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Greedy Algorithms: Introduction

Algorithms for optimization problems typically go through a sequence of steps, with a set
of choices at each step.

A greedy algorithm is a very special type of algorithms for solving optimization problems
in the sense that it always makes the choice that looks best at the moment.

That is, it makes a locally optimal choice at each step hoping that this will lead to a
globally optimal solution.

A related technique for solving optimization problem but in dark contrast is dynamic
programming (the next topic of this course), in which we typically enumerate all
local/incremental choices at each step and select the best.

However, for some optimization problems, dynamic programming is overkill: greedy
algorithm can provide a simpler, more efficient solution.

Caution that a bunch of locally optimal choices usually do not lead to globally optimal
choice: this is true only for certain problems, and this need proofs!
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Greedy Algorithms: Introduction

A further remark:
In order for greedy algorithm to work, a problem typically should satisfy the
optimal-substructure property, i.e., we should be able to easily combine optimal
solutions to subproblems to produce the optimal solution to the original problem
▶ Wewill address this in more detail in the dynamic-programming section.

Characteristics of greedy algorithms:

Describing a greedy algorithm is easy

Coming upwith an algorithm is tricky

▶ wouldn’t think that such simple strategy can actually work
▶ don’t actually knowwhich (local) criterion to optimize on: a design choice you have to make

Proving that the algorithm is correct is usually hard

▶ requires deep understanding of the structure of the problem

▶ Wewill delve into a lot of proofs in this topic!
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First Simple Example

Gift-selection problem

▶ out of a set X = {x1, x2, . . . , xn} of valuable objects,
where v(xi) is the value of xi

▶ you will be given, as a gift, k objects of your choice
▶ how do youmaximize the total value of your gifts?

Algorithm: Sort the gifts by their values starting from themost valuable one, and choose
the first k gifts
▶ This is a greedy algorithm and it’s easy to believe that it’s correct

The algorithms we shall study later are not so easy to see the correctness



Fractional Knapsack Problem

Problem: Given n items and a “knapsack” with a capacityW s.t.

Each item i haswi units of weight and a profit vi (wi, vi > 0)

For each item, you can take any fraction of weight for that item and gain corresponding
profits

E.g., for an itemwith a weight 5 and a profit 6, you can take 2.2 units of the item gaining a

profit of 2.2 ∗ 6

5
, which occupies 2.2 units of weight in the knapsack

▶
6

5
is the unit profit for the item

Goal: Find a way to put the fractions of the items into the knapsack (i.e., total fractional
weights of items is less than capacity) so that you gain the most profit



Fractional Knapsack: Solution

Idea:
Decreasingly sort the items by their unit profits (vi/wi)
Go over each item i in the above order, and put as many item i as you can into the
knapsack, until the knapsack is full

FRACKNAPSACK({w1, . . . ,wn}, {v1, . . . , vn},W)

1 sort and renumber the items s.t.
v1/w1 ≥ v2/w2 ≥ · · · ≥ vn/wn

2 R = W // ‘remaining’ capacity
3 for i = 1, . . . , n:
4 if R > wi
5 putwi units of item i into the knapsack
6 R = R − wi
7 else
8 put R units of item i into the knapsack
9 break

Time complexity: O(n log n)
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Fractional Knapsack: Justification

Is the previous algorithm correct? And if it is, how to show that the generated solution is
optimal?



Fractional Knapsack: Justification

1. Assume the numbering of the objects satisfy v1/w1 ≥ v2/w2 ≥ · · · ≥ vn/wn

2. Let P = {p1, p2, . . . , pn} be the greedy solution, where pi is the number of units of item i
put into the knapsack

3. Let Q = {q1, q2, . . . , qn} be an optimal solution, where qi is similarly defined as previous
4. Let i be first index s.t. pi , qi
5. Wemust have pi > qi because in the greedy solution P, we take “as many as we can” for

each item, therefore Q cannot take more unit of item i than P
6. Modify solution Q as follows: take out pi − qi units of any items after i in Q, and ‘replace’

themwith pi − qi units of item i.
7. This produces another solution whose value is no smaller than the original Q, because we

are swapping in items whose unit values are no smaller.
8. So this “new” solution Q is also an optimal solution, which we also name it as Q. But this

time we have that pi = qi.
9. With this new optimal Q, if we find the first index s.t. pi , qi as in Step 4, such a “first

index” is going to increase
10. If we repeatedly perform Step 4-6, the first index such that P and Q differ will keep on

increasing, until P = Q. So P is optimal
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Interval Scheduling Problem

A conference room is shared among different activities

▶ S = {1, 2, . . . , n} is the set of proposed activities
▶ activity i has a start time si and a finish time fi
▶ activities i and j are compatible if either fi ≤ sj or fj ≤ si (i.e., their time intervals [si, fi) and
[sj, fj) do not overlap)

Problem: find the largest subset of compatible activities

Example

activity a b c d e f g h i j k
start 8 0 2 3 5 1 5 3 12 6 8
finish 12 6 13 5 7 4 9 8 14 10 11
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Interval Scheduling Problem

The previous problem can be also formalized as an interval scheduling problem

Given a set of n intervals: [s1, f1), [s2, f2), . . . , [sn, fn)

Find the largest subset of dis-joint intervals



Interval Scheduling: Naive Solutions

Themost naive method is to enumerate each subset of the intervals and check the
compatibility, which is in exponential time

There also exists a dynamic-programming algorithm for the problem

But we will look at a greedy algorithmwhich is much simpler and faster



Interval Scheduling: Greedy Solution

Idea:

Order the intervals by their finishing time.

Go over each interval in the order, select the interval if it is compatible with the ones
already selected

GREEDYINTERVSCHED({s1, . . . , sn}, {f1, . . . , fn})
1 sort and renumber the intervals s.t.

f1 ≤ f2 ≤ · · · ≤ fn
2 C = ∅ // selected intervals
3 for i = 1, . . . , n:
4 if interval i is compatible with intervals in C
5 C = C ∪ {i}
6 return C
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Implementing the algorithm

How do we efficiently implement the algorithm?

GREEDYINTERVSCHED({s1, . . . , sn}, {f1, . . . , fn})
1 sort and rename the intervals s.t.

f1 ≤ f2 ≤ · · · ≤ fn
2 C = ∅ // selected intervals
3 for i = 1, . . . , n:
4 if interval i is compatible with intervals in C
5 C = C ∪ {i}
6 return C



Implementing the algorithm

In the previous algorithm, in each step, we need to check whether an interval i is
compatible with intervals in C.

Let C = {a1, a2, . . . , aj}.

Since intervals in C are compatible with each other, we can assume:

[sa1, fa1) ≤ [sa2, fa2) ≤ · · · ≤ [saj, faj)

Since we ordered the intervals by finishing time, we have fi ≥ faj

Then interval i is compatible with all intervals in C if and only if it is compatible with the
last interval aj

So we only need check whether si ≥ faj

Therefore, in the algorithm, we will have a variable F keeping the finishing time of the last
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More detailed pseudocodes

GREEDYINTERVSCHED({s1, . . . , sn}, {f1, . . . , fn})
1 sort and rename the intervals s.t.

f1 ≤ f2 ≤ · · · ≤ fn
2 C = ∅ // selected intervals
3 F = −∞ // finishing time of the last interval in C
4 for i = 1, . . . , n:
5 if si ≥ F
6 C = C ∪ {i}
7 F = fi
8 return C

Time complexity: O(n log n)

Question: Is the above greedy algorithm correct? How do we prove it always produce the
optimal solution?
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Interval Scheduling: Justification

We first show that at each step of the greedy algorithm, the set of selected intervals C is
always contained in an optimal solution. This is shown inductively based on the following
proposition:

Proposition

In the greedy algorithm, suppose at a certain step i, we add an interval i into C.
If before adding i, C is contained in an optimal solution, then after adding i to C, C is also
contained in an optimal solution.

What this proposition implies:

We have that initially, C = ∅ is contained in an optimal solution.

So by induction, at each step of the algorithm, after adding an interval into C, C is
contained in an optimal solution, due to the proposition

Specifically, the final solution returned by the greed algorithm is contained in an optimal
solution
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Proof of the Proposition
Suppose before adding i to C, C = {a1, a2, . . . , aj}

By the assumption, we have that C = {a1, a2, . . . , aj} is contained in an optimal solution,
and we want to show that {a1, a2, . . . , aj, i} is contained in an optimal solution.
Let O = {a1, a2, . . . , aj, bj+1, bj+2, . . . , bℓ } be an optimal solution containing C
Since intervals in O are compatible, we can assume they are ordered:

[sa1, fa1) ≤ [sa2, fa2) ≤ · · · ≤ [saj, faj) ≤ [sbj+1
, fbj+1

) ≤ [sbj+2
, fbj+2

) ≤ · · · ≤ [sbℓ , fbℓ )

Since bj+1 is compatible with aj, we must have fbj+1
≥ fi,

▶ If fbj+1
< fi, then bj+1 would have been processed before i in the algorithm;

▶ When we process bj+1, we would add bj+1 to C = {a1, a2, . . . , aj}, contradicting that i is the
interval added to C after aj.

Since fbj+1
≥ fi, we could safely replace bj+1 with i in O, producing another optimal

solution containing {a1, a2, . . . , aj, i}



Proof of the Proposition
Suppose before adding i to C, C = {a1, a2, . . . , aj}
By the assumption, we have that C = {a1, a2, . . . , aj} is contained in an optimal solution,
and we want to show that {a1, a2, . . . , aj, i} is contained in an optimal solution.

Let O = {a1, a2, . . . , aj, bj+1, bj+2, . . . , bℓ } be an optimal solution containing C
Since intervals in O are compatible, we can assume they are ordered:

[sa1, fa1) ≤ [sa2, fa2) ≤ · · · ≤ [saj, faj) ≤ [sbj+1
, fbj+1

) ≤ [sbj+2
, fbj+2

) ≤ · · · ≤ [sbℓ , fbℓ )

Since bj+1 is compatible with aj, we must have fbj+1
≥ fi,

▶ If fbj+1
< fi, then bj+1 would have been processed before i in the algorithm;

▶ When we process bj+1, we would add bj+1 to C = {a1, a2, . . . , aj}, contradicting that i is the
interval added to C after aj.

Since fbj+1
≥ fi, we could safely replace bj+1 with i in O, producing another optimal

solution containing {a1, a2, . . . , aj, i}



Proof of the Proposition
Suppose before adding i to C, C = {a1, a2, . . . , aj}
By the assumption, we have that C = {a1, a2, . . . , aj} is contained in an optimal solution,
and we want to show that {a1, a2, . . . , aj, i} is contained in an optimal solution.
Let O = {a1, a2, . . . , aj, bj+1, bj+2, . . . , bℓ } be an optimal solution containing C

Since intervals in O are compatible, we can assume they are ordered:

[sa1, fa1) ≤ [sa2, fa2) ≤ · · · ≤ [saj, faj) ≤ [sbj+1
, fbj+1

) ≤ [sbj+2
, fbj+2

) ≤ · · · ≤ [sbℓ , fbℓ )

Since bj+1 is compatible with aj, we must have fbj+1
≥ fi,

▶ If fbj+1
< fi, then bj+1 would have been processed before i in the algorithm;

▶ When we process bj+1, we would add bj+1 to C = {a1, a2, . . . , aj}, contradicting that i is the
interval added to C after aj.

Since fbj+1
≥ fi, we could safely replace bj+1 with i in O, producing another optimal

solution containing {a1, a2, . . . , aj, i}



Proof of the Proposition
Suppose before adding i to C, C = {a1, a2, . . . , aj}
By the assumption, we have that C = {a1, a2, . . . , aj} is contained in an optimal solution,
and we want to show that {a1, a2, . . . , aj, i} is contained in an optimal solution.
Let O = {a1, a2, . . . , aj, bj+1, bj+2, . . . , bℓ } be an optimal solution containing C
Since intervals in O are compatible, we can assume they are ordered:

[sa1, fa1) ≤ [sa2, fa2) ≤ · · · ≤ [saj, faj) ≤ [sbj+1
, fbj+1

) ≤ [sbj+2
, fbj+2

) ≤ · · · ≤ [sbℓ , fbℓ )

Since bj+1 is compatible with aj, we must have fbj+1
≥ fi,

▶ If fbj+1
< fi, then bj+1 would have been processed before i in the algorithm;

▶ When we process bj+1, we would add bj+1 to C = {a1, a2, . . . , aj}, contradicting that i is the
interval added to C after aj.

Since fbj+1
≥ fi, we could safely replace bj+1 with i in O, producing another optimal

solution containing {a1, a2, . . . , aj, i}



Proof of the Proposition
Suppose before adding i to C, C = {a1, a2, . . . , aj}
By the assumption, we have that C = {a1, a2, . . . , aj} is contained in an optimal solution,
and we want to show that {a1, a2, . . . , aj, i} is contained in an optimal solution.
Let O = {a1, a2, . . . , aj, bj+1, bj+2, . . . , bℓ } be an optimal solution containing C
Since intervals in O are compatible, we can assume they are ordered:

[sa1, fa1) ≤ [sa2, fa2) ≤ · · · ≤ [saj, faj) ≤ [sbj+1
, fbj+1

) ≤ [sbj+2
, fbj+2

) ≤ · · · ≤ [sbℓ , fbℓ )

Since bj+1 is compatible with aj, we must have fbj+1
≥ fi,

▶ If fbj+1
< fi, then bj+1 would have been processed before i in the algorithm;

▶ When we process bj+1, we would add bj+1 to C = {a1, a2, . . . , aj}, contradicting that i is the
interval added to C after aj.

Since fbj+1
≥ fi, we could safely replace bj+1 with i in O, producing another optimal

solution containing {a1, a2, . . . , aj, i}



Proof of the Proposition
Suppose before adding i to C, C = {a1, a2, . . . , aj}
By the assumption, we have that C = {a1, a2, . . . , aj} is contained in an optimal solution,
and we want to show that {a1, a2, . . . , aj, i} is contained in an optimal solution.
Let O = {a1, a2, . . . , aj, bj+1, bj+2, . . . , bℓ } be an optimal solution containing C
Since intervals in O are compatible, we can assume they are ordered:

[sa1, fa1) ≤ [sa2, fa2) ≤ · · · ≤ [saj, faj) ≤ [sbj+1
, fbj+1

) ≤ [sbj+2
, fbj+2

) ≤ · · · ≤ [sbℓ , fbℓ )

Since bj+1 is compatible with aj, we must have fbj+1
≥ fi,

▶ If fbj+1
< fi, then bj+1 would have been processed before i in the algorithm;

▶ When we process bj+1, we would add bj+1 to C = {a1, a2, . . . , aj}, contradicting that i is the
interval added to C after aj.

Since fbj+1
≥ fi, we could safely replace bj+1 with i in O, producing another optimal

solution containing {a1, a2, . . . , aj, i}



Proof of the Proposition
Suppose before adding i to C, C = {a1, a2, . . . , aj}
By the assumption, we have that C = {a1, a2, . . . , aj} is contained in an optimal solution,
and we want to show that {a1, a2, . . . , aj, i} is contained in an optimal solution.
Let O = {a1, a2, . . . , aj, bj+1, bj+2, . . . , bℓ } be an optimal solution containing C
Since intervals in O are compatible, we can assume they are ordered:

[sa1, fa1) ≤ [sa2, fa2) ≤ · · · ≤ [saj, faj) ≤ [sbj+1
, fbj+1

) ≤ [sbj+2
, fbj+2

) ≤ · · · ≤ [sbℓ , fbℓ )

Since bj+1 is compatible with aj, we must have fbj+1
≥ fi,

▶ If fbj+1
< fi, then bj+1 would have been processed before i in the algorithm;

▶ When we process bj+1, we would add bj+1 to C = {a1, a2, . . . , aj}, contradicting that i is the
interval added to C after aj.

Since fbj+1
≥ fi, we could safely replace bj+1 with i in O, producing another optimal

solution containing {a1, a2, . . . , aj, i}



Proof of the Proposition
Suppose before adding i to C, C = {a1, a2, . . . , aj}
By the assumption, we have that C = {a1, a2, . . . , aj} is contained in an optimal solution,
and we want to show that {a1, a2, . . . , aj, i} is contained in an optimal solution.
Let O = {a1, a2, . . . , aj, bj+1, bj+2, . . . , bℓ } be an optimal solution containing C
Since intervals in O are compatible, we can assume they are ordered:

[sa1, fa1) ≤ [sa2, fa2) ≤ · · · ≤ [saj, faj) ≤ [sbj+1
, fbj+1

) ≤ [sbj+2
, fbj+2

) ≤ · · · ≤ [sbℓ , fbℓ )

Since bj+1 is compatible with aj, we must have fbj+1
≥ fi,

▶ If fbj+1
< fi, then bj+1 would have been processed before i in the algorithm;

▶ When we process bj+1, we would add bj+1 to C = {a1, a2, . . . , aj}, contradicting that i is the
interval added to C after aj.

Since fbj+1
≥ fi, we could safely replace bj+1 with i in O, producing another optimal

solution containing {a1, a2, . . . , aj, i}



Interval Scheduling: Justification

Notice that the previous slides only tell you that the set of intervals C returned by the
greedy algorithm is contained in an optimal solution O

But we need to show that C is the optimal solution O (C = O)

Assume O has an addition interval bj+1 after C = {a1, a2, . . . , aj}, then by the algorithm,
bj+1 must be added to Cwhen processing bj+1, contradicting that bj+1 is not in C
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Why designing greedy algorithms is not easy

Greedy Choices that Do NotWork:

Chose the activity that starts first

Chose the shortest activity

Chose the activity that overlaps with the fewest number of activities



Counter examples for previous strategies

(Figure from Kleinberg & Tardos slides)



Interval Partitioning

Interval Partitioning

We have n lectures; each lecture i starts at si and finishes at fi (i.e., happens in [si, fi))

Goal: find minimum number of classrooms to schedule all lectures so that lectures in the
same room are compatible (disjoint)

This is called ‘interval partitioning’ because we are trying to partition the given set of
intervals into a few subsets s.t. intervals in each subset are compatible

From now on, ‘intervals’ and ‘lectures’ are used interchangeably
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Example

This partitioning uses 4 classrooms to schedule 10 lectures:

(Figure from from Kleinberg & Tardos slides)



Example

This partitioning uses only 3 classrooms:

(Figure from from Kleinberg & Tardos slides)



Important Concept: Depth

Definition
The depth of a given set of lectures (intervals) is the maximum number of lectures held at the
same time

Example: depth of the previous set of lectures is 3

(Figure from from Kleinberg & Tardos slides)
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Important Concept: Depth

Why do we care about the depth of a set of lectures?

Observe that the number of classrooms needed cannot be smaller than the depth

▶ If depth = d, this means that there are d lectures held at the same time

▶ Each of the d lectures must be in a separate classroom

So if we are able to schedule (partition) the lectures into d classrooms, this scheduling
must be minimum (see the example above)

We shall see a greedy algorithmwhich always schedules the lectures into d classrooms
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Interval Partitioning: Greedy Algorithm

Greedy algorithm. Go over each lecture in increasing order of start time:
assign each lecture to any compatible classroom you already have
if there is no compatible classroom, allocate a new one

GREEDYINTERVPARTITION({s1, . . . , sn}, {f1, . . . , fn})
1 sort and renumber the lectures s.t.

s1 ≤ s2 ≤ · · · ≤ sn
2 C = 0 // number of classrooms allocated
3 for i = 1, . . . , n:
4 if lecture i is compatible with lectures in a classroom k already allocated
5 schedule lecture i in classroom k
6 else
7 allocate a new classroom
8 schedule lecture i in the new classroom
9 C = C+ 1
10 return C
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Greedy Algorithm: Correctness

Let C be the number of classrooms schedule by the greedy algorithm

Consider the step iwhere the last classroom is allocated

We have that there are C − 1 lectures in the existing C − 1 classrooms which are
incompatible with lecture i

Since we process the lectures in the order of starting time, we have that the C − 1
incompatible lectures must start before si

So these C − 1 incompatible lectures must end after si

So at time si the C − 1 lectures and lecture i are being held together

The depth of all lectures is ≥ C

So there is no schedulingwith number of classrooms < C
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Implementing the Interval Partitioning Algorithm

In Line 4 of the greedy algorithm, we need to test whether lecture i is compatible a
classroom k already allocated

To implement this efficiently is not trivial: the most naive way is to go over each lecture in
each classroom, which takes O(n) time in the worst case (so overall complexity is O(n2))

The algorithm can be implemented in O(n log n) time by doing things smartly



Implementing the Interval Partitioning Algorithm

Idea:
From the previous interval scheduling problem, we have that a lecture j is compatible
with all lectures in a classroom i iff Fi ≤ sj, where Fi is the finishing time of the latest
lecture in classroom i

So we keep the time Fi for each classroom in our algorithm, and when we examine a
lecture j, we only need to see whether there exists a classroom iwhose Fi ≤ sj

This is equivalent to doing the following: take the class ι whose Fι is the smallest
(earliest) among all classrooms, and check whether Fι ≤ sj

We use a heap to keep all Fi’s for the classrooms, and can retrieve the smallest finishing
time Fι in O(log n) time for the O(n) classrooms



Implementing the Interval Partitioning Algorithm

Idea:
From the previous interval scheduling problem, we have that a lecture j is compatible
with all lectures in a classroom i iff Fi ≤ sj, where Fi is the finishing time of the latest
lecture in classroom i

So we keep the time Fi for each classroom in our algorithm, and when we examine a
lecture j, we only need to see whether there exists a classroom iwhose Fi ≤ sj

This is equivalent to doing the following: take the class ι whose Fι is the smallest
(earliest) among all classrooms, and check whether Fι ≤ sj

We use a heap to keep all Fi’s for the classrooms, and can retrieve the smallest finishing
time Fι in O(log n) time for the O(n) classrooms



Implementing the Interval Partitioning Algorithm

Idea:
From the previous interval scheduling problem, we have that a lecture j is compatible
with all lectures in a classroom i iff Fi ≤ sj, where Fi is the finishing time of the latest
lecture in classroom i

So we keep the time Fi for each classroom in our algorithm, and when we examine a
lecture j, we only need to see whether there exists a classroom iwhose Fi ≤ sj

This is equivalent to doing the following: take the class ι whose Fι is the smallest
(earliest) among all classrooms, and check whether Fι ≤ sj

We use a heap to keep all Fi’s for the classrooms, and can retrieve the smallest finishing
time Fι in O(log n) time for the O(n) classrooms



Implementing the Interval Partitioning Algorithm

Idea:
From the previous interval scheduling problem, we have that a lecture j is compatible
with all lectures in a classroom i iff Fi ≤ sj, where Fi is the finishing time of the latest
lecture in classroom i

So we keep the time Fi for each classroom in our algorithm, and when we examine a
lecture j, we only need to see whether there exists a classroom iwhose Fi ≤ sj

This is equivalent to doing the following: take the class ι whose Fι is the smallest
(earliest) among all classrooms, and check whether Fι ≤ sj

We use a heap to keep all Fi’s for the classrooms, and can retrieve the smallest finishing
time Fι in O(log n) time for the O(n) classrooms



Scheduling to Minimizing Lateness

Minimizing Lateness Problem

We have a bunch of jobs 1, 2, . . . , n and a single machine which processes one job at a
time

Each job j requires tj units of time to process and has a due time dj
▶ i.e., if j starts at time s, it finishes at time fj = s+ tj

Suppose job j finishes at fj. Define Lateness of job j as: lj = max{0, fj − dj}
Goal: Find an order for executing the jobs to minimize maximum lateness maxj=1,...,n{lj}



Scheduling to Minimizing Lateness

(Figure from Kleinberg & Tardos slides)



Minimizing Lateness: Greedy Strategy

The algorithms will be in very simple forms, i.e., we only need to figure out an order of the
jobs based on certain criteria

The problem is which criterion to use:
▶ [Shortest processing time first]: Execute jobs in ascending order of processing time tj

▶ [Smallest slack]: Consider jobs in ascending order of slack dj − tj

(Figures from Kleinberg & Tardos slides)
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Minimizing Lateness: Greedy Strategy

The correct strategy is to simply execute the jobs by the ascending order of the due time

On the previous example:

(Figure from Kleinberg & Tardos slides)

Why is this?



Minimizing Lateness: Greedy Strategy

The correct strategy is to simply execute the jobs by the ascending order of the due time
On the previous example:

(Figure from Kleinberg & Tardos slides)

Why is this?



Minimizing Lateness: Greedy Strategy

The correct strategy is to simply execute the jobs by the ascending order of the due time
On the previous example:

(Figure from Kleinberg & Tardos slides)

Why is this?



Justification of the Greedy Strategy

Assume that jobs are numbered by their due time (i.e., d1 ≤ d2 ≤ · · · ≤ dn) and there is
no gap between the execution of two jobs
▶ If we have an optimal solution with gaps, then we can simply eliminate the gaps and get
another optimal solution

Definition
For an order of job execution, an inversion is a pair of jobs i and j such that i < j but j
scheduled before i

(Figure from Kleinberg & Tardos slides)
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Justification of the Greedy Strategy

Proposition
Swapping a consecutive inversion in an execution does not increase the maximum lateness

(Figure from Kleinberg & Tardos slides)



Justification of the Greedy Strategy
Proof:

Let f1, . . . , fn be the finishing time of jobs before the swap, and let f′1, . . . , f
′
n be their

finishing time after
Let l1, . . . , ln be the lateness of jobs before the swap and l′1, . . . , l

′
n be the lateness after

We have some immediate facts: (1) l′k = lk for k , i, j; (2) l′i ≤ li

So the only job that canmake the max lateness to increase is j
Consider the case that job j is late after the swap (i.e., f′j > dj)
▶ The case that j is not late is easier and is omitted

We have: l′j = f′j − dj = fi − dj ≤ fi − di ≤ li
We have shown that for each element in L′ = {l′1, . . . , l′n}, there is an element in
L = {l1, . . . , ln} greater than or equal to it
So max L′ ≤ max L
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Justification of the Greedy Strategy

Proposition
Executing the jobs by their ascending order of due time yields a solution which minimizes the
maximum lateness

Proof:
Let O be an optimal solution
If O is not the greedy solution (i.e., job are not ordered by their numbers), we can always
transform O into the greedy solution by swapping consecutive inverted jobs.
Since the swap does not increase the max lateness, we still get an optimal solution after
the swap
This means that the greedy solution is an optimal solution
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