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Dynamic Programming

Dynamic programming does not refer to writing code

The term was coined in the 1950’s. It referred to
scheduling/planning, and typically involves filling out a table

Dynamic programming is often used to solve optimization problems
such as computing a longest sequence, shortest path, etc. (there are
exceptions though)



Dynamic Programming vs. Divide-and-Conquer

Both decompose a problem into subproblems, but there are differences:

1 Subproblem size:
Divide-and-conquer: breaks the problem into substantially smaller
subproblems (e.g. n ⇒ n/2 or 7n/10)
Dynamic programming: typically reduces a problem of size n to one
of size n − c (e.g. n ⇒ n − 1 or n − 2)

2 Disjoint vs. Overlap
Divide-and-conquer: splits the problem into disjoint subproblems
Dynamic programming: subproblems typically overlap

So, recursion does not work so well for dynamic programming



Bookkeeping using a table

Due to the previous reasons:

A dynamic-programming algorithm solves each subproblem just once
and then saves its answer in a table, avoiding repetitive computation
of subproblems (trade space for time)

Therefore, a dynamic-programming algorithm typically solves smaller
subproblems first (and keep the results in memory), then bigger
problems, because bigger ones rely on the results of the smaller
subproblems.



Example of overlap computation

The Fibonacci Sequence

1, 1, 2, 3, 5, 8, 13, 21, . . .

Recursive Definition

F (n) =
{

1 if n = 1, 2
F (n − 1) + F (n − 2) otherwise



A Recursive Fibonacci Algorithm

Rec-Fib(n)

1. if n = 1 or n = 2 then return 1;
2. else return Rec-Fib(n − 1) + Rec-Fib(n − 2);

Figure 1: The recursive Fibonacci algorithm

Input Size: n

T (n) =
{

O(1) if n=1, 2
T (n − 1) + T (n − 2) + O(1) otherwise

T (n) = Θ(ϕn), where ϕ ≈ 1.618 is the Golden Ratio



What Went Wrong?

Overlapping Computations
Many Fibonacci numbers were recomputed over and over again.

Solution
Instead of using a top-down approach, use a bottom-up approach and
store the Fibonacci numbers for reuse once they have been computed

Bottom-UP Fibonacci (n)

1. create a table F [1 . . . n]; F [1] = F [2] = 1;
2. for i = 3 to n do F [i ] = F [i − 1] + F [i − 2];

Figure 2: Bottom-Up Fibonacci algorithm

Running Time: T (n) = Θ(n)



Four steps of dynamic programming

1 Characterize the structure of the problem by identifying an optimal
solution function (typically denoted as OPT )

2 Write down a recursively formula for the optimal solution function
(you need to consider both the base case and the general case)

3 Compute the value of optimal solution, typically in a bottom-up
fashion

4 (Optional) Construct an optimal solution from computed information

We can use computing Fibonacci numbers as an example
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More on the steps of dynamic programming

Step 1 and 2 boils down to:
Identify the subproblems
Describe the solution to the whole problem in terms of the solutions
to smaller subproblems.

(This is the hard part!)



More on the steps of dynamic programming

How to write an algorithm based on the recurrence in Step 3:

Choose a table. Find a data structure that can store solutions to all
subproblems you identified (usually a multidimensional array).

Identify dependencies. Except for the base cases, every subproblem
depends on other subproblems. Identify the dependencies.

Find a good evaluation order. Order the subproblems based on their
dependencies so that each problem comes after the subproblems it
depends on.

A useful rule for the coining dependency is that your subproblems
should have a natural notion of ’size’ so that larger subproblems should
depend on smaller subproblems

The evaluation order is then to evaluate smaller subproblems first, and
then the larger subproblems



Optimal Substructure Property: An Essential Condition

Optimal Substructure Property. In order for DP to work, you have to
be able to easily combine optimal solutions for subproblems to build an
optimal solution to the original (bigger) problem



Optimal Substructure Property: Example

Shortest path: given G = (V ,E ), find the a path with minimum number
of edges (i.e., the shortest path) from u to v

decompose u ⇝ v into u ⇝ x ⇝ y ⇝ v

easy to prove that, if u ⇝ x ⇝ y ⇝ v is shortest then x ⇝ y is also
shortest

i.e., a shortest path is made up of several (smaller) shortest paths

this is the optimal substructure property



Optimal Substructure Property: Counterexample

Longest simple path: given G = (V ,E ), find the length of the longest
simple (i.e., no cycles) path from u to v

we can also decompose u ⇝ v into u ⇝ x ⇝ y ⇝ v

however, we can not prove that, if u ⇝ x ⇝ y ⇝ v is maximal, then
x ⇝ y is also maximal (e.g., the below graph)



Why we study DP?

Dynamic Programming Applications Areas:
Bioinformatics
Control theory
Information theory
Operations research
Computer science: theory, graphics, AI, compilers, systems, ...

Some famous dynamic programming algorithms:
Unix diff for comparing two files
Viterbi for hidden Markov models
Smith-Waterman for genetic sequence alignment
Bellman-Ford for shortest path routing in networks
Cocke-Kasami-Younger for parsing context free grammars



Longest Increasing Subsequence

Problem Definition
Given a sequence of numbers A = ⟨a1, . . . , an⟩, compute a subsequence
with maximum length whose elements are increasing

Example

A = 5, 2, 8, 6, 3, 6, 9, 7

Solution: 2, 3, 6, 7



More on Subsequence

Formally, a subsequence of a1, a2, . . . , an can be represented as

S = as1 , as2 , . . . , asℓ ,

where the subscripts satisfy 1 ≤ s1 < s2 < · · · < sℓ ≤ n.

Then, an increasing subsequence should satisfy:

as1 < as2 < · · · < asℓ ,
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Approaching the problem

In order to solve DP problems, we typically focus on some special
traits of problems
In this specific problem, since we want to find increasing
subsequences, we focus on the ending element of a sequence

The reason should be evident after the problem is solved

Our first major progress on solving the problem is then: for each ai ,
we try to find the longest increasing subsequence ending with it

These are the subproblems we identify
The longest increasing subsequence of A can then be derived from
solutions to the subproblems



DP Solution, Step 1: Optimal solution function

Let OPT (i) denote the length of the longest increasing subsequence
(LIS) of A ending with ai

The length of the LIS of A is then max{OPT (i) | 1 ≤ i ≤ n}



Step 2: Writing the Recursive Formula for OPT (i)

Goal: Express OPT (i) in terms of other OPT (j)’s

Suppose we have S as the LIS ending with ai

What would the form of S be?
Well, in S, there must be another element aj immediately before ai

Observe: Since S is the LIS ending with ai , the part of S excluding ai
must be the LIS ending with aj

The optimal substructure property
Provable by cut-and-paste: If the part of S excluding ai is not LIS
ending with aj , we can replace it with the LIS ending with aj , getting a
longer sequence ending with ai (a contradiction)
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Step 2: Writing the Recursive Formula for OPT (i)

This means the that LIS ending with ai consists of:

[LIS ending with aj ] + [ai ]

where aj is an element before ai

So, to get LIS ending with ai , we must have an aj before ai and the
LIS ending with it
Q: How do we get the LIS ending with an aj?
A: This is the subproblem and we can assume we know it, which is
OPT (j)
Q: How do we know which aj to choose?
A: We don’t know. Rather, we enumerate all possibilities and choose
the longest one
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Recursive formula for OPT (i)

OPT (i) =
{

1 if i = 1
max {{1} ∪ {1 + OPT (j) | 1 ≤ j < i ∧ aj < ai}} otherwise

The answer to the input is:

max{OPT (i) | 1 ≤ i ≤ n}



Some remarks

In the previous solution, the problem of finding LIS ending with ai
relies on a bunch of subproblems of finding LIS ending with aj (j < i)

We can view the “size” of a subproblem as the subscript of the
ending element, e.g., for the problem of finding the LIS ending with
ai , the “size” is i

So, we have a problem of size i relies on a bunch of problems of size j
(j < i)
⇒ Solving a bigger problem relies solving a bunch of smaller
problems



The Algorithm

PREV [i ]: index of the element immediately before ai in the LIS ending with ai
(used to the recover the LIS ending with ai)

LIS(A)
1. Use a table OPT [1 . . . n] and PREV [1 . . . n]
2. initialize OPT [1] = 1; PRVE [i ] = null for i = 1, . . . , n;
3. for i = 2 to n do

3.1. OPT [i ] = 1
3.2. for j = 1 to i − 1 do

if A[j] < A[i ] and OPT [j] + 1 > OPT [i ] then
OPT [i ] = OPT [j] + 1; PREV [i ] = j

4. return max{OPT [1],OPT [2], . . . ,OPT [n]}

Figure 3:
Running Time
The running time is clearly O(n2).



The Algorithm

PRT-LIS(i)

1. while i ̸= null do
1.1. print A[i ]
1.2. i = PREV [i ]

2. reverse what is printed

Figure 4: Recover the LIS ending with ai



Exercise on Board

Let’s try to compute on board the OPT and PREV arrays for LIS on
the example input



Remarks

A more “natural” definition of OPT would be: Let OPT (i) denote
the length of the longest increasing subsequence of ⟨a1, . . . , ai⟩

However, this does not help solve the problem
You can think of why by, say, trying to solve the problem with this
alternative definition

By enforcing the ending element in our OPT definition, we can
ensure that the subsequences being considered are increasing



Some guidelines on designing OPT function:

1 Before defining OPT , first determine what your subproblems should
be

The subproblems should also contain the original problem and a clear
base case
OPT is nothing but the optimal solutions for subproblems

2 The parameter of OPT should relate to the “size” of a subproblem so
that optimal solution of a larger subproblem can be solved from
solutions of smaller subproblems

Specifically, you should be able to easily derive a base case of your
OPT which is of the “smallest size”

3 Ultimately, you choice of OPT should enable you to write down a
recursive for it, which should be computable (can find an order for
evaluating all the OPT entries)



Text Segmentation

Problem
We are given a string s[1 . . . n] and a subroutine dict(w) that determines
whether a given string w is a valid word (assume this can be done in
constant time). We want to know whether s can be partitioned into a
sequence of valid words.

Example
s=algorithmsisacomputersciencecourse

Solution: s is valid; a valid decomposition of s:

algorithms is a computer science course



Why DP?

The first algorithm someone could come with up would be a simple
“greedy matching” algorithm:

Scan the string from the beginning.
Whenever you find a match to a word, stop, and mark this as a
separation point
You then do the matching again starting from the previous separation
point until you hit the end

But this algorithm is wrong
Suppose our dictionary contains only three words: abc, abcd, ef
Given an input “abcdef”, the above algorithm would first find a
match when “abc” is scanned, leaving “def” without a match
But “abcdef” can be separated into two valid words: “abcd” and “ef”



The dynamic programming ingredients

Key observation
If the string s can be split into two substrings s[1 . . . i ] and s[i + 1 . . . n]
s.t.

s[1 . . . i ] can be partitioned into valid words
s[i + 1 . . . n] is a valid word

then the whole string s can also be partitioned.

E.g., ‘algorithmsisacomputersciencecourse’ can be split into:
‘algorithmsisacomputerscience’: algorithms is a computer science
‘course’: is a valid word

So ‘algorithmsisacomputersciencecourse’ can be partitioned



The dynamic programming ingredients

Key observation
If the string s can be split into two substrings s[1 . . . i ] and s[i + 1 . . . n]
s.t.

s[1 . . . i ] can be partitioned into valid words
s[i + 1 . . . n] is a valid word

then the whole string s can also be partitioned.

Notice that we are considering a general prefix s[1 . . . i ] of s.
Indeed, all such prefixes constitute the subproblems of our solution:

There is a natural ‘size’ for each such subproblem, i.e., the size of the
prefix
When i = n, it gives the answer to the original problem.
It has a clear base case, i.e., i = 0 (empty string)



The dynamic programming ingredients

Key observation
If the string s can be split into two substrings s[1 . . . i ] and s[i + 1 . . . n]
s.t.

s[1 . . . i ] can be partitioned into valid words
s[i + 1 . . . n] is a valid word

then the whole string s can also be partitioned.

Now let OPT (i) denote whether s[1 . . . i ] can be partitioned into valid
words, i.e.,

OPT (i) =
{

True if s[1 . . . i ] can be partitioned into valid words
False otherwise



Writing down recursive formula for OPT (i)

Observe: If s[1 . . . i ] can be split into two substrings s[1 . . . j] and
s[j + 1 . . . i ] s.t.

1 s[1 . . . j] can be partitioned into valid words
2 s[j + 1 . . . i ] is a valid word

then s[1 . . . i ] can also be partitioned.
Let choose a certain j and fix it
Easy to know whether s[j + 1 . . . i ] is a valid word: dict(s[j + 1 . . . i ])
How do we know whether s[1 . . . j] can be partitioned?

It’s a subproblem (substructure property)!
We can assume we know the answer which is OPT (j)
Moreover, in order to solve the problem that whether s[1 . . . i ] is valid,
we rely on the subproblem that whether s[1 . . . j] is valid (j < i) (large
problem relies on smaller problems)

But how do we determine j?
We enumerate all the possibilities!
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The DP design: finalized

Recursive formula of OPT (i):
1 General case (i > 0):

a For all j (0 ≤ j < i),
if there is a j s.t OPT (j) ∧ dict(s[j + 1 . . . i ]) = True:

OPT (i) = True

b Otherwise: OPT (i) = False

2 Base case (i = 0): OPT (0) = True



More formal recursive formula

OPT (i) =



(
OPT (0) ∧ dict(s[1 . . . i ])

)
∨(

OPT (1) ∧ dict(s[2 . . . i ])
)
∨ · · · ∨(

OPT (i − 1) ∧ dict(s[i . . . i ])
) i > 0

True i = 0

Since OPT (i) relies on those OPT (j) with j < i , we will start computing
OPT function with i = 1 and increase i

We’ve figured out a valid evaluation order for the subproblems
which is computable



The Algorithm

S[0 . . . n] records the separation point so that we know how to separate
the string into words

1. Initialize a table T [0 . . . n] and S[0 . . . n]; T [0] = True
2. for i = 1 to n do

T [i ] = False;
for j = 0 to i − 1 do

if T [j] ∧ dict(s[j + 1 . . . i ]) then
T [i ] = True; S[i ] = j;
break;

Figure 5: Text Segmentation Algorithm

Running Time
The running time is clearly O(n2)



0-1 Knapsack problem

0-1 Knapsack problem
Given n objects and a “knapsack” with an integer capacity W s.t.

Each object i has an integer weight wi > 0 and a profit vi > 0.
Goal: Find a subset of the objects s.t. the sum of weights ≤ W and the
sum of profits is maximum.

Remark: The difference of the 0-1 knapsack with the previous fractional
knapsack is that we are only allowed to put the entire object into the
knapsack, or do not put this object into the knapsack at all



0-1 Knapsack problem

Example (from slides for [Kleinberg&Tardos, Algorithm design])

Optimal solution: Choose {3, 4} with profit 40.

Greedy choice: repeatedly add item with maximum unit profit vi/wi until
you cannot fit in any remaining items
Ex: {5, 2, 1} achieves only profit 35 ⇒ greedy is not optimal
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Dynamic Programming: First Attempt

Optimal solution function
Let OPT (i) be the maximum sum of profits when putting objects
1, 2, . . . , i into the knapsack

Try to recursively define OPT (i):
Case 1: Do not include object i in the knapsack

OPT (i) will be best of {1, 2, . . . , i − 1}
Case 2: Include object i in the knapsack

Will have to consider how to put {1, 2, . . . , i − 1} into the knapsack
now with a remaining capacity W − wi
The current definition of OPT does not cover this: We need to add
the capacity of the knapsack as a parameter for OPT
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Dynamic Programming: Solution

Optimal solution function
Let OPT (i ,w) be the maximum sum of profits when putting objects
1, 2, . . . , i into a knapsack with capacity w

The algorithm will return OPT (n,W )

To recursively define OPT (i ,w):
Case 1: Do not include object i in the knapsack with capacity w

We need best of {1, 2, . . . , i − 1} with capacity w
Case 2: Include object i in the knapsack with capacity w

We need best of {1, 2, . . . , i − 1} with capacity w − wi
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Dynamic Programming: Solution

OPT (i ,w) =


0 if i = 0 or w = 0
OPT (i − 1,w) if wi > w

max

{
OPT (i − 1,w),
vi + OPT (i − 1,w − wi)

}
otherwise



The Knapsack Algorithm

Knapsack ({w1,w2, . . . ,wn}, {v1, v2, . . . , vn}, W )

1. for w = 0 to W do OPT [0,w ] = 0;
2. for i = 0 to n do OPT [i , 0] = 0;
3. for i = 1 to n do

for w = 1 to W do
if wi > w or OPT [i − 1,w ] > vi + OPT [i − 1,w − wi ] then

OPT [i ,w ] = OPT [i − 1,w ]

else
OPT [i ,w ] = vi + OPT [i − 1,w − wi ]

4. return OPT [n,W ];

Figure 6: Knapsack Algorithm.

Running Time
The running time is clearly O(n · W )



Knapsack algorithm

Example of table filling:

(from slides for [Kleinberg&Tardos, Algorithm design])



Derivation of the optimal solution for the example

OPT (5, 11) = max

{
OPT (4, 11),
v5 + OPT (4, 11 − w5)

}



Derivation of the optimal solution for the example

So,
OPT (5, 11) = OPT (4, 11)

This means that we do not include 5 into OBJ(5, 11) (the optimal set
of objects for OPT (5, 11))
Equivalently, we have:

OBJ(5, 11) = OBJ(4, 11)



Derivation of the optimal solution for the example

OPT (4, 11) = max

{
OPT (3, 11),
v4 + OPT (3, 11 − w4)

}



Derivation of the optimal solution for the example

So,
OPT (4, 11) = v4 + OPT (3, 5)

This means that we include 4 into OBJ(4, 11).
Equivalently, we have:

OBJ(4, 11) = {4} ∪ OBJ(3, 5)



Derivation of the optimal solution for the example

OPT (3, 5) = max

{
OPT (2, 5),
v3 + OPT (2, 5 − w3)

}



Derivation of the optimal solution for the example

So,
OPT (3, 5) = v3 + OPT (2, 0)

This means that we include 3 into OBJ(3, 5).
Equivalently, we have:

OBJ(3, 5) = {3} ∪ OBJ(2, 0)



Derivation of the optimal solution for the example

OPT (2, 0) = 0 is the base case, and we have OBJ(2, 0) = ∅



Edit Distance

Definition
For two strings, we want to transform one string into the other using
three operations: (1) letter insertion, (2) letter deletion, and (3) letter
substitution.
The edit distance between the two strings is the minimum number of
operations required to complete the transform.

Example: FOOD −→ MONEY

FOOD → MOOD → MON D → MONED → MONEY

Edit Distance (FOOD, MONEY)=4



Edit Distance

Definition
For two strings, we want to transform one string into the other using
three operations: (1) letter insertion, (2) letter deletion, and (3) letter
substitution.
The edit distance between the two strings is the minimum number of
operations required to complete the transform.

Question:
For any two strings, is there always such a sequence of operations?



Edit Distance

Problem
Given two strings A[1 . . .m] and B[1 . . . n], find the shortest sequence of
edit operations that transforms A into B

Applications
The problem has important applications in DNA sequencing and search
engine



Edit Distance as an Alignment Problem

c d i i c
A: F O O D
B: M O N E Y

We add any number of blanks (in the middle or to the ends) to the
two strings to make them have equal length.
Then we align the letters and derive the following operation for each
pair of matched letters:

1 A letter in A matched to a blank in B: delete the letter in A
2 A blank in A matched to a letter in B: insert the letter in B
3 A letter in A matched to a letter in B:

1 Two letter are different: substitute the letter in A with the letter in B
2 Two letter are same: do nothing

4 Two blanks in A, B matched: we typically avoid this as this means
nothing



Edit Distance as an Alignment Problem

Remark:
We have transformed the problem of finding an edit sequence for two
strings (which is pretty obscure) into finding an alignment for two
strings (which is easy to visualize)
So, instead of trying to find an optimal edit sequence from A to B,
we instead try to find an optimal alignment between A and B



Alignment: Optimal Substructure Property

? i c
A: F O O D
B: M O N E Y

Suppose we have partially aligned the right (black) parts. Under the
current partial alignment, what do we do on the unaligned (gray)
parts to make the total alignment optimal?

It’s simple. Just take the optimal alignment for the gray parts (optimal
substructure property).
Proof is easy (use cut-and-paste)



Alignment: Optimal Substructure Property

? i c
A: F O O D
B: M O N E Y

The optimal substructure property implies that suppose we have
known how to align the suffixes (‘right parts’) of the two strings A,B,
then the problems boils down to finding the shortest edit sequence for
two prefixes (‘left parts’) of A,B

Prefixes are shorter than the original strings
So, we have that solving a larger problem relies on solving smaller
problems

Optimal solution function
Consider the prefix A[1 . . . i ] of A and the prefix B[1 . . . j] of B
Let Edit(i , j) denote the edit distance between A[1 . . . i ] and B[1 . . . j]
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The optimal substructure property implies that suppose we have
known how to align the suffixes (‘right parts’) of the two strings A,B,
then the problems boils down to finding the shortest edit sequence for
two prefixes (‘left parts’) of A,B
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Recursive formula for Edit(i , j)

Edit(i , j): edit distance between A[1 . . . i ] and B[1 . . . j]

Inspired by the previous example, we shall:
1 Partially align some ‘right’ parts (suffixes) of A[1 . . . i ] and B[1 . . . j]
2 Take the optimal align for the remaining ‘left’ parts (prefixes).

How long should the suffix be?

Answer: We only take one letter.



Recursive formula for Edit(i , j)

Edit(i , j): edit distance between A[1 . . . i ] and B[1 . . . j]

Inspired by the previous example, we shall:
1 Partially align some ‘right’ parts (suffixes) of A[1 . . . i ] and B[1 . . . j]
2 Take the optimal align for the remaining ‘left’ parts (prefixes).

How long should the suffix be? Answer: We only take one letter.



Recursive formula for Edit(i , j): Case 1

Edit(i , j): edit distance between A[1 . . . i ] and B[1 . . . j]

Case 1: Consider matching the last letter A[i ] of A[1 . . . i ] with a blank
inserted at the end of B[1 . . . j] (producing an operation of deleting A[i ])

Example: For the previous two strings where i = m, j = n:

? d
A: F O O D
B: M O N E Y

Shortest edit sequence in this case:

Edit(i − 1, j) + 1



Recursive formula for Edit(i , j): Case 2

Edit(i , j): edit distance between A[1 . . . i ] and B[1 . . . j]

Case 2: Consider matching the last letter B[j] of B[1 . . . j] with a blank
inserted at the end of A[1 . . . i ] (producing an operation of inserting B[j])

Example: For the previous two strings where i = m, j = n:

? i
A: F O O D
B: M O N E Y

Shortest edit sequence in this case:

Edit(i , j − 1) + 1



Recursive formula for Edit(i , j): Case 3

Edit(i , j): edit distance between A[1 . . . i ] and B[1 . . . j]

Case 3: Consider matching the last letter A[i ] of A[1 . . . i ] with the last
letter B[j] of B[1 . . . j] (producing an operation of substituting A[i ] with
B[j] if A[i ] ̸= B[j])

Example: For the previous two strings where i = m, j = n:

? c
A: F O O D
B: M O N E Y

Shortest edit sequence in this case:

Edit(i − 1, j − 1) + 0/1



Recursive formula for Edit(i , j)

Edit(i , j) =


i if j = 0
j if i = 0

min


Edit(i − 1, j) + 1
Edit(i , j − 1) + 1
Edit(i − 1, j − 1) + diff(i , j)

 otherwise

where diff(i , j) = 1 if A[i ] ̸= B[j] and 0 otherwise.

The algorithm returns Edit(m, n) as answer



Reason for only needing the 3 cases (advanced material)

We need to show that the previous 3 cases cover all possibilities for
the alignment of A[1 . . . i ] and B[1 . . . j]
For this, we show that, if an alignment is not Case 1 and Case 3, then
it must be Case 2.
The alignment does not fall in Case 1 means that A[i ] is not matched
with a blank inserted at the end of B[1 . . . j]
The alignment does not fall in Case 3 means that A[i ] is also not
matched with the last letter of B[1 . . . j]
This means that A[i ] has to be matched with some letter before B[j]
or some blank inserted before B[j]
Either way, since A[i ] is the last letter of A[1 . . . i ], B[j] has to be
matched with a blank inserted at the end of A[1 . . . i ] (Case 2)



The Edit Distance Algorithm

Edit-Distance (A, B)
1. for j = 0 to n do Edit[0, j] = j;
2. for i = 1 to m do Edit[i , 0] = i ;
3. for i = 1 to m do

3.1. for j = 1 to n do
3.1.1. Edit[i , j] =

min{1+Edit(i −1, j), 1+Edit(i , j −1), diff(i , j)+Edit(i −1, j −1)};

4. return Edit[m, n];

Figure 7: Edit Distance Algorithm.

Running Time
The running time is clearly O(mn)



Matrix-chain multiplication

Given a sequence ⟨A1,A2, . . . ,An⟩ of matrices, and we wish to compute
the product A1A2 · · ·An.

Background:
Two matrices A and B can be multiplied iff A has dimension p × q
and B has dimension q × r , i.e., the number of columns of A equals
the number of rows of B
Multiplying A and B has a cost p · q · r , which is the number of scalar
multiplications/summations



Matrix-chain multiplication

Background (continued):
Matrix multiplication is associative: different parenthesizations (orders
for which two matrices to multiply first) yield the same product.

Different ways to multiply four matrices:

1 : A1(A2(A3A4))

2 : A1((A2A3)A4)

3 : (A1A2)(A3A4)

4 : (A1(A2A3))A4

5 : ((A1A2)A3)A4



Matrix-chain multiplication

Background (continued):
Assume we multiply two matrices each time
Different ways of multiplying the matrices can have a dramatic
impact on the cost:

E.g., for three matrices ⟨A1,A2,A3⟩, with dimensions

10 × 100, 100 × 5, and 5 × 50

Cost of (A1A2)A3: 10 · 100 · 5 + 10 · 5 · 50 = 5000 + 2500 = 7500
Cost of A1(A2A3): 100 · 5 · 50 + 10 · 100 · 50 = 25000 + 50000 = 75000



Problem definition

Matrix-chain multiplication
Given a sequence ⟨A1,A2, . . . ,An⟩ of matrices, where each Ai has
dimension pi−1 × pi , we want to find an way of multiplying A1A2 · · ·An
with the minimum cost.

Notice:
The input to the algorithm is a sequence of numbers: p0, p1, . . . , pn
encoding the dimensions of the n matrices
We are not actually multiplying the matrices. Our goal is only to
determine an order for the multiplication that has the lowest cost
(remember that each time we multiply only two matrices).
Typically, the time invested in determining this optimal order can be
greatly less than the time can we can save compared to an arbitrary
multiplication



Brute-force?

Let P(n) denote the different ways of multiplying n matrices, then

P(n) =
{

1 if n = 1∑n−1
k=1 P(k)P(n − k) otherwise

P(n) ∈ Ω(2n): Brute-force doesn’t work



The dynamic programming ingredients

To get the minimum cost for multiplying the sequence, we first make
a choice by splitting the sequence into two parts (without caring
about how to choose k)

⟨A1,A2, . . . ,Ak⟩ and ⟨Ak+1,Ak+2, . . . ,An⟩

We want to figure out a way to multiply the two parts first, and then
multiply the products of the two
Clearly, under this choice, the optimal cost for the multiplication is:

optimal cost for multiplying the left part +
optimal cost for multiplying the right part +
cost for multiplying the products of the two parts

This is the Optimal Substructure Property! (Proof by cut-and-paste)
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Optimal solution function

Previously, the two subsequences

⟨A1,A2, . . . ,Ak⟩ and ⟨Ak+1,Ak+2, . . . ,An⟩

are indeed subproblems (combining solutions to the two subproblems
produces solution to the original problem)
Notice that neither the start nor the end of the subsequences are fixed

General form of our subproblem: find the minimum cost for
multiplying matrices ⟨Ai ,Ai+1, . . . ,Aj⟩

Let OPT (i , j) be the minimum cost for multiplying matrices
⟨Ai ,Ai+1, . . . ,Aj⟩.
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Optimal solution function

Previously, the two subsequences

⟨A1,A2, . . . ,Ak⟩ and ⟨Ak+1,Ak+2, . . . ,An⟩

are indeed subproblems (combining solutions to the two subproblems
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Recursive formula for OPT (i , j)

To get the optimal way of multiplying AiAi+1 · · ·Aj , as previous, we
first split ⟨Ai ,Ai+1, . . . ,Aj⟩ into two parts (without caring about how
to choose k)

⟨Ai ,A2, . . . ,Ak⟩ and ⟨Ak+1,Ak+2, . . . ,Aj⟩

Clearly, under this choice, the optimal cost for the multiplication is:

optimal cost for multiplying the left part +
optimal cost for multiplying the right part +
cost for multiplying the products of the two parts

which is OPT (i , k) + OPT (k, j) + pi−1pkpj

How do we determine the split position k?
We enumerate all the possibilities!
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Recursive formula for OPT (i , j)

OPT (i , j) =
{

0 if i = j
mini≤k<j{OPT (i , k) + OPT (k + 1, j) + pi−1pkpj} if i < j

Algorithm returns OPT (1, n)

How do we fill out the table?
OPT (i , j) relies on those OPT (i ′, j ′) with i ′ > i and j ′ < j
We cannot start from the minimum i and j and increase
But we also cannot start with the max i (= n) and min j (= 1)
because OPT (n, 1) doesn’t make sense
Observation: OPT (i , j) relies on those OPT (i ′, j ′) whose length is less
(Again, bigger subproblems rely on smaller subproblems)
So we start from the ones with the minimum length and increase
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Matrix-chain multiplication algorithm

Matrix-chain-multiplication (p0, p1, . . . , pn)
1. for i = 1 to n do OPT [i , i ] = 0;
2. for ℓ = 2 to n do

2.1. for i = 1 to n − ℓ+ 1 do
2.1.1. j = i + ℓ− 1;
2.1.2. OPT [i , j] = ∞;
2.1.3. for k = i to j − 1 do

c = OPT [i , k] + OPT [k + 1, j] + pi−1pkpj ;
if c < OPT [i , j] then OPT [i , j] = c;

3. return OPT [1, n];

Figure 8: Matrix-chain multiplication algorithm

Running Time
The running time is O(n3)


