connected component (number of

connected components decrease by 1);
(2) A cycle is created (number of connected components stays the same).

Number of edges cannot be < n − 1:
▶ If the number of edges is < n − 1, then the number of connected components cannot
decrease to one (adding each edge decreases the number of connected component by at
most one)

Number of edges cannot be > n − 1:
▶ If the number of edges is > n − 1, consider adding the first n − 1 edges.
▶ Since the tree has no cycle, only situation (1) can happen.
▶ So after adding the n − 1 edges, there is only one connected component.

▶ This means that when we add the n-th edge, it must create a cycle.

Some facts about trees

Observation
A tree with n vertices has n − 1 edges.
Proof:

Consider that initially we only have the n vertices of the tree, and we add each of the n − 1
edges one by one.
When we add each edge, exactly one of the following two things can happen:
(1) Two connected components in the graphmerge into one connected component (number of

connected components decrease by 1);
(2) A cycle is created (number of connected components stays the same).

Number of edges cannot be < n − 1:
▶ If the number of edges is < n − 1, then the number of connected components cannot
decrease to one (adding each edge decreases the number of connected component by at
most one)

Number of edges cannot be > n − 1:
▶ If the number of edges is > n − 1, consider adding the first n − 1 edges.
▶ Since the tree has no cycle, only situation (1) can happen.
▶ So after adding the n − 1 edges, there is only one connected component.
▶ This means that when we add the n-th edge, it must create a cycle.

Some facts about trees

Fact
A connected, undirected graph with n vertices and n − 1 edges is a tree

Graph Representation (Review)

How do we represent a graph G = (V, E) in a computer?

Adjacency-list representation:
V = {1, 2, . . . , |V|}

G consists of an array Adj

A vertex u ∈ V is represented by an element in the array Adj

Adj[u] is the adjacency list of vertex u
▶ the list of the vertices that are adjacent to u

▶ i.e., the list of all v such that (u, v) ∈ E

▶ Notice the difference between directed and undirected graphs

Example

1 2 3 4

5 6 7 8

9 10 11 12
Adj

1 5 6
2 3 7
3 4 7
4 7
5 9
6 2 7 9
7 8 10 11
8 11 12
9 10
10

11 12
12

Using the Adjacency List (Review)

Iteration through E? O(|V| + |E|)
▶ okay (not optimal)

Checking (u, v) ∈ E? O(|V|)
▶ looks bad, but it depends

Adj
1 5 6
2 3 7
3 4 7
4 7
5 9
6 2 7 9
7 8 10 11
8 11 12
9 10
10

11 12
12

Adjacency-Matrix Representation (Review)

Adjacency-matrix representation:

V = {1, 2, . . . |V|}

G consists of a |V| × |V|matrix A

A = (aij) such that

aij =

{
1 if (i, j) ∈ E
0 otherwise

Example

1 2 3 4

5 6 7 8

9 10 11 12

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8 9 10 11 12

1 1
1 1

1 1
1

1
1 1 1

1 11
1 1

1

1

Using the Adjacency Matrix (Review)

Iteration through E? O(|V|2)
▶ possibly very bad

Checking (u, v) ∈ E? O(1)

▶ optimal

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8 9 10 11 12
1 1

1 1
1 1

1
1

1 1 1
1 11

1 1
1

1

Space Complexity (Review)

Adjacency-list representation

O(|V| + |E|)

optimal

Adjacency-matrix representation

O(|V|2)

possibly very bad

Choosing a Graph Representation (Review)

Adjacency-list representation

▶ generally good, especially for its optimal space complexity

▶ bad for dense graphs and algorithms that require random access to edges

▶ preferable for sparse graphs or graphs with low degree

Adjacency-matrix representation

▶ suffers from a bad space complexity

▶ good for algorithms that require random access to edges

▶ preferable for dense graphs

Sparse vs. dense graph

▶ Sparse graph: |E| = O(|V|)
▶ Dense graph: |E| = Θ(|V|2)

Topological Sort

Problem: (topological sort)

Given a directed acyclic graph (DAG)

▶ find an ordering of vertices such that you only end up with forward edges

▶ in another word, if there is an edge (u, v), then u appears before v in the ordering
(that’s also the reason why we can do this only on DAG instead of general graphs)

▶ Note: The ‘acyclic’ here is for directed graphs and therefore means only ‘no cycles’ (we don’t
need to say ‘no edge-disjoint cycles’ here)

Example: dependencies in software packages

▶ find an installation order for a set of software packages

▶ such that every package is installed only after all the packages it depends on

Topological Sort

Problem: (topological sort)

Given a directed acyclic graph (DAG)

▶ find an ordering of vertices such that you only end up with forward edges

▶ in another word, if there is an edge (u, v), then u appears before v in the ordering
(that’s also the reason why we can do this only on DAG instead of general graphs)

▶ Note: The ‘acyclic’ here is for directed graphs and therefore means only ‘no cycles’ (we don’t
need to say ‘no edge-disjoint cycles’ here)

Example: dependencies in software packages

▶ find an installation order for a set of software packages

▶ such that every package is installed only after all the packages it depends on

Topological Sort

Problem: (topological sort)

Given a directed acyclic graph (DAG)

▶ find an ordering of vertices such that you only end up with forward edges

▶ in another word, if there is an edge (u, v), then u appears before v in the ordering
(that’s also the reason why we can do this only on DAG instead of general graphs)

▶ Note: The ‘acyclic’ here is for directed graphs and therefore means only ‘no cycles’ (we don’t
need to say ‘no edge-disjoint cycles’ here)

Example: dependencies in software packages

▶ find an installation order for a set of software packages

▶ such that every package is installed only after all the packages it depends on

Example

(Example from CLRS)

Topological Sort Algorithm

TOPOLOGICAL-SORT(G)
1 while \v ∈ V s.t. in-deg(v) = 0
2 output v
3 remove v and all its out-going edges from G

Argument of correctness:
We remove an edge only when its starting vertex has been output in the order
Thus, when a vertex v has in-degree 0, this means that all vertices pointing to v (if any)
have been output, so that we can also safely output v

Question:
Why should there always be a vertex with 0 in-degree?

Topological Sort Algorithm

TOPOLOGICAL-SORT(G)
1 while \v ∈ V s.t. in-deg(v) = 0
2 output v
3 remove v and all its out-going edges from G

Argument of correctness:
We remove an edge only when its starting vertex has been output in the order
Thus, when a vertex v has in-degree 0, this means that all vertices pointing to v (if any)
have been output, so that we can also safely output v

Question:
Why should there always be a vertex with 0 in-degree?

Topological Sort Algorithm

TOPOLOGICAL-SORT(G)
1 while \v ∈ V s.t. in-deg(v) = 0
2 output v
3 remove v and all its out-going edges from G

Argument of correctness:
We remove an edge only when its starting vertex has been output in the order
Thus, when a vertex v has in-degree 0, this means that all vertices pointing to v (if any)
have been output, so that we can also safely output v

Question:
Why should there always be a vertex with 0 in-degree?

Topological Sort: Alternative Algorithm

TOPOLOGICAL-SORT(G)
1 DFS(G)
2 output V sorted in reverse order of f[·]

Wewill see why this algorithmworks later on.
Some comments:

The first algorithm is mainly of theoretical value (helps you to understand the whole
procedure)
In practice, you should utilize DFS to compute topological sorting for DAGs because it’s
much simpler (you don’t need to bother to delete the edges)
So topological sort can be done in O(|V| + |E|) time

Topological Sort: Alternative Algorithm

TOPOLOGICAL-SORT(G)
1 DFS(G)
2 output V sorted in reverse order of f[·]

Wewill see why this algorithmworks later on.
Some comments:

The first algorithm is mainly of theoretical value (helps you to understand the whole
procedure)
In practice, you should utilize DFS to compute topological sorting for DAGs because it’s
much simpler (you don’t need to bother to delete the edges)
So topological sort can be done in O(|V| + |E|) time

Depth-First Search

Input: G = (V, E), which can be directed or undirected
Explores the graph starting from s, touching all vertices that are reachable from s

▶ We also enumerate all possible seeds and traverse the entire graph eventually

Visiting of vertices is done in recursive fashion:
▶ When we visit a vertex u, we immediately visit an adjacent vertex v of uwithout finishing the
visiting of u

▶ We finish visiting uwhen all adjacent vertices has been visited (hence the finishing of the
visiting is defined recursively)

▶ We backtrack when we finish visiting a vertex (done automatically by recursion)

Produces a DFS forest, consisting of all the DFS trees rooted at the seeds
Coloring for vertices:
▶ white: not yet visited
▶ grey: being visited, but haven’t finished visiting
▶ black: finished visiting

Associates two time-stamps to each vertex
▶ d[u] records when DFS starts visiting u (turns grey)
▶ f[u] records when DFS finishes visiting u and therefore backtracks from u (turns black)

Depth-First Search

Input: G = (V, E), which can be directed or undirected
Explores the graph starting from s, touching all vertices that are reachable from s
▶ We also enumerate all possible seeds and traverse the entire graph eventually

Visiting of vertices is done in recursive fashion:
▶ When we visit a vertex u, we immediately visit an adjacent vertex v of uwithout finishing the
visiting of u

▶ We finish visiting uwhen all adjacent vertices has been visited (hence the finishing of the
visiting is defined recursively)

▶ We backtrack when we finish visiting a vertex (done automatically by recursion)

Produces a DFS forest, consisting of all the DFS trees rooted at the seeds
Coloring for vertices:
▶ white: not yet visited
▶ grey: being visited, but haven’t finished visiting
▶ black: finished visiting

Associates two time-stamps to each vertex
▶ d[u] records when DFS starts visiting u (turns grey)
▶ f[u] records when DFS finishes visiting u and therefore backtracks from u (turns black)

Depth-First Search

Input: G = (V, E), which can be directed or undirected
Explores the graph starting from s, touching all vertices that are reachable from s
▶ We also enumerate all possible seeds and traverse the entire graph eventually

Visiting of vertices is done in recursive fashion:
▶ When we visit a vertex u, we immediately visit an adjacent vertex v of uwithout finishing the
visiting of u

▶ We finish visiting uwhen all adjacent vertices has been visited (hence the finishing of the
visiting is defined recursively)

▶ We backtrack when we finish visiting a vertex (done automatically by recursion)

Produces a DFS forest, consisting of all the DFS trees rooted at the seeds
Coloring for vertices:
▶ white: not yet visited
▶ grey: being visited, but haven’t finished visiting
▶ black: finished visiting

Associates two time-stamps to each vertex
▶ d[u] records when DFS starts visiting u (turns grey)
▶ f[u] records when DFS finishes visiting u and therefore backtracks from u (turns black)

Depth-First Search

Input: G = (V, E), which can be directed or undirected
Explores the graph starting from s, touching all vertices that are reachable from s
▶ We also enumerate all possible seeds and traverse the entire graph eventually

Visiting of vertices is done in recursive fashion:
▶ When we visit a vertex u, we immediately visit an adjacent vertex v of uwithout finishing the
visiting of u

▶ We finish visiting uwhen all adjacent vertices has been visited (hence the finishing of the
visiting is defined recursively)

▶ We backtrack when we finish visiting a vertex (done automatically by recursion)

Produces a DFS forest, consisting of all the DFS trees rooted at the seeds

Coloring for vertices:
▶ white: not yet visited
▶ grey: being visited, but haven’t finished visiting
▶ black: finished visiting

Associates two time-stamps to each vertex
▶ d[u] records when DFS starts visiting u (turns grey)
▶ f[u] records when DFS finishes visiting u and therefore backtracks from u (turns black)

Depth-First Search

Input: G = (V, E), which can be directed or undirected
Explores the graph starting from s, touching all vertices that are reachable from s
▶ We also enumerate all possible seeds and traverse the entire graph eventually

Visiting of vertices is done in recursive fashion:
▶ When we visit a vertex u, we immediately visit an adjacent vertex v of uwithout finishing the
visiting of u

▶ We finish visiting uwhen all adjacent vertices has been visited (hence the finishing of the
visiting is defined recursively)

▶ We backtrack when we finish visiting a vertex (done automatically by recursion)

Produces a DFS forest, consisting of all the DFS trees rooted at the seeds
Coloring for vertices:
▶ white: not yet visited
▶ grey: being visited, but haven’t finished visiting
▶ black: finished visiting

Associates two time-stamps to each vertex
▶ d[u] records when DFS starts visiting u (turns grey)
▶ f[u] records when DFS finishes visiting u and therefore backtracks from u (turns black)

Depth-First Search

Input: G = (V, E), which can be directed or undirected
Explores the graph starting from s, touching all vertices that are reachable from s
▶ We also enumerate all possible seeds and traverse the entire graph eventually

Visiting of vertices is done in recursive fashion:
▶ When we visit a vertex u, we immediately visit an adjacent vertex v of uwithout finishing the
visiting of u

▶ We finish visiting uwhen all adjacent vertices has been visited (hence the finishing of the
visiting is defined recursively)

▶ We backtrack when we finish visiting a vertex (done automatically by recursion)

Produces a DFS forest, consisting of all the DFS trees rooted at the seeds
Coloring for vertices:
▶ white: not yet visited
▶ grey: being visited, but haven’t finished visiting
▶ black: finished visiting

Associates two time-stamps to each vertex
▶ d[u] records when DFS starts visiting u (turns grey)
▶ f[u] records when DFS finishes visiting u and therefore backtracks from u (turns black)

DFS Algorithm

DFS(G)
1 for each vertex u ∈ V(G)
2 color[u] = WHITE
3 π[u] = NIL
4 time = 0 // “global” variable
5 for each vertex u ∈ V(G)
6 if color[u] == WHITE
7 DFS-VISIT(u)

DFS-VISIT(u)
1 color[u] = GREY
2 time = time + 1
3 d[u] = time
4 for each v ∈ Adj[u]
5 if color[v] == WHITE
6 π[v] = u
7 DFS-VISIT(v)
8 color[u] = BLACK
9 time = time + 1
10 f[u] = time

A first very silly question: Can DFS ever end?

DFS Algorithm

DFS(G)
1 for each vertex u ∈ V(G)
2 color[u] = WHITE
3 π[u] = NIL
4 time = 0 // “global” variable
5 for each vertex u ∈ V(G)
6 if color[u] == WHITE
7 DFS-VISIT(u)

DFS-VISIT(u)
1 color[u] = GREY
2 time = time + 1
3 d[u] = time
4 for each v ∈ Adj[u]
5 if color[v] == WHITE
6 π[v] = u
7 DFS-VISIT(v)
8 color[u] = BLACK
9 time = time + 1
10 f[u] = time

A first very silly question: Can DFS ever end?

DFS: Example

(Example from CLRS)

Complexity of DFS

The loop in DFS-VISIT(u) (lines 4–7) executes for O(out-deg(u)) times

We call DFS-VISIT(u) once for each vertex u

▶ either in DFS, or recursively in DFS-VISIT
▶ because we call it only if color[u] = WHITE, but then we immediately set color[u] = GREY

So, the overall complexity isΘ(|V| + |E|)

Complexity of DFS

The loop in DFS-VISIT(u) (lines 4–7) executes for O(out-deg(u)) times

We call DFS-VISIT(u) once for each vertex u

▶ either in DFS, or recursively in DFS-VISIT
▶ because we call it only if color[u] = WHITE, but then we immediately set color[u] = GREY

So, the overall complexity isΘ(|V| + |E|)

Parenthesis Theorem
Parenthesis Theorem
In a DFS on a (directed or undirected) graph G, for any two vertices u and v, exactly one of the
following two holds:
1. The intervals

[
d[u], f[u]

]
and

[
d[v], f[v]

]
are entirely disjoint, and neither one is a

descendant of the other in the DFS forest
2. One interval is entirely contained in the other interval, and the vertex is a descendant of

another (e.g.,
[
d[v], f[v]

]
⊆

[
d[u], f[u]

]
and v is a descendant of u)

Example (from CLRS):

Parenthesis Theorem
Parenthesis Theorem
In a DFS on a (directed or undirected) graph G, for any two vertices u and v, exactly one of the
following two holds:
1. The intervals

[
d[u], f[u]

]
and

[
d[v], f[v]

]
are entirely disjoint, and neither one is a

descendant of the other in the DFS forest
2. One interval is entirely contained in the other interval, and the vertex is a descendant of

another (e.g.,
[
d[v], f[v]

]
⊆

[
d[u], f[u]

]
and v is a descendant of u)

Example (from CLRS):

Parenthesis Theorem
Parenthesis Theorem
In a DFS on a (directed or undirected) graph G, for any two vertices u and v, exactly one of the
following two holds:
1. The intervals

[
d[u], f[u]

]
and

[
d[v], f[v]

]
are entirely disjoint, and neither one is a

descendant of the other in the DFS forest
2. One interval is entirely contained in the other interval, and the vertex is a descendant of

another (e.g.,
[
d[v], f[v]

]
⊆

[
d[u], f[u]

]
and v is a descendant of u)

proof:
Without loss of generality, assume d[u] < d[v]

Then, by comparing d[v]with f[u], we have two case: (1) d[v] < f[u]; (2) d[v] > f[u]
First consider d[v] < f[u] (aka. d[u] < d[v] < f[u])
Observe: the grey vertices in DFS always form a linear chain of descendants (in the DFS
tree) corresponding to the stack of active DFS-VISIT invocations
This means that v is a descendant of u in the DFS forest
Also, the visiting of u cannot finish before we finish visiting u (this is how recursive calls
work), so f[v] < f[u] (aka. d[u] < d[v] < f[v] < f[u])

Parenthesis Theorem
Parenthesis Theorem
In a DFS on a (directed or undirected) graph G, for any two vertices u and v, exactly one of the
following two holds:
1. The intervals

[
d[u], f[u]

]
and

[
d[v], f[v]

]
are entirely disjoint, and neither one is a

descendant of the other in the DFS forest
2. One interval is entirely contained in the other interval, and the vertex is a descendant of

another (e.g.,
[
d[v], f[v]

]
⊆

[
d[u], f[u]

]
and v is a descendant of u)

proof:
Without loss of generality, assume d[u] < d[v]
Then, by comparing d[v]with f[u], we have two case: (1) d[v] < f[u]; (2) d[v] > f[u]

First consider d[v] < f[u] (aka. d[u] < d[v] < f[u])
Observe: the grey vertices in DFS always form a linear chain of descendants (in the DFS
tree) corresponding to the stack of active DFS-VISIT invocations
This means that v is a descendant of u in the DFS forest
Also, the visiting of u cannot finish before we finish visiting u (this is how recursive calls
work), so f[v] < f[u] (aka. d[u] < d[v] < f[v] < f[u])

Parenthesis Theorem
Parenthesis Theorem
In a DFS on a (directed or undirected) graph G, for any two vertices u and v, exactly one of the
following two holds:
1. The intervals

[
d[u], f[u]

]
and

[
d[v], f[v]

]
are entirely disjoint, and neither one is a

descendant of the other in the DFS forest
2. One interval is entirely contained in the other interval, and the vertex is a descendant of

another (e.g.,
[
d[v], f[v]

]
⊆

[
d[u], f[u]

]
and v is a descendant of u)

proof:
Without loss of generality, assume d[u] < d[v]
Then, by comparing d[v]with f[u], we have two case: (1) d[v] < f[u]; (2) d[v] > f[u]
First consider d[v] < f[u] (aka. d[u] < d[v] < f[u])

Observe: the grey vertices in DFS always form a linear chain of descendants (in the DFS
tree) corresponding to the stack of active DFS-VISIT invocations
This means that v is a descendant of u in the DFS forest
Also, the visiting of u cannot finish before we finish visiting u (this is how recursive calls
work), so f[v] < f[u] (aka. d[u] < d[v] < f[v] < f[u])

Parenthesis Theorem
Parenthesis Theorem
In a DFS on a (directed or undirected) graph G, for any two vertices u and v, exactly one of the
following two holds:
1. The intervals

[
d[u], f[u]

]
and

[
d[v], f[v]

]
are entirely disjoint, and neither one is a

descendant of the other in the DFS forest
2. One interval is entirely contained in the other interval, and the vertex is a descendant of

another (e.g.,
[
d[v], f[v]

]
⊆

[
d[u], f[u]

]
and v is a descendant of u)

proof:
Without loss of generality, assume d[u] < d[v]
Then, by comparing d[v]with f[u], we have two case: (1) d[v] < f[u]; (2) d[v] > f[u]
First consider d[v] < f[u] (aka. d[u] < d[v] < f[u])
Observe: the grey vertices in DFS always form a linear chain of descendants (in the DFS
tree) corresponding to the stack of active DFS-VISIT invocations

This means that v is a descendant of u in the DFS forest
Also, the visiting of u cannot finish before we finish visiting u (this is how recursive calls
work), so f[v] < f[u] (aka. d[u] < d[v] < f[v] < f[u])

Parenthesis Theorem
Parenthesis Theorem
In a DFS on a (directed or undirected) graph G, for any two vertices u and v, exactly one of the
following two holds:
1. The intervals

[
d[u], f[u]

]
and

[
d[v], f[v]

]
are entirely disjoint, and neither one is a

descendant of the other in the DFS forest
2. One interval is entirely contained in the other interval, and the vertex is a descendant of

another (e.g.,
[
d[v], f[v]

]
⊆

[
d[u], f[u]

]
and v is a descendant of u)

proof:
Without loss of generality, assume d[u] < d[v]
Then, by comparing d[v]with f[u], we have two case: (1) d[v] < f[u]; (2) d[v] > f[u]
First consider d[v] < f[u] (aka. d[u] < d[v] < f[u])
Observe: the grey vertices in DFS always form a linear chain of descendants (in the DFS
tree) corresponding to the stack of active DFS-VISIT invocations
This means that v is a descendant of u in the DFS forest

Also, the visiting of u cannot finish before we finish visiting u (this is how recursive calls
work), so f[v] < f[u] (aka. d[u] < d[v] < f[v] < f[u])

Parenthesis Theorem
Parenthesis Theorem
In a DFS on a (directed or undirected) graph G, for any two vertices u and v, exactly one of the
following two holds:
1. The intervals

[
d[u], f[u]

]
and

[
d[v], f[v]

]
are entirely disjoint, and neither one is a

descendant of the other in the DFS forest
2. One interval is entirely contained in the other interval, and the vertex is a descendant of

another (e.g.,
[
d[v], f[v]

]
⊆

[
d[u], f[u]

]
and v is a descendant of u)

proof:
Without loss of generality, assume d[u] < d[v]
Then, by comparing d[v]with f[u], we have two case: (1) d[v] < f[u]; (2) d[v] > f[u]
First consider d[v] < f[u] (aka. d[u] < d[v] < f[u])
Observe: the grey vertices in DFS always form a linear chain of descendants (in the DFS
tree) corresponding to the stack of active DFS-VISIT invocations
This means that v is a descendant of u in the DFS forest
Also, the visiting of u cannot finish before we finish visiting u (this is how recursive calls
work), so f[v] < f[u] (aka. d[u] < d[v] < f[v] < f[u])

Parenthesis Theorem

Now consider d[v] > f[u]
Obviously, d[u] < f[u] < d[v] < f[v], so the two intervals are disjoint

White-Path Theorem

White-Path Theorem
In a DFS forest of a (directed or undirected) graph G, a vertex v is a descendant of a vertex u if
and only if at time d[u], there is a path from u to v on G consisting of only white vertices

proof:
“⇒”: letw be any descendant of u in the DFS tree
By the previous Parenthesis Theorem, we have that d[u] < d[w], so we u is discovered,w
is still white
Notice that on the path from u to v in the DFS tree, all vertices are descendants of v, so all
of them are white at time d[u]

White-Path Theorem

White-Path Theorem
In a DFS forest of a (directed or undirected) graph G, a vertex v is a descendant of a vertex u if
and only if at time d[u], there is a path from u to v on G consisting of only white vertices

proof:
“⇒”: letw be any descendant of u in the DFS tree
By the previous Parenthesis Theorem, we have that d[u] < d[w], so we u is discovered,w
is still white
Notice that on the path from u to v in the DFS tree, all vertices are descendants of v, so all
of them are white at time d[u]

White-Path Theorem

White-Path Theorem
In a DFS forest of a (directed or undirected) graph G, a vertex v is a descendant of a vertex u if
and only if at time d[u], there is a path from u to v consisting of only white vertices

proof (continue):
“⇐”: Use proof by contradiction, suppose that there is a “white path” from u to v at time
d[u], but v is not a descendant of u in the DFS tree

Let x be the first vertex on the path that is not a descendant of u (why such an x exists?)
Letw be the predecessor of x on the path (so thatw is a descendant of u; notice thatw
could be u itself)
Since d[u] < d[x], by the Parenthesis Theorem, wemust have d[u] < f[u] < d[x] (because x
is not descendant of u)
Consider the time the search visitsw, we must have that x is white during the whole
process (because if you haven’t finish visitingw, you definitely haven’t finished visiting u)
But if this is true, then xmust be a descendant ofw and in turn a descendant of u (a
contradiction)

White-Path Theorem

White-Path Theorem
In a DFS forest of a (directed or undirected) graph G, a vertex v is a descendant of a vertex u if
and only if at time d[u], there is a path from u to v consisting of only white vertices

proof (continue):
“⇐”: Use proof by contradiction, suppose that there is a “white path” from u to v at time
d[u], but v is not a descendant of u in the DFS tree
Let x be the first vertex on the path that is not a descendant of u (why such an x exists?)

Letw be the predecessor of x on the path (so thatw is a descendant of u; notice thatw
could be u itself)
Since d[u] < d[x], by the Parenthesis Theorem, wemust have d[u] < f[u] < d[x] (because x
is not descendant of u)
Consider the time the search visitsw, we must have that x is white during the whole
process (because if you haven’t finish visitingw, you definitely haven’t finished visiting u)
But if this is true, then xmust be a descendant ofw and in turn a descendant of u (a
contradiction)

White-Path Theorem

White-Path Theorem
In a DFS forest of a (directed or undirected) graph G, a vertex v is a descendant of a vertex u if
and only if at time d[u], there is a path from u to v consisting of only white vertices

proof (continue):
“⇐”: Use proof by contradiction, suppose that there is a “white path” from u to v at time
d[u], but v is not a descendant of u in the DFS tree
Let x be the first vertex on the path that is not a descendant of u (why such an x exists?)
Letw be the predecessor of x on the path (so thatw is a descendant of u; notice thatw
could be u itself)

Since d[u] < d[x], by the Parenthesis Theorem, wemust have d[u] < f[u] < d[x] (because x
is not descendant of u)
Consider the time the search visitsw, we must have that x is white during the whole
process (because if you haven’t finish visitingw, you definitely haven’t finished visiting u)
But if this is true, then xmust be a descendant ofw and in turn a descendant of u (a
contradiction)

White-Path Theorem

White-Path Theorem
In a DFS forest of a (directed or undirected) graph G, a vertex v is a descendant of a vertex u if
and only if at time d[u], there is a path from u to v consisting of only white vertices

proof (continue):
“⇐”: Use proof by contradiction, suppose that there is a “white path” from u to v at time
d[u], but v is not a descendant of u in the DFS tree
Let x be the first vertex on the path that is not a descendant of u (why such an x exists?)
Letw be the predecessor of x on the path (so thatw is a descendant of u; notice thatw
could be u itself)
Since d[u] < d[x], by the Parenthesis Theorem, wemust have d[u] < f[u] < d[x] (because x
is not descendant of u)

Consider the time the search visitsw, we must have that x is white during the whole
process (because if you haven’t finish visitingw, you definitely haven’t finished visiting u)
But if this is true, then xmust be a descendant ofw and in turn a descendant of u (a
contradiction)

White-Path Theorem

White-Path Theorem
In a DFS forest of a (directed or undirected) graph G, a vertex v is a descendant of a vertex u if
and only if at time d[u], there is a path from u to v consisting of only white vertices

proof (continue):
“⇐”: Use proof by contradiction, suppose that there is a “white path” from u to v at time
d[u], but v is not a descendant of u in the DFS tree
Let x be the first vertex on the path that is not a descendant of u (why such an x exists?)
Letw be the predecessor of x on the path (so thatw is a descendant of u; notice thatw
could be u itself)
Since d[u] < d[x], by the Parenthesis Theorem, wemust have d[u] < f[u] < d[x] (because x
is not descendant of u)
Consider the time the search visitsw, we must have that x is white during the whole
process (because if you haven’t finish visitingw, you definitely haven’t finished visiting u)

But if this is true, then xmust be a descendant ofw and in turn a descendant of u (a
contradiction)

White-Path Theorem

White-Path Theorem
In a DFS forest of a (directed or undirected) graph G, a vertex v is a descendant of a vertex u if
and only if at time d[u], there is a path from u to v consisting of only white vertices

proof (continue):
“⇐”: Use proof by contradiction, suppose that there is a “white path” from u to v at time
d[u], but v is not a descendant of u in the DFS tree
Let x be the first vertex on the path that is not a descendant of u (why such an x exists?)
Letw be the predecessor of x on the path (so thatw is a descendant of u; notice thatw
could be u itself)
Since d[u] < d[x], by the Parenthesis Theorem, wemust have d[u] < f[u] < d[x] (because x
is not descendant of u)
Consider the time the search visitsw, we must have that x is white during the whole
process (because if you haven’t finish visitingw, you definitely haven’t finished visiting u)
But if this is true, then xmust be a descendant ofw and in turn a descendant of u (a
contradiction)

Four Types of Edges in DFS on Undirected Graphs

Tree edge: Edges on the DFS forest
Back edge: Connecting a vertex to its ancestor in the DFS forest
Forward edge: Non-tree edges connecting a vertex to its descendant in the DFS forest
Cross edge: all other edges

(Example from CLRS)

Detecting cycles in an undirected graph using DFS

Lemma
A directed graph G has a cycle if and only if a depth-first search on G yields a back edge

proof:
“⇐”: easy
Nowwe try to show the forward direction “⇒”
Suppose that G contains a cycle c
Without loss of generality, assume c is a simple cycle
Let v be the first vertex on c discovered by DFS , and let u be the vertex pointing to v on c
When v is discovered, we have that all vertices on path from v to u (on c) are white
(undiscovered)
By the White-Path Theorem, umust be a descendant of v in the depth-first forest
Therefore, (u, v) is a back edge

Detecting cycles in an undirected graph using DFS

Lemma
A directed graph G has a cycle if and only if a depth-first search on G yields a back edge

proof:
“⇐”: easy

Nowwe try to show the forward direction “⇒”
Suppose that G contains a cycle c
Without loss of generality, assume c is a simple cycle
Let v be the first vertex on c discovered by DFS , and let u be the vertex pointing to v on c
When v is discovered, we have that all vertices on path from v to u (on c) are white
(undiscovered)
By the White-Path Theorem, umust be a descendant of v in the depth-first forest
Therefore, (u, v) is a back edge

Detecting cycles in an undirected graph using DFS

Lemma
A directed graph G has a cycle if and only if a depth-first search on G yields a back edge

proof:
“⇐”: easy
Nowwe try to show the forward direction “⇒”

Suppose that G contains a cycle c
Without loss of generality, assume c is a simple cycle
Let v be the first vertex on c discovered by DFS , and let u be the vertex pointing to v on c
When v is discovered, we have that all vertices on path from v to u (on c) are white
(undiscovered)
By the White-Path Theorem, umust be a descendant of v in the depth-first forest
Therefore, (u, v) is a back edge

Detecting cycles in an undirected graph using DFS

Lemma
A directed graph G has a cycle if and only if a depth-first search on G yields a back edge

proof:
“⇐”: easy
Nowwe try to show the forward direction “⇒”
Suppose that G contains a cycle c

Without loss of generality, assume c is a simple cycle
Let v be the first vertex on c discovered by DFS , and let u be the vertex pointing to v on c
When v is discovered, we have that all vertices on path from v to u (on c) are white
(undiscovered)
By the White-Path Theorem, umust be a descendant of v in the depth-first forest
Therefore, (u, v) is a back edge

Detecting cycles in an undirected graph using DFS

Lemma
A directed graph G has a cycle if and only if a depth-first search on G yields a back edge

proof:
“⇐”: easy
Nowwe try to show the forward direction “⇒”
Suppose that G contains a cycle c
Without loss of generality, assume c is a simple cycle

Let v be the first vertex on c discovered by DFS , and let u be the vertex pointing to v on c
When v is discovered, we have that all vertices on path from v to u (on c) are white
(undiscovered)
By the White-Path Theorem, umust be a descendant of v in the depth-first forest
Therefore, (u, v) is a back edge

Detecting cycles in an undirected graph using DFS

Lemma
A directed graph G has a cycle if and only if a depth-first search on G yields a back edge

proof:
“⇐”: easy
Nowwe try to show the forward direction “⇒”
Suppose that G contains a cycle c
Without loss of generality, assume c is a simple cycle
Let v be the first vertex on c discovered by DFS , and let u be the vertex pointing to v on c

When v is discovered, we have that all vertices on path from v to u (on c) are white
(undiscovered)
By the White-Path Theorem, umust be a descendant of v in the depth-first forest
Therefore, (u, v) is a back edge

Detecting cycles in an undirected graph using DFS

Lemma
A directed graph G has a cycle if and only if a depth-first search on G yields a back edge

proof:
“⇐”: easy
Nowwe try to show the forward direction “⇒”
Suppose that G contains a cycle c
Without loss of generality, assume c is a simple cycle
Let v be the first vertex on c discovered by DFS , and let u be the vertex pointing to v on c
When v is discovered, we have that all vertices on path from v to u (on c) are white
(undiscovered)

By the White-Path Theorem, umust be a descendant of v in the depth-first forest
Therefore, (u, v) is a back edge

Detecting cycles in an undirected graph using DFS

Lemma
A directed graph G has a cycle if and only if a depth-first search on G yields a back edge

proof:
“⇐”: easy
Nowwe try to show the forward direction “⇒”
Suppose that G contains a cycle c
Without loss of generality, assume c is a simple cycle
Let v be the first vertex on c discovered by DFS , and let u be the vertex pointing to v on c
When v is discovered, we have that all vertices on path from v to u (on c) are white
(undiscovered)
By the White-Path Theorem, umust be a descendant of v in the depth-first forest

Therefore, (u, v) is a back edge

Detecting cycles in an undirected graph using DFS

Lemma
A directed graph G has a cycle if and only if a depth-first search on G yields a back edge

proof:
“⇐”: easy
Nowwe try to show the forward direction “⇒”
Suppose that G contains a cycle c
Without loss of generality, assume c is a simple cycle
Let v be the first vertex on c discovered by DFS , and let u be the vertex pointing to v on c
When v is discovered, we have that all vertices on path from v to u (on c) are white
(undiscovered)
By the White-Path Theorem, umust be a descendant of v in the depth-first forest
Therefore, (u, v) is a back edge

Topological Sort: Alternative Algorithm

TOPOLOGICAL-SORT(G)
1 DFS(G)
2 output V sorted in reverse order of f[·]

Proof of correctness:

It suffices to show that for any edge (u, v) ∈ G, f[v] < f[u]
First observe: the grey vertices in DFS always form a linear chain of descendants (in the
DFS tree) corresponding to the stack of active DFS-VISIT invocations
When we are visiting u and exploring the edge (u, v) in DFS, we have that v cannot be grey
because otherwise (u, v)would be a back edge (notice that umust be at the stack top
when we are exploring (u, v)), contradicting the previous Lemma saying that DFS on DAG
yields no back edges
Then vmust be white or black
If v is white, then we shall visit v as a result of exploring the edge (u, v). By DFS, we cannot
finish visiting u before finishing visiting v. So f[v] < f[u].
If v is black, we have already finished visiting v. But the visiting of u is not finished. So we
obviously have f[v] < f[u].

Topological Sort: Alternative Algorithm

TOPOLOGICAL-SORT(G)
1 DFS(G)
2 output V sorted in reverse order of f[·]

Proof of correctness:
It suffices to show that for any edge (u, v) ∈ G, f[v] < f[u]

First observe: the grey vertices in DFS always form a linear chain of descendants (in the
DFS tree) corresponding to the stack of active DFS-VISIT invocations
When we are visiting u and exploring the edge (u, v) in DFS, we have that v cannot be grey
because otherwise (u, v)would be a back edge (notice that umust be at the stack top
when we are exploring (u, v)), contradicting the previous Lemma saying that DFS on DAG
yields no back edges
Then vmust be white or black
If v is white, then we shall visit v as a result of exploring the edge (u, v). By DFS, we cannot
finish visiting u before finishing visiting v. So f[v] < f[u].
If v is black, we have already finished visiting v. But the visiting of u is not finished. So we
obviously have f[v] < f[u].

Topological Sort: Alternative Algorithm

TOPOLOGICAL-SORT(G)
1 DFS(G)
2 output V sorted in reverse order of f[·]

Proof of correctness:
It suffices to show that for any edge (u, v) ∈ G, f[v] < f[u]
First observe: the grey vertices in DFS always form a linear chain of descendants (in the
DFS tree) corresponding to the stack of active DFS-VISIT invocations

When we are visiting u and exploring the edge (u, v) in DFS, we have that v cannot be grey
because otherwise (u, v)would be a back edge (notice that umust be at the stack top
when we are exploring (u, v)), contradicting the previous Lemma saying that DFS on DAG
yields no back edges
Then vmust be white or black
If v is white, then we shall visit v as a result of exploring the edge (u, v). By DFS, we cannot
finish visiting u before finishing visiting v. So f[v] < f[u].
If v is black, we have already finished visiting v. But the visiting of u is not finished. So we
obviously have f[v] < f[u].

Topological Sort: Alternative Algorithm

TOPOLOGICAL-SORT(G)
1 DFS(G)
2 output V sorted in reverse order of f[·]

Proof of correctness:
It suffices to show that for any edge (u, v) ∈ G, f[v] < f[u]
First observe: the grey vertices in DFS always form a linear chain of descendants (in the
DFS tree) corresponding to the stack of active DFS-VISIT invocations
When we are visiting u and exploring the edge (u, v) in DFS, we have that v cannot be grey
because otherwise (u, v)would be a back edge (notice that umust be at the stack top
when we are exploring (u, v)), contradicting the previous Lemma saying that DFS on DAG
yields no back edges

Then vmust be white or black
If v is white, then we shall visit v as a result of exploring the edge (u, v). By DFS, we cannot
finish visiting u before finishing visiting v. So f[v] < f[u].
If v is black, we have already finished visiting v. But the visiting of u is not finished. So we
obviously have f[v] < f[u].

Topological Sort: Alternative Algorithm

TOPOLOGICAL-SORT(G)
1 DFS(G)
2 output V sorted in reverse order of f[·]

Proof of correctness:
It suffices to show that for any edge (u, v) ∈ G, f[v] < f[u]
First observe: the grey vertices in DFS always form a linear chain of descendants (in the
DFS tree) corresponding to the stack of active DFS-VISIT invocations
When we are visiting u and exploring the edge (u, v) in DFS, we have that v cannot be grey
because otherwise (u, v)would be a back edge (notice that umust be at the stack top
when we are exploring (u, v)), contradicting the previous Lemma saying that DFS on DAG
yields no back edges
Then vmust be white or black

If v is white, then we shall visit v as a result of exploring the edge (u, v). By DFS, we cannot
finish visiting u before finishing visiting v. So f[v] < f[u].
If v is black, we have already finished visiting v. But the visiting of u is not finished. So we
obviously have f[v] < f[u].

Topological Sort: Alternative Algorithm

TOPOLOGICAL-SORT(G)
1 DFS(G)
2 output V sorted in reverse order of f[·]

Proof of correctness:
It suffices to show that for any edge (u, v) ∈ G, f[v] < f[u]
First observe: the grey vertices in DFS always form a linear chain of descendants (in the
DFS tree) corresponding to the stack of active DFS-VISIT invocations
When we are visiting u and exploring the edge (u, v) in DFS, we have that v cannot be grey
because otherwise (u, v)would be a back edge (notice that umust be at the stack top
when we are exploring (u, v)), contradicting the previous Lemma saying that DFS on DAG
yields no back edges
Then vmust be white or black
If v is white, then we shall visit v as a result of exploring the edge (u, v). By DFS, we cannot
finish visiting u before finishing visiting v. So f[v] < f[u].

If v is black, we have already finished visiting v. But the visiting of u is not finished. So we
obviously have f[v] < f[u].

Topological Sort: Alternative Algorithm

TOPOLOGICAL-SORT(G)
1 DFS(G)
2 output V sorted in reverse order of f[·]

Proof of correctness:
It suffices to show that for any edge (u, v) ∈ G, f[v] < f[u]
First observe: the grey vertices in DFS always form a linear chain of descendants (in the
DFS tree) corresponding to the stack of active DFS-VISIT invocations
When we are visiting u and exploring the edge (u, v) in DFS, we have that v cannot be grey
because otherwise (u, v)would be a back edge (notice that umust be at the stack top
when we are exploring (u, v)), contradicting the previous Lemma saying that DFS on DAG
yields no back edges
Then vmust be white or black
If v is white, then we shall visit v as a result of exploring the edge (u, v). By DFS, we cannot
finish visiting u before finishing visiting v. So f[v] < f[u].
If v is black, we have already finished visiting v. But the visiting of u is not finished. So we
obviously have f[v] < f[u].

Observation

Observation
If there is a path from a vertex u to a vertex v in an undirected graph G (aka. u, v are in the same
connected component), then u, vmust be in the same DFS tree after performing a depth-first
search on G.

Comment: The opposite is also true. Think about what these observations implies

Proof:
Consider a path P connecting u, v in G
Let x be the first vertex on P visited by DFS. Apparently, we can reach u and v from x
By the description of DFS, the DFS visit on xwill touch all vertices that are reachable from
x. So we will reach u and v from visiting x.
Therefore, u, v, x are all in the same DFS tree.

Observation

Observation
If there is a path from a vertex u to a vertex v in an undirected graph G (aka. u, v are in the same
connected component), then u, vmust be in the same DFS tree after performing a depth-first
search on G.

Comment: The opposite is also true. Think about what these observations implies

Proof:
Consider a path P connecting u, v in G
Let x be the first vertex on P visited by DFS. Apparently, we can reach u and v from x
By the description of DFS, the DFS visit on xwill touch all vertices that are reachable from
x. So we will reach u and v from visiting x.
Therefore, u, v, x are all in the same DFS tree.

Observation

Observation
If there is a path from a vertex u to a vertex v in an undirected graph G (aka. u, v are in the same
connected component), then u, vmust be in the same DFS tree after performing a depth-first
search on G.

Comment: The opposite is also true. Think about what these observations implies

Proof:
Consider a path P connecting u, v in G
Let x be the first vertex on P visited by DFS. Apparently, we can reach u and v from x
By the description of DFS, the DFS visit on xwill touch all vertices that are reachable from
x. So we will reach u and v from visiting x.
Therefore, u, v, x are all in the same DFS tree.

