Greedy Algorithms

Tao Hou

Outline

Introduction

Problems

- Fractional Knapsack
- Interval Scheduling
- Interval Partitioning
- Scheduling to Minimize Lateness

- Algorithms for *optimization* problems typically go through a sequence of steps, with a set of choices at each step.
- A *greedy algorithm* is a very special type of algorithms for solving optimization problems in the sense that it always makes the choice that *looks best at the moment*.
- That is, it makes a *locally optimal choice* at each step hoping that this will lead to a *globally optimal solution*.

- Algorithms for *optimization* problems typically go through a sequence of steps, with a set of choices at each step.
- A *greedy algorithm* is a very special type of algorithms for solving optimization problems in the sense that it always makes the choice that *looks best at the moment*.
- That is, it makes a *locally optimal choice* at each step hoping that this will lead to a *globally optimal solution*.
- A related technique for solving optimization problem but in dark contrast is *dynamic programming* (the next topic of this course), in which we typically enumerate all local/incremental choices at each step and select the best.
- However, for some optimization problems, dynamic programming is overkill: greedy algorithm can provide a simpler, more efficient solution.

- Algorithms for *optimization* problems typically go through a sequence of steps, with a set of choices at each step.
- A *greedy algorithm* is a very special type of algorithms for solving optimization problems in the sense that it always makes the choice that *looks best at the moment*.
- That is, it makes a *locally optimal choice* at each step hoping that this will lead to a *globally optimal solution*.
- A related technique for solving optimization problem but in dark contrast is *dynamic programming* (the next topic of this course), in which we typically enumerate all local/incremental choices at each step and select the best.
- However, for some optimization problems, dynamic programming is overkill: greedy algorithm can provide a simpler, more efficient solution.
- Caution that a bunch of locally optimal choices usually *do not* lead to globally optimal choice: this is true *only for certain problems*, and this need *proofs*!

A further remark:

- In order for greedy algorithm to work, a problem typically should satisfy the optimal-substructure property, i.e., we should be able to easily combine optimal solutions to subproblems to produce the optimal solution to the original problem
 - We will address this in more detail in the dynamic-programming section.

A further remark:

- In order for greedy algorithm to work, a problem typically should satisfy the optimal-substructure property, i.e., we should be able to easily combine optimal solutions to subproblems to produce the optimal solution to the original problem
 - We will address this in more detail in the dynamic-programming section.

Characteristics of greedy algorithms:

- Describing a greedy algorithm is easy
- Coming up with an algorithm is tricky
 - wouldn't think that such simple strategy can actually work
 - don't actually know which (local) criterion to optimize on: a *design choice* you have to make
- *Proving* that the algorithm is correct is usually *hard*
 - requires deep understanding of the structure of the problem
 - We will delve into a lot of proofs in this topic!

First Simple Example

Gift-selection problem

- ▶ out of a set X = {x₁, x₂,..., x_n} of valuable objects, where v(x_i) is the value of x_i
- ▶ you will be given, as a gift, *k* objects of your choice
- how do you maximize the total value of your gifts?
- Algorithm: Sort the gifts by their values starting from the most valuable one, and choose the first k gifts
 - This is a greedy algorithm and it's easy to believe that it's correct
- The algorithms we shall study later are not so easy to see the correctness

Fractional Knapsack Problem

Problem: Given *n* items and a "knapsack" with a capacity *W* s.t.

- Each item *i* has w_i units of weight and a profit v_i (w_i , $v_i > 0$)
- For each item, you can take *any fraction* of weight for that item and gain corresponding profits
- E.g., for an item with a weight 5 and a profit 6, you can take 2.2 units of the item gaining a profit of 2.2 * ⁶/₅, which occupies 2.2 units of weight in the knapsack
 ⁶/₅ is the *unit profit* for the item

Goal: Find a way to put the fractions of the items into the knapsack (i.e., total fractional weights of items is less than capacity) so that you gain the most profit

Fractional Knapsack: Solution

Idea:

- Decreasingly sort the items by their *unit profits* (v_i/w_i)
- Go over each item *i* in the above order, and put *as many* item *i as you can* into the knapsack, until the knapsack is full

Fractional Knapsack: Solution

Idea:

- Decreasingly sort the items by their *unit profits* (v_i/w_i)
- Go over each item *i* in the above order, and put *as many* item *i as you can* into the knapsack, until the knapsack is full

```
FRACKNAPSACK(\{w_1, ..., w_n\}, \{v_1, ..., v_n\}, W)
    sort and renumber the items s.t.
       v_1/w_1 \ge v_2/w_2 \ge \cdots \ge v_n/w_n
2 R = W // 'remaining' capacity
    for i = 1, . . . , n:
3
         if R > W_i
4
               put w<sub>i</sub> units of item i into the knapsack
5
               R = R - w_i
6
7
         else
8
               put R units of item i into the knapsack
               break
9
```

Time complexity: $O(n \log n)$

Is the previous algorithm correct? And if it is, how to show that the generated solution is optimal?

1. Assume the numbering of the objects satisfy $v_1/w_1 \ge v_2/w_2 \ge \cdots \ge v_n/w_n$

- 1. Assume the numbering of the objects satisfy $v_1/w_1 \ge v_2/w_2 \ge \cdots \ge v_n/w_n$
- 2. Let $P = \{p_1, p_2, ..., p_n\}$ be the *greedy solution*, where p_i is the number of units of item *i* put into the knapsack

- 1. Assume the numbering of the objects satisfy $v_1/w_1 \ge v_2/w_2 \ge \cdots \ge v_n/w_n$
- 2. Let $P = \{p_1, p_2, ..., p_n\}$ be the *greedy solution*, where p_i is the number of units of item *i* put into the knapsack
- 3. Let $Q = \{q_1, q_2, ..., q_n\}$ be an *optimal solution*, where q_i is similarly defined as previous

- 1. Assume the numbering of the objects satisfy $v_1/w_1 \ge v_2/w_2 \ge \cdots \ge v_n/w_n$
- 2. Let $P = \{p_1, p_2, ..., p_n\}$ be the *greedy solution*, where p_i is the number of units of item *i* put into the knapsack
- 3. Let $Q = \{q_1, q_2, \dots, q_n\}$ be an **optimal solution**, where q_i is similarly defined as previous
- 4. Let *i* be *first* index s.t. $p_i \neq q_i$

- 1. Assume the numbering of the objects satisfy $v_1/w_1 \ge v_2/w_2 \ge \cdots \ge v_n/w_n$
- 2. Let $P = \{p_1, p_2, ..., p_n\}$ be the *greedy solution*, where p_i is the number of units of item *i* put into the knapsack
- 3. Let $Q = \{q_1, q_2, ..., q_n\}$ be an *optimal solution*, where q_i is similarly defined as previous
- 4. Let *i* be *first* index s.t. $p_i \neq q_i$
- 5. We must have $p_i > q_i$ because in the greedy solution *P*, we take "as many as we can" for each item, therefore *Q* cannot take more unit of item *i* than *P*

- 1. Assume the numbering of the objects satisfy $v_1/w_1 \ge v_2/w_2 \ge \cdots \ge v_n/w_n$
- 2. Let $P = \{p_1, p_2, ..., p_n\}$ be the *greedy solution*, where p_i is the number of units of item *i* put into the knapsack
- 3. Let $Q = \{q_1, q_2, ..., q_n\}$ be an *optimal solution*, where q_i is similarly defined as previous
- 4. Let *i* be *first* index s.t. $p_i \neq q_i$
- 5. We must have $p_i > q_i$ because in the greedy solution *P*, we take "as many as we can" for each item, therefore *Q* cannot take more unit of item *i* than *P*
- 6. *Modify* solution *Q* as follows: take out $p_i q_i$ units of any items after *i* in *Q*, and 'replace' them with $p_i q_i$ units of item *i*.

- 1. Assume the numbering of the objects satisfy $v_1/w_1 \ge v_2/w_2 \ge \cdots \ge v_n/w_n$
- 2. Let $P = \{p_1, p_2, ..., p_n\}$ be the *greedy solution*, where p_i is the number of units of item *i* put into the knapsack
- 3. Let $Q = \{q_1, q_2, ..., q_n\}$ be an *optimal solution*, where q_i is similarly defined as previous
- 4. Let *i* be **first** index s.t. $p_i \neq q_i$
- 5. We must have $p_i > q_i$ because in the greedy solution *P*, we take "as many as we can" for each item, therefore *Q* cannot take more unit of item *i* than *P*
- 6. *Modify* solution *Q* as follows: take out $p_i q_i$ units of any items after *i* in *Q*, and 'replace' them with $p_i q_i$ units of item *i*.
- 7. This produces another solution whose value is no smaller than the original *Q*, because we are swapping in items whose unit values are no smaller.

- 1. Assume the numbering of the objects satisfy $v_1/w_1 \ge v_2/w_2 \ge \cdots \ge v_n/w_n$
- 2. Let $P = \{p_1, p_2, ..., p_n\}$ be the *greedy solution*, where p_i is the number of units of item *i* put into the knapsack
- 3. Let $Q = \{q_1, q_2, ..., q_n\}$ be an *optimal solution*, where q_i is similarly defined as previous
- 4. Let *i* be **first** index s.t. $p_i \neq q_i$
- 5. We must have $p_i > q_i$ because in the greedy solution *P*, we take "as many as we can" for each item, therefore *Q* cannot take more unit of item *i* than *P*
- 6. *Modify* solution *Q* as follows: take out $p_i q_i$ units of any items after *i* in *Q*, and 'replace' them with $p_i q_i$ units of item *i*.
- 7. This produces another solution whose value is no smaller than the original *Q*, because we are swapping in items whose unit values are no smaller.
- 8. So this "new" solution Q is also an optimal solution, which we also name it as Q. But this time we have that $p_i = q_i$.

- 1. Assume the numbering of the objects satisfy $v_1/w_1 \ge v_2/w_2 \ge \cdots \ge v_n/w_n$
- 2. Let $P = \{p_1, p_2, ..., p_n\}$ be the *greedy solution*, where p_i is the number of units of item *i* put into the knapsack
- 3. Let $Q = \{q_1, q_2, ..., q_n\}$ be an *optimal solution*, where q_i is similarly defined as previous
- 4. Let *i* be **first** index s.t. $p_i \neq q_i$
- 5. We must have $p_i > q_i$ because in the greedy solution *P*, we take "as many as we can" for each item, therefore *Q* cannot take more unit of item *i* than *P*
- 6. *Modify* solution *Q* as follows: take out $p_i q_i$ units of any items after *i* in *Q*, and 'replace' them with $p_i q_i$ units of item *i*.
- 7. This produces another solution whose value is no smaller than the original *Q*, because we are swapping in items whose unit values are no smaller.
- 8. So this "new" solution *Q* is also an optimal solution, which we also name it as *Q*. But this time we have that $p_i = q_i$.
- 9. With this new optimal Q, if we find the first index s.t. $p_i \neq q_i$ as in Step 4, such a "first index" is going to increase

- 1. Assume the numbering of the objects satisfy $v_1/w_1 \ge v_2/w_2 \ge \cdots \ge v_n/w_n$
- 2. Let $P = \{p_1, p_2, ..., p_n\}$ be the *greedy solution*, where p_i is the number of units of item *i* put into the knapsack
- 3. Let $Q = \{q_1, q_2, ..., q_n\}$ be an *optimal solution*, where q_i is similarly defined as previous
- 4. Let *i* be **first** index s.t. $p_i \neq q_i$
- 5. We must have $p_i > q_i$ because in the greedy solution *P*, we take "as many as we can" for each item, therefore *Q* cannot take more unit of item *i* than *P*
- 6. *Modify* solution *Q* as follows: take out $p_i q_i$ units of any items after *i* in *Q*, and 'replace' them with $p_i q_i$ units of item *i*.
- 7. This produces another solution whose value is no smaller than the original *Q*, because we are swapping in items whose unit values are no smaller.
- 8. So this "new" solution *Q* is also an optimal solution, which we also name it as *Q*. But this time we have that $p_i = q_i$.
- 9. With this new optimal Q, if we find the first index s.t. $p_i \neq q_i$ as in Step 4, such a "first index" is going to increase
- 10. If we repeatedly perform Step 4-6, the first index such that P and Q differ will keep on increasing, until P = Q. So P is optimal

- A conference room is shared among different activities
 - $S = \{1, 2, ..., n\}$ is the set of proposed activities
 - activity *i* has a *start time s*_{*i*} and a *finish time f*_{*i*}
 - activities *i* and *j* are *compatible* if either $f_i \le s_j$ or $f_j \le s_i$ (i.e., their time intervals $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap)

A conference room is shared among different activities

- $S = \{1, 2, ..., n\}$ is the set of proposed activities
- activity *i* has a start time s_i and a finish time f_i
- activities *i* and *j* are *compatible* if either $f_i \le s_j$ or $f_j \le s_i$ (i.e., their time intervals $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap)

Problem: find the largest subset of compatible activities

A conference room is shared among different activities

- $S = \{1, 2, ..., n\}$ is the set of proposed activities
- activity *i* has a *start time s*_{*i*} and a *finish time f*_{*i*}
- activities *i* and *j* are *compatible* if either $f_i \le s_j$ or $f_j \le s_i$ (i.e., their time intervals $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap)

Problem: find the largest subset of compatible activities

activity	а	b	С	d	е	f	g	h	i	j	k
start	8	0	2	3	5	1	5	3	12	6	8
finish	12	6	13	5	7	4	9	8	14	10	11

The previous problem can be also formalized as an *interval scheduling* problem

- Given a set of *n* intervals: $[s_1, f_1), [s_2, f_2), \dots, [s_n, f_n)$
- Find the largest subset of *dis-joint* intervals

Interval Scheduling: Naive Solutions

- The most naive method is to enumerate each subset of the intervals and check the compatibility, which is in exponential time
- There also exists a *dynamic-programming* algorithm for the problem
- But we will look at a *greedy algorithm* which is much simpler and faster

Interval Scheduling: Greedy Solution

Idea:

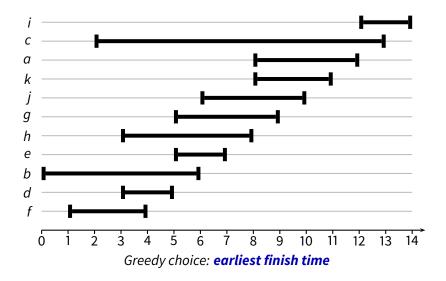
- Order the intervals by their *finishing time*.
- Go over each interval in the order, select the interval if it is compatible with the ones already selected

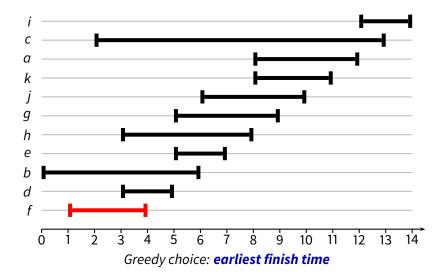
Interval Scheduling: Greedy Solution

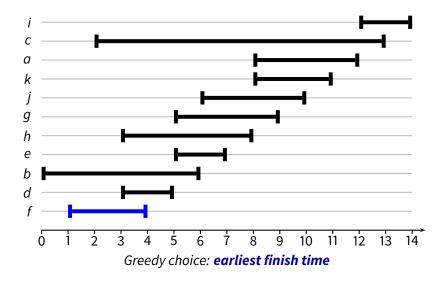
Idea:

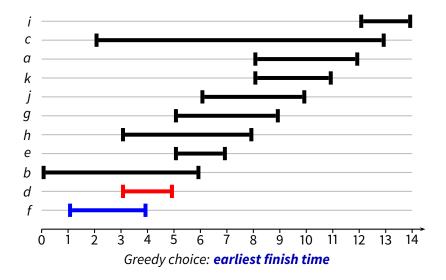
- Order the intervals by their *finishing time*.
- Go over each interval in the order, select the interval if it is compatible with the ones already selected

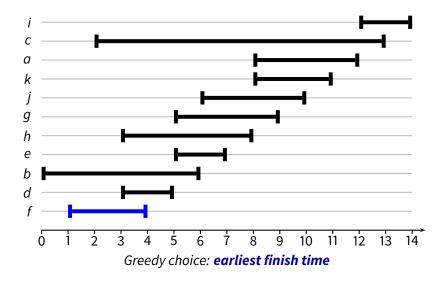
GREEDVINTERVSCHED($\{s_1, \ldots, s_n\}, \{f_1, \ldots, f_n\}$)1sort and renumber the intervals s.t. $f_1 \leq f_2 \leq \cdots \leq f_n$ 2 $C = \emptyset$ // selected intervals3for $i = 1, \ldots, n$:4if interval i is compatible with intervals in C5 $C = C \cup \{i\}$ 6return C

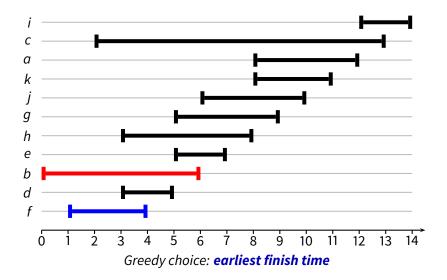


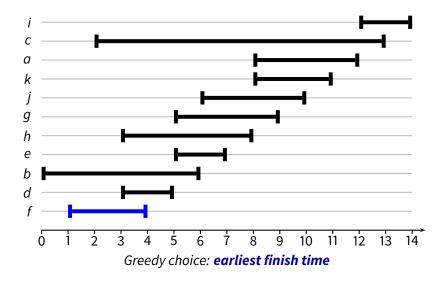


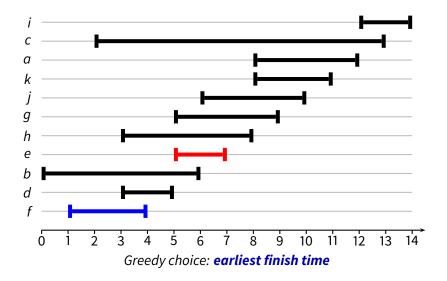


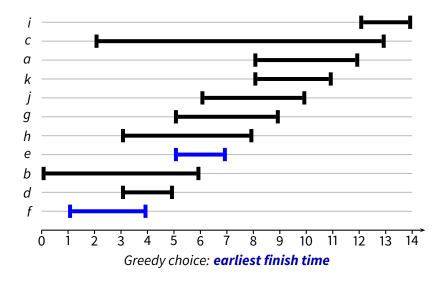


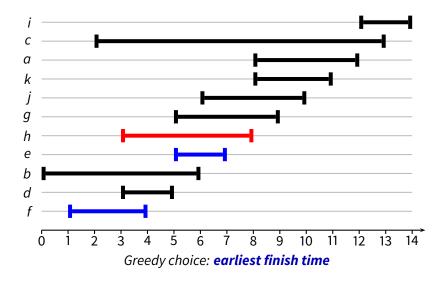


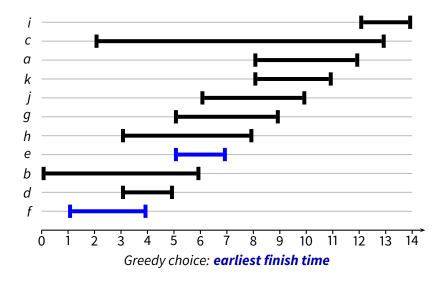


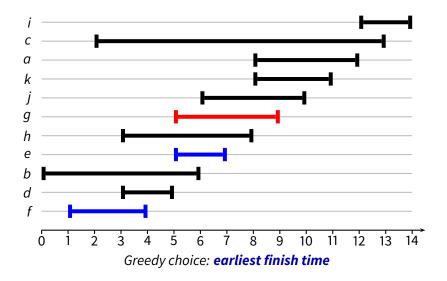


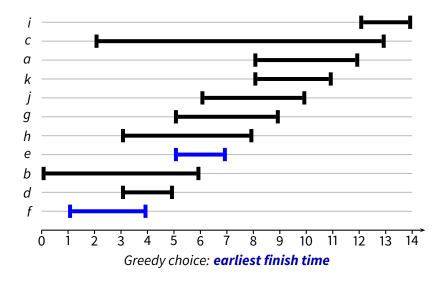


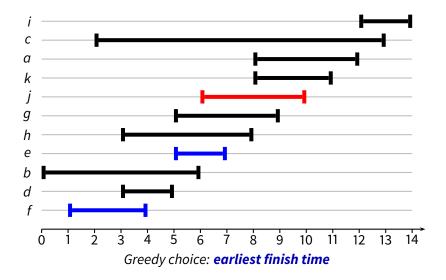


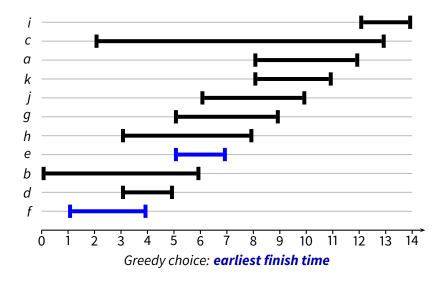


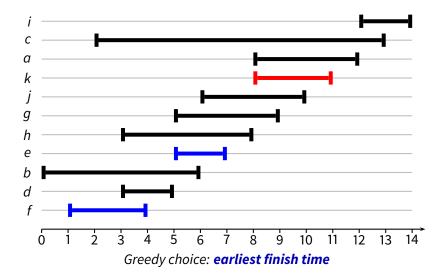


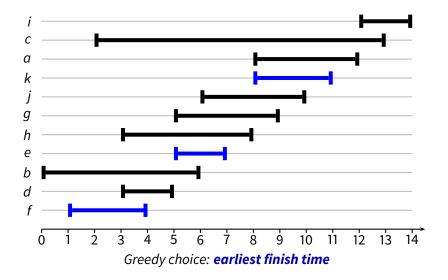


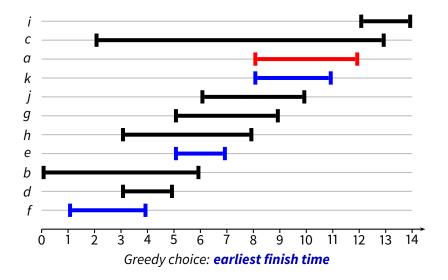


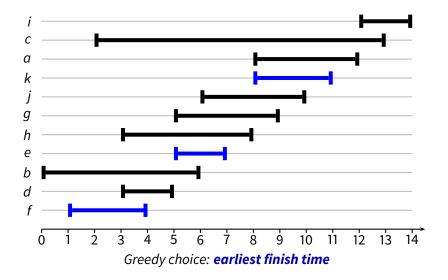


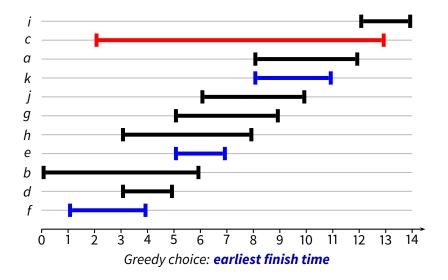


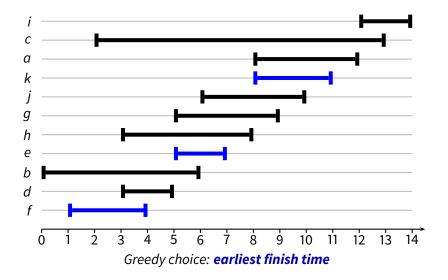


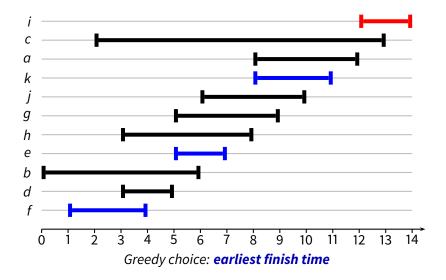


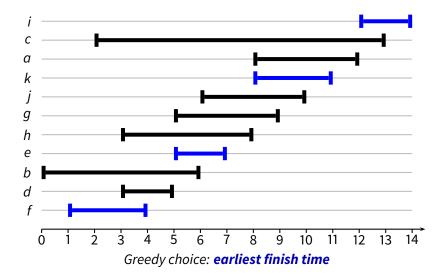












How do we efficiently implement the algorithm?

GREEDVINTERVSCHED($\{s_1, \ldots, s_n\}, \{f_1, \ldots, f_n\}$)1sort and rename the intervals s.t. $f_1 \le f_2 \le \cdots \le f_n$ 2C $\varnothing //$ selected intervals3for $i = 1, \ldots, n$:4if interval i is compatible with intervals in C5C6return C

■ In the previous algorithm, in each step, we need to check whether an interval *i* is compatible with intervals in *C*.

■ In the previous algorithm, in each step, we need to check whether an interval *i* is compatible with intervals in *C*.

• Let $C = \{a_1, a_2, \dots, a_j\}.$

- In the previous algorithm, in each step, we need to check whether an interval *i* is compatible with intervals in *C*.
- Let $C = \{a_1, a_2, \dots, a_j\}.$
- Since intervals in *C* are compatible with each other, we can assume:

$$[\mathbf{s}_{a_1}, \mathbf{f}_{a_1}) \leq [\mathbf{s}_{a_2}, \mathbf{f}_{a_2}) \leq \cdots \leq [\mathbf{s}_{a_j}, \mathbf{f}_{a_j}]$$

- In the previous algorithm, in each step, we need to check whether an interval i is compatible with intervals in C.
- Let $C = \{a_1, a_2, \dots, a_j\}.$
- Since intervals in *C* are compatible with each other, we can assume:

$$[s_{a_1}, f_{a_1}) \leq [s_{a_2}, f_{a_2}) \leq \cdots \leq [s_{a_j}, f_{a_j})$$

Since we ordered the intervals by finishing time, we have $f_i \ge f_{a_i}$

- In the previous algorithm, in each step, we need to check whether an interval i is compatible with intervals in C.
- Let $C = \{a_1, a_2, \dots, a_j\}.$
- Since intervals in *C* are compatible with each other, we can assume:

$$[\mathbf{s}_{a_1}, f_{a_1}) \leq [\mathbf{s}_{a_2}, f_{a_2}) \leq \cdots \leq [\mathbf{s}_{a_j}, f_{a_j})$$

- Since we ordered the intervals by finishing time, we have $f_i \ge f_{a_i}$
- Then interval i is compatible with all intervals in C if and only if it is compatible with the last interval a_j

- In the previous algorithm, in each step, we need to check whether an interval i is compatible with intervals in C.
- Let $C = \{a_1, a_2, \dots, a_j\}.$
- Since intervals in *C* are compatible with each other, we can assume:

$$[\mathbf{s}_{a_1}, \mathbf{f}_{a_1}) \leq [\mathbf{s}_{a_2}, \mathbf{f}_{a_2}) \leq \cdots \leq [\mathbf{s}_{a_j}, \mathbf{f}_{a_j})$$

- Since we ordered the intervals by finishing time, we have $f_i \ge f_{a_i}$
- Then interval i is compatible with all intervals in C if and only if it is compatible with the last interval a_j
- So we only need check whether $s_i \ge f_{a_i}$

- In the previous algorithm, in each step, we need to check whether an interval i is compatible with intervals in C.
- Let $C = \{a_1, a_2, \ldots, a_j\}.$
- Since intervals in *C* are compatible with each other, we can assume:

$$[s_{a_1}, f_{a_1}) \leq [s_{a_2}, f_{a_2}) \leq \cdots \leq [s_{a_j}, f_{a_j})$$

- Since we ordered the intervals by finishing time, we have $f_i \ge f_{a_i}$
- Then interval i is compatible with all intervals in C if and only if it is compatible with the last interval a_i
- So we only need check whether $s_i \ge f_{a_i}$
- Therefore, in the algorithm, we will have a variable F keeping the finishing time of the last interval in C, and at each iteration we check whether the starting time of interval i is later than F

More detailed pseudocodes

GREEDYINTERVSCHED($\{s_1, ..., s_n\}, \{f_1, ..., f_n\}$) sort and rename the intervals s.t. 1 $f_1 \leq f_2 \leq \cdots \leq f_n$ 2 $C = \emptyset // \text{ selected intervals}$ 3 $F = -\infty //$ finishing time of the last interval in C for *i* = 1, . . . , *n*: 4 if $s_i \geq F$ 5 $C = C \cup \{i\}$ 6 7 $F = f_i$ return C 8

Time complexity: $O(n \log n)$

More detailed pseudocodes

GREEDVINTERVSCHED($\{s_1, ..., s_n\}, \{f_1, ..., f_n\}$) sort and rename the intervals s.t. $f_1 \leq f_2 \leq \cdots \leq f_n$ 2 $C = \emptyset // \text{ selected intervals}$ 3 $F = -\infty //$ finishing time of the last interval in C 4 for *i* = 1, . . . , *n*: if $s_i \ge F$ 5 6 $C = C \cup \{i\}$ 7 $F = f_i$ return C 8

Time complexity: $O(n \log n)$

Question: Is the above greedy algorithm correct? How do we prove it always produce the optimal solution?

Interval Scheduling: Justification

We first show that at each step of the greedy algorithm, the set of selected intervals *C* is *always contained* in an optimal solution. This is shown *inductively* based on the following proposition:

Interval Scheduling: Justification

We first show that at each step of the greedy algorithm, the set of selected intervals *C* is *always contained* in an optimal solution. This is shown *inductively* based on the following proposition:

Proposition

- In the greedy algorithm, suppose at a certain step *i*, we add an interval *i* into *C*.
- If before adding *i*, *C* is *contained in* an optimal solution, then after adding *i* to *C*, *C* is *also contained in* an optimal solution.

Interval Scheduling: Justification

We first show that at each step of the greedy algorithm, the set of selected intervals *C* is *always contained* in an optimal solution. This is shown *inductively* based on the following proposition:

Proposition

- In the greedy algorithm, suppose at a certain step *i*, we add an interval *i* into *C*.
- If before adding *i*, *C* is contained in an optimal solution, then after adding *i* to *C*, *C* is also contained in an optimal solution.

What this proposition *implies*:

- We have that initially, $C = \emptyset$ is contained in an optimal solution.
- So by induction, at each step of the algorithm, after adding an interval into C, C is contained in an optimal solution, due to the proposition
- Specifically, the *final solution* returned by the greed algorithm is contained in an optimal solution

Suppose before adding *i* to C, $C = \{a_1, a_2, \ldots, a_j\}$

- Suppose before adding *i* to *C*, $C = \{a_1, a_2, \ldots, a_j\}$
- By the assumption, we have that $C = \{a_1, a_2, ..., a_j\}$ is contained in an optimal solution, and we want to show that $\{a_1, a_2, ..., a_j, i\}$ is contained in an optimal solution.

- Suppose before adding *i* to *C*, $C = \{a_1, a_2, \ldots, a_j\}$
- By the assumption, we have that $C = \{a_1, a_2, ..., a_j\}$ is contained in an optimal solution, and we want to show that $\{a_1, a_2, ..., a_j, i\}$ is contained in an optimal solution.
- Let $O = \{a_1, a_2, \dots, a_j, b_{j+1}, b_{j+2}, \dots, b_\ell\}$ be an optimal solution containing C

- Suppose before adding *i* to $C, C = \{a_1, a_2, \dots, a_j\}$
- By the assumption, we have that $C = \{a_1, a_2, ..., a_j\}$ is contained in an optimal solution, and we want to show that $\{a_1, a_2, ..., a_j, i\}$ is contained in an optimal solution.
- Let $O = \{a_1, a_2, \dots, a_j, b_{j+1}, b_{j+2}, \dots, b_\ell\}$ be an optimal solution containing C
- Since intervals in *O* are compatible, we can assume they are ordered:

$$[s_{a_1}, f_{a_1}) \le [s_{a_2}, f_{a_2}) \le \dots \le [s_{a_j}, f_{a_j}) \le [s_{b_{j+1}}, f_{b_{j+1}}) \le [s_{b_{j+2}}, f_{b_{j+2}}) \le \dots \le [s_{b_{\ell}}, f_{b_{\ell}})$$

- Suppose before adding *i* to $C, C = \{a_1, a_2, \dots, a_j\}$
- By the assumption, we have that $C = \{a_1, a_2, ..., a_j\}$ is contained in an optimal solution, and we want to show that $\{a_1, a_2, ..., a_j, i\}$ is contained in an optimal solution.
- Let $O = \{a_1, a_2, \dots, a_j, b_{j+1}, b_{j+2}, \dots, b_\ell\}$ be an optimal solution containing C
- Since intervals in *O* are compatible, we can assume they are ordered:

$$[s_{a_1}, f_{a_1}) \le [s_{a_2}, f_{a_2}) \le \dots \le [s_{a_j}, f_{a_j}) \le [s_{b_{j+1}}, f_{b_{j+1}}) \le [s_{b_{j+2}}, f_{b_{j+2}}) \le \dots \le [s_{b_\ell}, f_{b_\ell})$$

Since b_{j+1} is compatible with a_j , we must have $f_{b_{j+1}} \ge f_i$,

- Suppose before adding *i* to $C, C = \{a_1, a_2, \dots, a_j\}$
- By the assumption, we have that $C = \{a_1, a_2, ..., a_j\}$ is contained in an optimal solution, and we want to show that $\{a_1, a_2, ..., a_j, i\}$ is contained in an optimal solution.
- Let $O = \{a_1, a_2, \dots, a_j, b_{j+1}, b_{j+2}, \dots, b_\ell\}$ be an optimal solution containing C
- Since intervals in *O* are compatible, we can assume they are ordered:

$$[s_{a_1}, f_{a_1}) \le [s_{a_2}, f_{a_2}) \le \cdots \le [s_{a_j}, f_{a_j}) \le [s_{b_{j+1}}, f_{b_{j+1}}) \le [s_{b_{j+2}}, f_{b_{j+2}}) \le \cdots \le [s_{b_{\ell}}, f_{b_{\ell}})$$

Since b_{j+1} is compatible with a_j , we must have $f_{b_{j+1}} \ge f_i$,

• If $f_{b_{j+1}} < f_i$, then b_{j+1} would have been processed before *i* in the algorithm;

- Suppose before adding *i* to $C, C = \{a_1, a_2, \dots, a_j\}$
- By the assumption, we have that $C = \{a_1, a_2, ..., a_j\}$ is contained in an optimal solution, and we want to show that $\{a_1, a_2, ..., a_j, i\}$ is contained in an optimal solution.
- Let $O = \{a_1, a_2, \dots, a_j, b_{j+1}, b_{j+2}, \dots, b_\ell\}$ be an optimal solution containing C
- Since intervals in *O* are compatible, we can assume they are ordered:

$$[s_{a_1}, f_{a_1}) \le [s_{a_2}, f_{a_2}) \le \cdots \le [s_{a_j}, f_{a_j}) \le [s_{b_{j+1}}, f_{b_{j+1}}) \le [s_{b_{j+2}}, f_{b_{j+2}}) \le \cdots \le [s_{b_{\ell}}, f_{b_{\ell}})$$

Since b_{j+1} is compatible with a_j , we must have $f_{b_{j+1}} \ge f_i$,

- If $f_{b_{i+1}} < f_i$, then b_{j+1} would have been processed before *i* in the algorithm;
- When we process b_{j+1} , we would add b_{j+1} to $C = \{a_1, a_2, ..., a_j\}$, contradicting that *i* is the interval added to *C* after a_j .

Proof of the Proposition

- Suppose before adding *i* to $C, C = \{a_1, a_2, \dots, a_j\}$
- By the assumption, we have that $C = \{a_1, a_2, ..., a_j\}$ is contained in an optimal solution, and we want to show that $\{a_1, a_2, ..., a_j, i\}$ is contained in an optimal solution.
- Let $O = \{a_1, a_2, \dots, a_j, b_{j+1}, b_{j+2}, \dots, b_\ell\}$ be an optimal solution containing C
- Since intervals in *O* are compatible, we can assume they are ordered:

$$[s_{a_1}, f_{a_1}) \le [s_{a_2}, f_{a_2}) \le \cdots \le [s_{a_j}, f_{a_j}) \le [s_{b_{j+1}}, f_{b_{j+1}}) \le [s_{b_{j+2}}, f_{b_{j+2}}) \le \cdots \le [s_{b_{\ell}}, f_{b_{\ell}})$$

- Since b_{j+1} is compatible with a_j , we must have $f_{b_{j+1}} \ge f_i$,
 - If $f_{b_{i+1}} < f_i$, then b_{j+1} would have been processed before *i* in the algorithm;
 - When we process b_{j+1} , we would add b_{j+1} to $C = \{a_1, a_2, ..., a_j\}$, contradicting that *i* is the interval added to *C* after a_j .
- Since $f_{b_{j+1}} \ge f_i$, we could safely replace b_{j+1} with *i* in *O*, producing another optimal solution containing $\{a_1, a_2, \dots, a_j, i\}$

Interval Scheduling: Justification

Notice that the previous slides only tell you that the set of intervals C returned by the greedy algorithm is *contained in* an optimal solution O

Interval Scheduling: Justification

- Notice that the previous slides only tell you that the set of intervals C returned by the greedy algorithm is *contained in* an optimal solution O
- But we need to show that C is the optimal solution O(C = O)

Interval Scheduling: Justification

- Notice that the previous slides only tell you that the set of intervals C returned by the greedy algorithm is *contained in* an optimal solution O
- But we need to show that C *is* the optimal solution O(C = O)
- Assume *O* has an addition interval b_{j+1} after $C = \{a_1, a_2, ..., a_j\}$, then by the algorithm, b_{j+1} must be added to *C* when processing b_{j+1} , contradicting that b_{j+1} is not in *C*

Why designing greedy algorithms is not easy

Greedy Choices that *Do Not* Work:

- Chose the activity that starts first
- Chose the shortest activity
- Chose the activity that overlaps with the fewest number of activities

Counter examples for previous strategies

(Figure from Kleinberg & Tardos slides)

Interval Partitioning

Interval Partitioning

- We have *n* lectures; each lecture *i* starts at s_i and finishes at f_i (i.e., happens in $[s_i, f_i)$)
- Goal: find minimum number of classrooms to schedule all lectures so that lectures in the same room are compatible (disjoint)

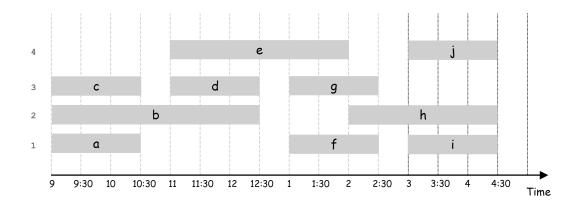
Interval Partitioning

Interval Partitioning

- We have *n* lectures; each lecture *i* starts at s_i and finishes at f_i (i.e., happens in $[s_i, f_i)$)
- Goal: find minimum number of classrooms to schedule all lectures so that lectures in the same room are compatible (disjoint)
- This is called 'interval partitioning' because we are trying to partition the given set of intervals into a few subsets s.t. intervals in each subset are compatible
- From now on, 'intervals' and 'lectures' are used interchangeably

Example

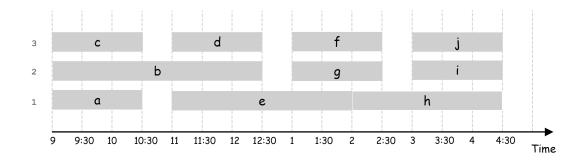
This partitioning uses 4 classrooms to schedule 10 lectures:



(Figure from from Kleinberg & Tardos slides)

Example

This partitioning uses only 3 classrooms:



(Figure from from Kleinberg & Tardos slides)

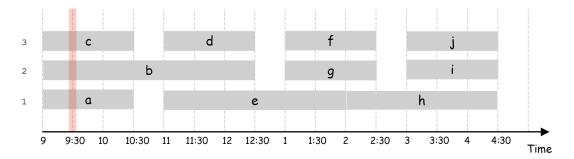
Definition

The *depth* of a given set of lectures (intervals) is the maximum number of lectures held at the same time

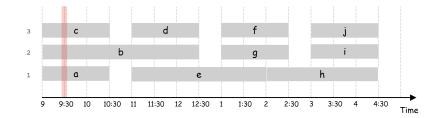
Definition

The *depth* of a given set of lectures (intervals) is the maximum number of lectures held at the same time

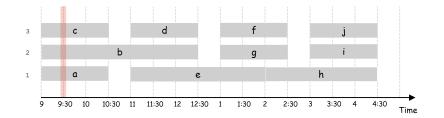
Example: depth of the previous set of lectures is 3



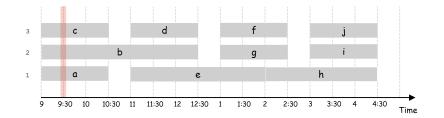
(Figure from from Kleinberg & Tardos slides)



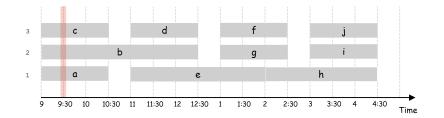
■ Why do we care about the *depth* of a set of lectures?



- Why do we care about the *depth* of a set of lectures?
- Observe that the number of classrooms needed *cannot be smaller* than the depth
 - ▶ If depth = *d*, this means that there are *d* lectures held at the same time
 - Each of the *d* lectures must be in a separate classroom



- Why do we care about the *depth* of a set of lectures?
- Observe that the number of classrooms needed *cannot be smaller* than the depth
 - ▶ If depth = *d*, this means that there are *d* lectures held at the same time
 - Each of the *d* lectures must be in a separate classroom
- So if we are able to schedule (partition) the lectures into d classrooms, this scheduling must be minimum (see the example above)



- Why do we care about the *depth* of a set of lectures?
- Observe that the number of classrooms needed *cannot be smaller* than the depth
 - ▶ If depth = *d*, this means that there are *d* lectures held at the same time
 - Each of the *d* lectures must be in a separate classroom
- So if we are able to schedule (partition) the lectures into d classrooms, this scheduling must be minimum (see the example above)
- We shall see a greedy algorithm which *always* schedules the lectures into *d* classrooms

Interval Partitioning: Greedy Algorithm

Greedy algorithm. Go over each lecture in *increasing order of start time*:

- assign each lecture to any compatible classroom you already have
- if there is no compatible classroom, allocate a new one

Interval Partitioning: Greedy Algorithm

Greedy algorithm. Go over each lecture in *increasing order of start time*:

- assign each lecture to any compatible classroom you already have
- if there is no compatible classroom, allocate a new one

```
GREEDVINTERVPARTITION(\{s_1, \ldots, s_n\}, \{f_1, \ldots, f_n\})
    sort and renumber the lectures s.t.
        s_1 \leq s_2 \leq \cdots \leq s_n
  2 C = 0 // number of classrooms allocated
     for i = 1, . . . , n:
  3
           if lecture i is compatible with lectures in a classroom k already allocated
  4
                schedule lecture i in classroom k
  5
  6
           else
  7
                allocate a new classroom
  8
                schedule lecture i in the new classroom
  9
                C = C + 1
     return C
 10
```

■ Let *C* be the number of classrooms schedule by the greedy algorithm

- Let C be the number of classrooms schedule by the greedy algorithm
- Consider the step *i* where the *last classroom* is allocated

- Let *C* be the number of classrooms schedule by the greedy algorithm
- Consider the step *i* where the *last classroom* is allocated
- We have that there are C 1 lectures in the existing C 1 classrooms which are incompatible with lecture *i*

- Let *C* be the number of classrooms schedule by the greedy algorithm
- Consider the step *i* where the *last classroom* is allocated
- We have that there are *C* − 1 lectures in the existing *C* − 1 classrooms which are incompatible with lecture *i*
- Since we process the lectures in the *order of starting time*, we have that the *C* − 1 incompatible lectures must *start before s*_{*i*}

- Let *C* be the number of classrooms schedule by the greedy algorithm
- Consider the step *i* where the *last classroom* is allocated
- We have that there are *C* − 1 lectures in the existing *C* − 1 classrooms which are incompatible with lecture *i*
- Since we process the lectures in the *order of starting time*, we have that the *C* − 1 incompatible lectures must *start before s*_{*i*}
- So these C 1 incompatible lectures must *end after* s_i

- Let *C* be the number of classrooms schedule by the greedy algorithm
- Consider the step *i* where the *last classroom* is allocated
- We have that there are *C* − 1 lectures in the existing *C* − 1 classrooms which are incompatible with lecture *i*
- Since we process the lectures in the *order of starting time*, we have that the *C* − 1 incompatible lectures must *start before s*_{*i*}
- So these C 1 incompatible lectures must *end after* s_i
- So at time *s_i* the *C* − 1 lectures and lecture *i* are being *held together*

- Let *C* be the number of classrooms schedule by the greedy algorithm
- Consider the step *i* where the *last classroom* is allocated
- We have that there are *C* − 1 lectures in the existing *C* − 1 classrooms which are incompatible with lecture *i*
- Since we process the lectures in the *order of starting time*, we have that the *C* − 1 incompatible lectures must *start before s*_{*i*}
- So these C 1 incompatible lectures must *end after* s_i
- So at time *s_i* the *C* − 1 lectures and lecture *i* are being *held together*
- The *depth* of all lectures is $\geq C$

- Let *C* be the number of classrooms schedule by the greedy algorithm
- Consider the step *i* where the *last classroom* is allocated
- We have that there are *C* − 1 lectures in the existing *C* − 1 classrooms which are incompatible with lecture *i*
- Since we process the lectures in the *order of starting time*, we have that the *C* − 1 incompatible lectures must *start before s*_{*i*}
- So these C 1 incompatible lectures must *end after* s_i
- So at time *s_i* the *C* − 1 lectures and lecture *i* are being *held together*
- The *depth* of all lectures is $\geq C$
- So there is *no scheduling* with number of classrooms < C

- In Line 4 of the greedy algorithm, we need to test whether lecture *i* is compatible a classroom *k* already allocated
- To implement this efficiently is not trivial: the most naive way is to go over each lecture in each classroom, which takes O(n) time in the worst case (so overall complexity is $O(n^2)$)
- The algorithm can be implemented in $O(n \log n)$ time by doing things smartly

Idea:

From the previous interval scheduling problem, we have that a lecture *j* is compatible with all lectures in a classroom *i* iff $F_i \le s_j$, where F_i is the finishing time of the *latest* lecture in classroom *i*

Idea:

- From the previous interval scheduling problem, we have that a lecture *j* is compatible with all lectures in a classroom *i* iff $F_i \le s_j$, where F_i is the finishing time of the *latest* lecture in classroom *i*
- So we keep the time F_i for each classroom in our algorithm, and when we examine a lecture *j*, we only need to see whether there exists a classroom *i* whose $F_i \le s_j$

Idea:

- From the previous interval scheduling problem, we have that a lecture *j* is compatible with all lectures in a classroom *i* iff $F_i \le s_j$, where F_i is the finishing time of the *latest* lecture in classroom *i*
- So we keep the time F_i for each classroom in our algorithm, and when we examine a lecture *j*, we only need to see whether there exists a classroom *i* whose $F_i \le s_j$
- This is equivalent to doing the following: take the class ι whose F_{ι} is the *smallest* (earliest) among all classrooms, and check whether $F_{\iota} \leq s_j$

Idea:

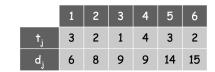
- From the previous interval scheduling problem, we have that a lecture *j* is compatible with all lectures in a classroom *i* iff $F_i \le s_j$, where F_i is the finishing time of the *latest* lecture in classroom *i*
- So we keep the time F_i for each classroom in our algorithm, and when we examine a lecture *j*, we only need to see whether there exists a classroom *i* whose $F_i \le s_j$
- This is equivalent to doing the following: take the class ι whose F_{ι} is the *smallest* (earliest) among all classrooms, and check whether $F_{\iota} \leq s_j$
- We use a *heap* to keep all *F_i*'s for the classrooms, and can retrieve the smallest finishing time *F_i* in *O*(log *n*) time for the *O*(*n*) classrooms

Scheduling to Minimizing Lateness

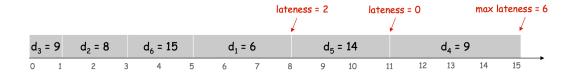
Minimizing Lateness Problem

- We have a bunch of jobs 1, 2, . . . , *n* and a single machine which processes one job at a time
- Each job *j* requires t_i units of time to process and has a due time d_i
 - i.e., if *j* starts at time *s*, it finishes at time $f_j = s + t_j$
- Suppose job *j* finishes at f_j . Define *Lateness* of job *j* as: $l_j = \max\{0, f_j d_j\}$
- Goal: Find an order for executing the jobs to minimize maximum lateness $\max_{j=1,...,n} \{l_j\}$

Scheduling to Minimizing Lateness



Ex:



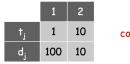
(Figure from Kleinberg & Tardos slides)

Minimizing Lateness: Greedy Strategy

The algorithms will be in very simple forms, i.e., we only need to figure out an order of the jobs based on certain criteria

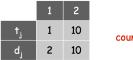
Minimizing Lateness: Greedy Strategy

- The algorithms will be in very simple forms, i.e., we only need to figure out an order of the jobs based on certain criteria
- The problem is which criterion to use:
 - [Shortest processing time first]: Execute jobs in ascending order of processing time t_j



counterexample

• [Smallest slack]: Consider jobs in *ascending order of slack* $d_j - t_j$



counterexample

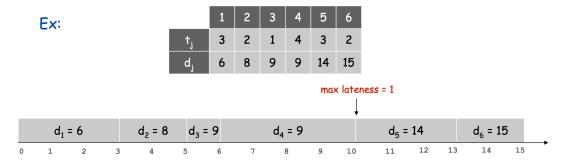
■ (Figures from Kleinberg & Tardos slides)

Minimizing Lateness: Greedy Strategy

■ The correct strategy is to simply execute the jobs by the *ascending order of the due time*

Minimizing Lateness: Greedy Strategy

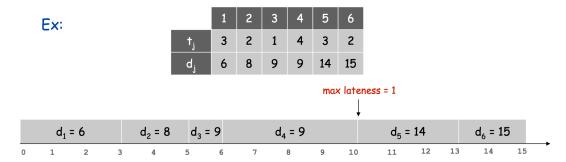
The correct strategy is to simply execute the jobs by the *ascending order of the due time*On the previous example:



(Figure from Kleinberg & Tardos slides)

Minimizing Lateness: Greedy Strategy

The correct strategy is to simply execute the jobs by the *ascending order of the due time*On the previous example:



(Figure from Kleinberg & Tardos slides)

Why is this?

- Assume that jobs are numbered by their due time (i.e., $d_1 \le d_2 \le \cdots \le d_n$) and there is no gap between the execution of two jobs
 - If we have an optimal solution with gaps, then we can simply eliminate the gaps and get another optimal solution

- Assume that jobs are numbered by their due time (i.e., $d_1 \le d_2 \le \cdots \le d_n$) and there is no gap between the execution of two jobs
 - If we have an optimal solution with gaps, then we can simply eliminate the gaps and get another optimal solution

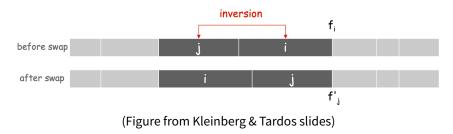
Definition

For an order of job execution, an *inversion* is a pair of jobs *i* and *j* such that *i* < *j* but *j* scheduled before *i*

(Figure from Kleinberg & Tardos slides)

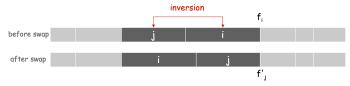
Proposition

Swapping a consecutive inversion in an execution does not increase the maximum lateness



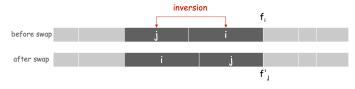
- Let f_1, \ldots, f_n be the finishing time of jobs before the swap, and let f'_1, \ldots, f'_n be their finishing time after
- Let l_1, \ldots, l_n be the lateness of jobs before the swap and l'_1, \ldots, l'_n be the lateness after

- Let f_1, \ldots, f_n be the finishing time of jobs before the swap, and let f'_1, \ldots, f'_n be their finishing time after
- Let l_1, \ldots, l_n be the lateness of jobs before the swap and l'_1, \ldots, l'_n be the lateness after
- We have some immediate facts: (1) $l'_k = l_k$ for $k \neq i, j$; (2) $l'_i \leq l_i$



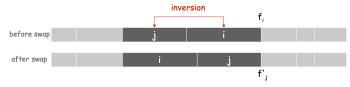
Proof:

- Let f_1, \ldots, f_n be the finishing time of jobs before the swap, and let f'_1, \ldots, f'_n be their finishing time after
- Let l_1, \ldots, l_n be the lateness of jobs before the swap and l'_1, \ldots, l'_n be the lateness after
- We have some immediate facts: (1) $l'_k = l_k$ for $k \neq i, j$; (2) $l'_i \leq l_i$



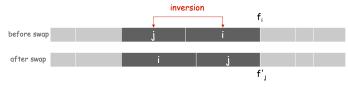
So the only job that can make the max lateness to increase is *j*

- Let f_1, \ldots, f_n be the finishing time of jobs before the swap, and let f'_1, \ldots, f'_n be their finishing time after
- Let l_1, \ldots, l_n be the lateness of jobs before the swap and l'_1, \ldots, l'_n be the lateness after
- We have some immediate facts: (1) $l'_k = l_k$ for $k \neq i, j$; (2) $l'_i \leq l_i$



- So the only job that can make the max lateness to increase is *j*
- Consider the case that job *j* is late after the swap (i.e., $f'_i > d_j$)
 - The case that j is not late is easier and is omitted

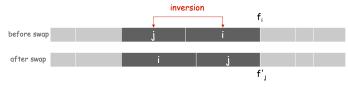
- Let f_1, \ldots, f_n be the finishing time of jobs before the swap, and let f'_1, \ldots, f'_n be their finishing time after
- Let l_1, \ldots, l_n be the lateness of jobs before the swap and l'_1, \ldots, l'_n be the lateness after
- We have some immediate facts: (1) $l'_k = l_k$ for $k \neq i, j$; (2) $l'_i \leq l_i$



- So the only job that can make the max lateness to increase is *j*
- Consider the case that job *j* is late after the swap (i.e., $f'_i > d_j$)
 - The case that j is not late is easier and is omitted

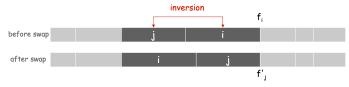
• We have:
$$l'_j = f'_j - d_j = f_i - d_j \le f_i - d_i \le l_i$$

- Let f_1, \ldots, f_n be the finishing time of jobs before the swap, and let f'_1, \ldots, f'_n be their finishing time after
- Let l_1, \ldots, l_n be the lateness of jobs before the swap and l'_1, \ldots, l'_n be the lateness after
- We have some immediate facts: (1) $l'_k = l_k$ for $k \neq i, j$; (2) $l'_i \leq l_i$



- So the only job that can make the max lateness to increase is *j*
- Consider the case that job *j* is late after the swap (i.e., $f'_i > d_j$)
 - The case that j is not late is easier and is omitted
- We have: $l'_j = f'_j d_j = f_i d_j \le f_i d_i \le l_i$
- We have shown that for each element in $L' = \{l'_1, \ldots, l'_n\}$, there is an element in $L = \{l_1, \ldots, l_n\}$ greater than or equal to it

- Let f_1, \ldots, f_n be the finishing time of jobs before the swap, and let f'_1, \ldots, f'_n be their finishing time after
- Let l_1, \ldots, l_n be the lateness of jobs before the swap and l'_1, \ldots, l'_n be the lateness after
- We have some immediate facts: (1) $l'_k = l_k$ for $k \neq i, j$; (2) $l'_i \leq l_i$



- So the only job that can make the max lateness to increase is *j*
- Consider the case that job *j* is late after the swap (i.e., $f'_i > d_j$)
 - The case that j is not late is easier and is omitted
- We have: $l'_j = f'_j d_j = f_i d_j \le f_i d_i \le l_i$
- We have shown that for each element in $L' = \{l'_1, \ldots, l'_n\}$, there is an element in $L = \{l_1, \ldots, l_n\}$ greater than or equal to it
- **So** $\max L' \leq \max L$

Proposition

Executing the jobs by their ascending order of due time yields a solution which minimizes the maximum lateness

Proposition

Executing the jobs by their ascending order of due time yields a solution which minimizes the maximum lateness

- Let O be an optimal solution
- If *O* is not the greedy solution (i.e., job are not ordered by their numbers), we can always transform *O* into the greedy solution by swapping consecutive inverted jobs.
- Since the swap does not increase the max lateness, we still get an optimal solution after the swap
- This means that the greedy solution is an optimal solution