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Huffman Coding: Setting

Suppose you need to send a large text to another party
Let’s say, the text consists of six characters, each of which has a frequency of appearing in
the text:

sym. freq.
a 45%
b 13%
c 12%
d 16%
e 9%
f 5%

We would like to encode the text as a sequence of bits while ensuring that:
1. we should be able to decode textwithout ambiguity, with an encoding table given
2. the length of the encoded binary string isminimal, or in another word, the average no. of bits

for encoding each character is the minimal



Fixed Length Encoding

A first attempt is to assign each character the same code length
We have 6 characters, so we need a code of length 3 (bits)
Such an encoding is referred to as a fixed-length encoding

sym. freq. code
a 45% 000
b 13% 001
c 12% 010
d 16% 011
e 9% 100
f 5% 101

Average number of bits to encode a character: 3



Variable-length Encoding

Can we do better?

If we can, then we need to forsake the use of fixed-length encoding, and allow character
codes to have different lengths

Such a code is called a variable-length code

Intuitively, we would like to assign characters with high frequencies short codes

Let’s try that



Variable-length Encoding

sym. freq. code
a 45% 0
b 13% 1
c 12% 00
d 16% 01
e 9% 10
f 5% 11

Average no. of bits:

.45 × 1 + .13 × 1 + .12 × 2 + .16 × 2 + .9 × 2 + .5 × 2 = 1.42

There is a problem! The above encoding is ambiguous: The text can be decoded in
multiple ways
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Prefix Codes

One way for ensuring decodability in a variable-length code is to require the code to be a
prefix code: No code is a prefix of another

sym. freq. code
a 45% 000
b 13% 001
c 12% 010
d 16% 011
e 9% 10
f 5% 11



Why Prefix Codes Work?

Consider an algorithm for decoding the bit sequence b[1, . . . , n]:
1. Maintain a variable iwhich is the index of the ‘next’ bit you are scanning at a certain step,

i.e., we have scanned all bits b[1, . . . , i − 1] and decoded the texts in them
2. Initially, i = 0.
3. Do the following until i > n:

3.1 Find an ℓ ≥ i such that b[i, . . . , ℓ ]matches a code in the table, and output the corresponding
character

3.2 Let i = ℓ + 1

We can use proof by contradiction to show that the above process has no ambiguity (i.e., each
step finds a unique ℓ ) if the bits are encoded with a prefix code
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Problem

Problem Definition
Given a set of characters C and a frequency function f : C → Ò, compute a prefix-code that
minimizes ∑

c∈C
f(c) × code-length(c)



Prefix Codes & Binary Trees

Any prefix code can be represented as a binary tree Twhose leaves represent the
characters
An edge between a tree node and its left (resp. right) child is labeled 0 (resp. 1)
the code of a character is the concatenation of the labels on the path from the root to the
leaf corresponding to the character

sym. freq. code
a 45% 000
b 13% 001
c 12% 010
d 16% 011
e 9% 10
f 5% 11
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More on Prefix Codes & Binary Trees

The algorithm to build such a binary tree: For each character c, we can build a path
starting with the root, ending with c, with the edges going to left or right based on the 0/1
in the code of c
We then combine all such paths to get the binary tree
Since no code of a character is the prefix of another, we have that no node of a character
in the tree is an ancestor of another⇒ all characters correspond to leaves
So, there is a one-to-one correspondence from all such prefix codes to all the binary trees



Problem Reformulation

Problem Reformulation
Given a set of characters C and a frequency function f : C → Î, construct a binary tree Twhose
leaves are the characters that minimizes

Cost(T) =
∑

c∈leaves(T)
f(c) × depth(c)



Huffman Algorithm: Ideas

Wework on a bunch of binary trees, whose leaves correspond to the characters
Each tree has a frequency, which is the sum of the frequency of all characters its leaves
correspond to

Initially, each character corresponds to a tree with a single node (frequency is obvious)
Then, in each iteration, we extract two trees with the minimum frequency, andmerge the
two tree into one by letting them sharing a new root (the frequency will be summed):
This is the greedy choice
We do this until we are left with only a single tree
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Huffman Algorithm

HUFFMAN(C, f)
1 Q = empty heap
2 for each c ∈ C
3 create an isolated tree node z
4 z.char = c
5 z. freq = f(c)
6 HEAP-INSERT(Q, z, z. freq)
7 for i = 1 to n − 1
8 create a new tree node z
9 z. left = EXTRACT-MIN(Q)
10 z.right = EXTRACT-MIN(Q)
11 z. freq = z. left. freq + z.right. freq
12 HEAP-INSERT(Q, z, z. freq)
13 return EXTRACT-MIN(Q)

Time complexity: O(n log n)
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Correctness proof of Huffman’s algorithm

Lemma 1
Assumption:

Let C be an alphabet where each character c ∈ C has frequency f(c).
Let x and y be two characters in Cwith minimum frequency.
Construct another alphabet C′ from C by removing x and y and adding a new character z.
▶ Define f for C′ as for C, except that f(z) = f(x) + f(y).

Let T′ be any binary tree representing an optimal prefix code for the alphabet C′.

Conclusion:
Then the tree T, obtained from T′ by replacing the leaf node for zwith an internal node
having x and y as children, represents an optimal prefix code for the alphabet C.



Implication of the Lemma

For the tree T built by Huffman’s algorithm, starting from the simplest form containing a
single node, we can iteratively expand the tree by replacing a leaf with an internal node
plus two leaves, and eventually arrive at T s.t. each tree we have along the expansion is
an optimal tree for codes we have.

Let’s work on the example using board:
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Proof of Lemma 1

Proving Lemma 1 needs two propositions.



Proposition 1

Proposition 1

Let C be an alphabet where each character c ∈ C has frequency f(c).
Let x and y be two characters in Cwith minimum frequency.
Then there exists an optimal binary tree for Cwhere x and y are siblings (children of the
same parent).

Idea of the proof:
Take an optimal tree T for C andmodify it to make another optimal tree T′′ where x and y
are sibling leaves of maximum depth.
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Proof of Proposition 1

Let a and b be two characters that are sibling leaves of maximum depth in T.
WLOG, we can assume f(a) ≤ f(b) and f(x) ≤ f(y).
Since f(x) and f(y) are the twomin frequencies, we have f(x) ≤ f(a) and f(y) ≤ f(b).

To make the arguments easier, assume x, y , a, b, e.g.:

▶ The case of (one of) x, y could be equal to (one of) a, b is trickier and we omit (focus on the
big picture)
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Proof of Proposition 1

We switch xwith a, ywith b, to produce the tree T′′ we want, where the avg code length
cannot increase, so that T′′ is also an optimal binary tree:

Cost(T) − Cost(T′) =
∑
c∈C

f(c)dT(c) −
∑
c∈C

f(c)dT′(c) (1)

= f(x)dT(x) + f(a)dT(a) − f(x)dT′(x) − f(a)dT′(a) (2)
= f(x)dT(x) + f(a)dT(a) − f(x)dT(a) − f(a)dT(x) (3)
= (f(a) − f(x))(dT(a) − dT(x)) ≥ 0 (4)

Cost(T) ≥ Cost(T′) ≥ Cost(T′′)
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Proposition 2
Proposition 2

Let T′ be a binary tree (corresponding to a prefix code) with a leaf z
Let tree T be obtained from T′ by replacing zwith an internal node having x and y as
children, s.t. f(z) = f(x) + f(y).
Then, Cost(T′) = Cost(T) − f(x) − f(y)

Proof:

Cost(T) − Cost(T′) =
∑
c∈C

f(c)dT(c) −
∑
c∈C′

f(c)dT′(c) (5)

= f(x)dT(x) + f(y)dT(y) − f(z)dT′(z) (6)

Since dT(x) = dT(y) = dT′(z) + 1 and f(z) = f(x) + f(y), We have:

Cost(T) − Cost(T′) = (f(x) + f(y))(dT′(z) + 1) − (f(x) + f(y))dT′(z) (7)
= f(x) + f(y) (8)
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Proof of Lemma 1

Use proof by contradiction. Suppose that T is not an optimal binary tree for C.
Then there exists an optimal tree T′′ for C such that Cost(T′′) < Cost(T).

Since x and y haveminimum frequency in C, we can also let T′′ be an optimal tree where x
and y are siblings (by Proposition 1).
Let T′′′ be derived from T′′ with the common parent of x and y replaced by a leaf zwith
f(z) = f(x) + f(y).
▶ T′′′ is a binary tree for C′

Cost(T′′′) (9)
= Cost(T′′) − f(x) − f(y) (10)
< Cost(T) − f(x) − f(y) (11)
= Cost(T′) (12)

where (9)-(10), (11)-(12) are by Proposition 2.
This contradicts the fact that T′ is an optimal binary tree for C′
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