Huffman's Coding

Tao Hou

Huffman Coding: Setting

- Suppose you need to send a large text to another party
- Let's say, the text consists of six characters, each of which has a frequency of appearing in the text:

sym.	freq.
а	45%
b	13%
с	12%
d	16%
е	9%
f	5%

We would like to encode the text as a sequence of bits while ensuring that:

- 1. we should be able to decode text without ambiguity, with an encoding table given
- 2. the length of the encoded binary string is *minimal*, or in another word, the average no. of bits for encoding each character is the minimal

Fixed Length Encoding

- A first attempt is to assign each character the same code length
- We have 6 characters, so we need a code of length 3 (bits)
- Such an encoding is referred to as a *fixed-length* encoding

sym.	freq.	code
а	45%	000
b	13%	001
с	12%	010
d	16%	011
е	9%	100
f	5%	101

Average number of bits to encode a character: 3

Variable-length Encoding

- Can we do better?
- If we can, then we need to forsake the use of fixed-length encoding, and allow character codes to have different lengths
- Such a code is called a *variable-length* code
- Intuitively, we would like to assign characters with high frequencies short codes
- Let's try that

Variable-length Encoding

sym.	freq.	code
а	45%	0
b	13%	1
с	12%	00
d	16%	01
е	9%	10
f	5%	11

Average no. of bits:

 $.45 \times 1 + .13 \times 1 + .12 \times 2 + .16 \times 2 + .9 \times 2 + .5 \times 2 = 1.42$

Variable-length Encoding

sym.	freq.	code
а	45%	0
b	13%	1
С	12%	00
d	16%	01
е	9%	10
f	5%	11

Average no. of bits:

 $.45 \times 1 + .13 \times 1 + .12 \times 2 + .16 \times 2 + .9 \times 2 + .5 \times 2 = 1.42$

There is a problem! The above encoding is ambiguous: The text can be decoded in multiple ways

Prefix Codes

One way for ensuring decodability in a variable-length code is to require the code to be a prefix code: No code is a prefix of another

sym.	freq.	code
а	45%	000
b	13%	001
С	12%	010
d	16%	011
е	9%	10
f	5%	11

Why Prefix Codes Work?

Consider an algorithm for decoding the bit sequence $b[1, \ldots, n]$:

- 1. Maintain a variable *i* which is the index of the 'next' bit you are scanning at a certain step, i.e., we have scanned all bits b[1, ..., i 1] and decoded the texts in them
- 2. Initially, i = 0.
- 3. Do the following until i > n:
 - 3.1 Find an $\ell \ge i$ such that $b[i, ..., \ell]$ matches a code in the table, and output the corresponding character
 - **3.2** Let $i = \ell + 1$

Why Prefix Codes Work?

Consider an algorithm for decoding the bit sequence $b[1, \ldots, n]$:

- 1. Maintain a variable *i* which is the index of the 'next' bit you are scanning at a certain step, i.e., we have scanned all bits b[1, ..., i 1] and decoded the texts in them
- 2. Initially, i = 0.
- 3. Do the following until i > n:
 - 3.1 Find an $\ell \ge i$ such that $b[i, ..., \ell]$ matches a code in the table, and output the corresponding character
 - 3.2 Let $i = \ell + 1$

We can use proof by contradiction to show that the above process has no ambiguity (i.e., each step finds a unique ℓ) if the bits are encoded with a prefix code

Problem

Problem Definition

Given a set of characters *C* and a frequency function $f : C \to \mathbb{R}$, compute a prefix-code that minimizes

$$\sum_{c \in C} f(c) \times \text{code-length}(c)$$

Prefix Codes & Binary Trees

- Any prefix code can be represented as a binary tree *T* whose leaves represent the characters
- An edge between a tree node and its left (resp. right) child is labeled 0 (resp. 1)
- the code of a character is the concatenation of the labels on the path from the root to the leaf corresponding to the character

sym.	freq.	code
а	45%	000
b	13%	001
С	12%	010
d	16%	011
e	9%	10
f	5%	11

More on Prefix Codes & Binary Trees

- The algorithm to build such a binary tree: For each character *c*, we can build a path starting with the root, ending with *c*, with the edges going to left or right based on the 0/1 in the code of *c*
- We then combine all such paths to get the binary tree
- Since no code of a character is the prefix of another, we have that no node of a character in the tree is an ancestor of another ⇒ all characters correspond to leaves
- So, there is a *one-to-one* correspondence from all such prefix codes to all the binary trees

Problem Reformulation

Problem Reformulation

Given a set of characters *C* and a frequency function $f : C \to \mathbb{N}$, construct a binary tree *T* whose leaves are the characters that minimizes

$$Cost(T) = \sum_{c \in leaves(T)} f(c) \times depth(c)$$

Huffman Algorithm: Ideas

- We work on a bunch of binary trees, whose leaves correspond to the characters
- Each tree has a *frequency*, which is the sum of the frequency of all characters its leaves correspond to

Huffman Algorithm: Ideas

- We work on a bunch of binary trees, whose leaves correspond to the characters
- Each tree has a *frequency*, which is the sum of the frequency of all characters its leaves correspond to
- Initially, each character corresponds to a tree with a single node (frequency is obvious)

Huffman Algorithm: Ideas

- We work on a bunch of binary trees, whose leaves correspond to the characters
- Each tree has a *frequency*, which is the sum of the frequency of all characters its leaves correspond to
- Initially, each character corresponds to a tree with a single node (frequency is obvious)
- Then, in each iteration, we extract two trees with the minimum frequency, and merge the two tree into one by letting them sharing a new root (the frequency will be summed): This is the *greedy choice*
- We do this until we are left with only a single tree

Huffman Algorithm

Huffman(C, f)

1	Q = empty heap
2	for each $c \in C$
3	create an isolated tree node z
4	z. char = c
5	z.freq = f(c)
6	$Heap ext{-}Insert(Q,z,z.\mathit{freq})$
7	for $i = 1$ to $n - 1$
8	create a new tree node <i>z</i>
9	z.left = Extract-Min(Q)
10	$z.right = {\sf Extract-Min}({\sf Q})$
11	z. freq = z. left. freq + z. right. freq
12	$Heap ext{-}Insert(Q,z,z.\mathit{freq})$
13	return Extract-Min(Q)

Huffman Algorithm

Huffman(C, f)

1	Q = empty heap
2	for each $c \in C$
3	create an isolated tree node z
4	z. char = c
5	z.freq = f(c)
6	$Heap ext{-}Insert(Q,z,z.\mathit{freq})$
7	for $i = 1$ to $n - 1$
8	create a new tree node <i>z</i>
9	z.left = Extract-Min(Q)
10	z. right = Extract-Min(Q)
11	z. freq = z. left. freq + z. right. freq
12	Heap-Insert(Q, z, z. freq)
13	return Extract-Min(Q)

Time complexity:

Huffman Algorithm

Huffman(C, f)

1	Q = empty heap
2	for each $c \in C$
3	create an isolated tree node <i>z</i>
4	z. char = c
5	z.freq = f(c)
6	Heap-Insert(Q, z, z. freq)
7	for $i = 1$ to $n - 1$
8	create a new tree node <i>z</i>
9	$z.left = {\sf Extract-Min}({\sf Q})$
10	z. right = Extract-Min(Q)
11	z. freq = z. left. freq + z. right. freq
12	Heap-Insert(Q, z, z. freq)
13	return Extract-Min(Q)

Time complexity: $O(n \log n)$

Correctness proof of Huffman's algorithm

Lemma 1

Assumption:

- Let *C* be an alphabet where each character $c \in C$ has frequency f(c).
- Let *x* and *y* be two characters in *C* with minimum frequency.
- Construct another alphabet C' from C by removing x and y and adding a new character z.
 - Define f for C' as for C, except that f(z) = f(x) + f(y).
- Let *T*′ be any binary tree representing an optimal prefix code for the alphabet *C*′.

Conclusion:

■ Then the tree *T*, obtained from *T'* by replacing the leaf node for *z* with an internal node having *x* and *y* as children, represents an optimal prefix code for the alphabet *C*.

Implication of the Lemma

■ For the tree *T* built by Huffman's algorithm, starting from the simplest form containing a single node, we can iteratively expand the tree by replacing a leaf with an internal node plus two leaves, and eventually arrive at *T* s.t. each tree we have along the expansion is an optimal tree for codes we have.

Implication of the Lemma

- For the tree *T* built by Huffman's algorithm, starting from the simplest form containing a single node, we can iteratively expand the tree by replacing a leaf with an internal node plus two leaves, and eventually arrive at *T* s.t. each tree we have along the expansion is an optimal tree for codes we have.
- Let's work on the example using board:

Proving Lemma 1 needs two propositions.

Proposition 1

- Let *C* be an alphabet where each character $c \in C$ has frequency f(c).
- Let *x* and *y* be two characters in *C* with minimum frequency.
- Then there exists an optimal binary tree for C where x and y are siblings (children of the same parent).

Proposition 1

- Let *C* be an alphabet where each character $c \in C$ has frequency f(c).
- Let *x* and *y* be two characters in *C* with minimum frequency.
- Then there exists an optimal binary tree for C where x and y are siblings (children of the same parent).

Idea of the proof:

■ Take an optimal tree *T* for *C* and modify it to make another optimal tree *T*'' where *x* and *y* are sibling leaves of maximum depth.

- Let *a* and *b* be two characters that are sibling leaves of maximum depth in *T*.
- WLOG, we can assume $f(a) \le f(b)$ and $f(x) \le f(y)$.
- Since f(x) and f(y) are the two min frequencies, we have $f(x) \le f(a)$ and $f(y) \le f(b)$.

- Let *a* and *b* be two characters that are sibling leaves of maximum depth in *T*.
- WLOG, we can assume $f(a) \le f(b)$ and $f(x) \le f(y)$.
- Since f(x) and f(y) are the two min frequencies, we have $f(x) \le f(a)$ and $f(y) \le f(b)$.
- To make the arguments easier, assume $x, y \neq a, b$, e.g.:

The case of (one of) x, y could be equal to (one of) a, b is trickier and we omit (focus on the big picture)

■ We switch *x* with *a*, *y* with *b*, to produce the tree *T*^{''} we want, where the avg code length cannot increase, so that *T*^{''} is also an optimal binary tree:

■ We switch *x* with *a*, *y* with *b*, to produce the tree *T*^{''} we want, where the avg code length cannot increase, so that *T*^{''} is also an optimal binary tree:

$$Cost(T) - Cost(T') = \sum_{c \in C} f(c)d_T(c) - \sum_{c \in C} f(c)d_{T'}(c)$$
(1)

$$= f(x)d_{T}(x) + f(a)d_{T}(a) - f(x)d_{T'}(x) - f(a)d_{T'}(a)$$
(2)

$$= f(x)d_{T}(x) + f(a)d_{T}(a) - f(x)d_{T}(a) - f(a)d_{T}(x)$$
(3)

$$= (f(a) - f(x))(d_{T}(a) - d_{T}(x)) \ge 0$$
(4)

■ We switch *x* with *a*, *y* with *b*, to produce the tree *T*^{''} we want, where the avg code length cannot increase, so that *T*^{''} is also an optimal binary tree:

$$Cost(T) - Cost(T') = \sum_{c \in C} f(c)d_T(c) - \sum_{c \in C} f(c)d_{T'}(c)$$
(1)

$$= f(x)d_{T}(x) + f(a)d_{T}(a) - f(x)d_{T'}(x) - f(a)d_{T'}(a)$$
(2)

$$= f(x)d_{T}(x) + f(a)d_{T}(a) - f(x)d_{T}(a) - f(a)d_{T}(x)$$
(3)

$$= (f(a) - f(x))(d_T(a) - d_T(x)) \ge 0$$
(4)

• $Cost(T) \ge Cost(T') \ge Cost(T'')$

Proposition 2

- Let *T*′ be a binary tree (corresponding to a prefix code) with a leaf *z*
- Let tree *T* be obtained from *T'* by replacing *z* with an internal node having *x* and *y* as children, s.t. f(z) = f(x) + f(y).
- Then, Cost(T') = Cost(T) f(x) f(y)

Proposition 2

- Let *T*′ be a binary tree (corresponding to a prefix code) with a leaf *z*
- Let tree *T* be obtained from *T'* by replacing *z* with an internal node having *x* and *y* as children, s.t. f(z) = f(x) + f(y).
- Then, Cost(T') = Cost(T) f(x) f(y)

Proof:

$Cost(T) - Cost(T') = \sum_{c \in C} f(c)d_T(c) - \sum_{c \in C'} f(c)d_{T'}(c)$ (5) = $f(x)d_T(x) + f(y)d_T(y) - f(z)d_{T'}(z)$ (6)

Proposition 2

- Let *T*′ be a binary tree (corresponding to a prefix code) with a leaf *z*
- Let tree *T* be obtained from *T'* by replacing *z* with an internal node having *x* and *y* as children, s.t. f(z) = f(x) + f(y).
- Then, Cost(T') = Cost(T) f(x) f(y)

Proof:

$Cost(T) - Cost(T') = \sum_{c \in C} f(c)d_T(c) - \sum_{c \in C'} f(c)d_{T'}(c)$ (5) = $f(x)d_T(x) + f(y)d_T(y) - f(z)d_{T'}(z)$ (6)

■ Since $d_T(x) = d_T(y) = d_{T'}(z) + 1$ and f(z) = f(x) + f(y), We have:

$$Cost(T) - Cost(T') = (f(x) + f(y))(d_{T'}(z) + 1) - (f(x) + f(y))d_{T'}(z)$$
(7)
= $f(x) + f(y)$ (8)

- Use proof by contradiction. Suppose that *T* is not an optimal binary tree for C.
- Then there exists an optimal tree T'' for C such that Cost(T'') < Cost(T).

- Use proof by contradiction. Suppose that *T* is not an optimal binary tree for C.
- Then there exists an optimal tree T'' for C such that Cost(T'') < Cost(T).
- Since *x* and *y* have minimum frequency in *C*, we can also let *T*^{''} be an optimal tree where *x* and *y* are siblings (by Proposition 1).

- Use proof by contradiction. Suppose that *T* is not an optimal binary tree for C.
- Then there exists an optimal tree T'' for C such that Cost(T'') < Cost(T).
- Since *x* and *y* have minimum frequency in *C*, we can also let *T*^{''} be an optimal tree where *x* and *y* are siblings (by Proposition 1).
- Let T''' be derived from T'' with the common parent of x and y replaced by a leaf z with f(z) = f(x) + f(y).
 - ► *T*''' is a binary tree for *C*'

- Use proof by contradiction. Suppose that *T* is not an optimal binary tree for C.
- Then there exists an optimal tree T'' for C such that Cost(T'') < Cost(T).
- Since *x* and *y* have minimum frequency in *C*, we can also let *T*^{''} be an optimal tree where *x* and *y* are siblings (by Proposition 1).
- Let T''' be derived from T'' with the common parent of x and y replaced by a leaf z with f(z) = f(x) + f(y).
 - ► *T*''' is a binary tree for *C*'

$$Cost(T''')$$
 (9)

$$= Cost(T'') - f(x) - f(y)$$
(10)

- Use proof by contradiction. Suppose that *T* is not an optimal binary tree for C.
- Then there exists an optimal tree T'' for C such that Cost(T'') < Cost(T).
- Since *x* and *y* have minimum frequency in *C*, we can also let *T*^{''} be an optimal tree where *x* and *y* are siblings (by Proposition 1).
- Let T''' be derived from T'' with the common parent of x and y replaced by a leaf z with f(z) = f(x) + f(y).
 - ► *T*''' is a binary tree for *C*'

$$Cost(T''')$$
 (9)

$$= Cost(T'') - f(x) - f(y)$$
(10)

$$< Cost(T) - f(x) - f(y)$$
(11)

- Use proof by contradiction. Suppose that *T* is not an optimal binary tree for C.
- Then there exists an optimal tree T'' for C such that Cost(T'') < Cost(T).
- Since *x* and *y* have minimum frequency in *C*, we can also let *T*^{''} be an optimal tree where *x* and *y* are siblings (by Proposition 1).
- Let T''' be derived from T'' with the common parent of x and y replaced by a leaf z with f(z) = f(x) + f(y).
 - ► *T*''' is a binary tree for *C*'

$$Cost(T''')$$
 (9)

$$= Cost(T'') - f(x) - f(y)$$
(10)

$$< Cost(T) - f(x) - f(y)$$
(11)

$$= Cost(T') \tag{12}$$

where (9)-(10), (11)-(12) are by Proposition 2.

This contradicts the fact that T' is an optimal binary tree for C'

Acknowledgement

• Certain figures in the slides are taken from [CLRS]