Divide and Conquer

Tao Hou

- Divide phase: Divide the problem into subproblems
- Conquer phase: Conquer/solve the subproblems (recursively)
- **Combine phase:** Combine the solutions to the subproblems into a solution for the whole problem

- Divide phase: Divide the array into two halves from the middle
- Conquer Phase: Sort each half recursively
- Combine phase: Merge the two sorted halves

Merge Sort

- What the MERGE routine does: given two sorted arrays, return a single sorted array containing all elements of the given two arrays
- The MERGE routine runs in O(n) time where *n* is the size of the larger given array

MERGE Algorithm

```
Merge(A, B)
  1 i, j = 1
 2 X = \emptyset
 3 while i \leq length(A) and j \leq length(B)
 4
         if A[i] \leq B[j]
 5
6
7
8
9
              X = X \circ A[i] // appends A[i] to X
             i = i + 1
      else
              X = X \circ B[j]
             j = j + 1
10 while i \leq length(A)
11 X = X \circ A[i]
12 i = i + 1
13 while j \leq length(B)
14 X = X \circ B[j]
15 j = j + 1
16 return X
```

Input Size: n

$$T(n) = \begin{cases} C_1 & \text{if } n=1\\ 2T(n/2) + n * C_2 & \text{otherwise} \end{cases}$$

Q: How to solve it?

The Master Theorem

Let
$$a \ge 1$$
, $b > 1$, $f(n) = O(n^d)$ where $d \ge 0$, and $c = \log_b a$

$$T(n) = \begin{cases} O(1) & \text{if } n = O(1) \\ aT(n/b) + f(n) & \text{otherwise} \end{cases}$$

1.
$$c < d$$
: $T(n) = \Theta(f(n)) = \Theta(n^d)$
2. $c > d$: $T(n) = \Theta(n^c)$
3. $c = d$: $T(n) = \Theta(n^c \log n)$

Let
$$a \ge 1$$
, $b > 1$, $f(n) = O(n^d)$ where $d \ge 0$, and $c = \log_b a$

$$T(n) = \begin{cases} O(1) & \text{if } n = O(1) \\ aT(n/b) + f(n) & \text{otherwise} \end{cases}$$

1.
$$c < d$$
: $T(n) = \Theta(f(n)) = \Theta(n^d)$
2. $c > d$: $T(n) = \Theta(n^c)$
3. $c = d$: $T(n) = \Theta(n^c \log n)$

Remark: For case 1, f(n) must also satisfy a *regularity condition* which states that there is some C < 1 such that $a \cdot f(n/b) \leq C \cdot f(n)$ for sufficiently large n. This regularity condition is almost always true and we will not worry about it.

$$T(n) = \begin{cases} C_1 & \text{if } n=1\\ 2T(n/2) + C_2 \cdot n & \text{otherwise} \end{cases}$$

Applying the Master Theorem with a = 2, b = 2, and d = 1, we get $c = \log_2 2 = d$ and $T(n) = \Theta(n \log n)$

Master Theorem: Additional Examples

Example 1

$$T(n) = T(n/2) + 5n$$

Applying the Master Theorem with a = 1, b = 2, d = 1, we get c = 0 < d and hence $T(n) = \Theta(n)$

Master Theorem: Additional Examples

Example 1

$$T(n) = T(n/2) + 5n$$

Applying the Master Theorem with a = 1, b = 2, d = 1, we get c = 0 < dand hence $T(n) = \Theta(n)$

Example 2

$$T(n) = 4T(n/2) + 2n$$

Applying the Master Theorem with a = 4, b = 2, d = 1, we get c = 2 > dand hence $T(n) = \Theta(n^2)$

Example 3

$$T(n) = T(n-5) + n$$

- The Master Theorem does not apply here.
- The *iteration method* (briefly reviewed next) can be used to solve this equation

Run-Time Analysis of Merge Sort (Iteration Method)

We can also solve T(n) using the *Iteration Method* (aka. keep on expanding the formula by applying T(n) to itself, until reaching the base case):

$$(1): T(n) = 2T(n/2) + C_2n$$

$$(2): T(n) = 2^2T(n/2^2) + 2C_2n$$

$$(3): T(n) = 2^3T(n/2^3) + 3C_2n$$

$$\vdots$$

$$(i): T(n) = 2^iT(n/2^i) + i \cdot C_2n$$

We stop iterating when $n/2^i = 1$

Setting $n/2^i = 1$ gives a number of iterations $i = \log n$ Plugging the value of $i = \log n$ gives:

 $T(n) = 2^{i}T(n/2^{i}) + i \cdot C_{2}n = 2^{\log n}C_{1} + n \cdot \log n = nC_{1} + \log n \cdot C_{2} \cdot n = \Theta(n \log n)$

Quicksort (Review)

Divide: Partition A into $A[1 \dots q - 1]$ and $A[q + 1 \dots n]$ such that

 $A[1],\ldots,A[q-1] \le A[q] \le A[q+1],\ldots,A[n]$

- ► The partition is done by a PARTITION procedure which may change the positions of elements
- *q* is returned from the partition procedure and in general we don't have any control over *q*
- **Conquer:** Sort $A[1 \dots q 1]$ and $A[q + 1 \dots n]$ recursively
- Combine: Nothing to do here

Partition

PARTITION(A, begin, end) q = begin1 2 v = A[end]3 for i = begin to end - 1**if** A[i] < v4 5 swap A[i] and A[q]6 q = q + 1swap A[q] and A[end]7 8 return q

- **Runs** in $\Theta(n)$ time
- Further remarks:
 - Assume a *pivot* (center of the partition) v to be at the end
 - ► Loop invariant (always **true** at the beginning of each iteration): q is a separation of A[begin . . . i - 1] s.t.

$$A[begin], \ldots, A[q-1] < v \text{ and } A[q], \ldots, A[i-1] \ge v$$

Input Size: *n* **Worst Case:** The array partition is very skewed: 0 element on one side, pivot, and the rest on the other side (the pivot is the smallest or largest element)

$$T(n) = \left\{ egin{array}{cc} 1 & ext{if } n=1 \ T(n-1)+n & ext{otherwise} \end{array}
ight.$$

We cannot solve T(n) using the master method.

We solve T(n) by expanding the recursive formula directly:

$$(1): T(n) = T(n-1) + n$$

$$(2): T(n) = T(n-2) + n - 1 + n$$

$$(3): T(n) = T(n-3) + n - 2 + n - 1 + n$$

$$(i): T(n) = T(n-i) + (n-i+1) + (n-i+2) + \cdots + n$$

We stop expanding when n - i = 1Setting n - i = 1 gives i = n - 1Plugging this value of i in the generic form gives $T(n) = T(1) + 2 + 3 + \dots + n = 1 + 2 + 3 + \dots + n = n(n+1)/2 = \Theta(n^2)$

Average-Case Run-Time Analysis of Quick Sort (Advanced)

- Idea: count the number of comparisons
- Rename elements (assumed to be distinct) in A as $z_1 < z_2 < \cdots < z_n$
- Define a random variable X_{ij} as:

$$X_{ij} = \begin{cases} 0 & \text{if } z_i \text{ and } z_j \text{ does not compare} \\ 1 & \text{if } z_i \text{ and } z_j \text{ does compare} \end{cases}$$

• The random variable for the number of comparison is:

$$X = \sum_{i=1}^{n-1} \sum_{j=i+1}^n X_{ij}$$

Average-Case Run-Time Analysis of Quick Sort (Advanced)

We have

$$E[X] = E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}\right]$$
$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}]$$

• By some analysis (we omit),

$$E[X_{ij}] = \frac{2}{j-i+1}$$

Average-Case Run-Time Analysis of Quick Sort (Advanced)

• Then

$$E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$
$$= \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1} < \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k}$$
$$< \sum_{i=1}^{n-1} \left(2\sum_{k=1}^{\infty} \frac{1}{k}\right) \qquad \text{(inner sum harmonic series)}$$
$$= \sum_{i=1}^{n-1} O(\log n) = O(n \log n)$$

Problem

Given an (unsorted) array $A[1 \dots n]$ of numbers and $k \in \mathbb{N}$, find the k-th smallest number in A

- (i) **Divide:** Randomly select a pivot from A, partition A into two subarrays L and R s.t. elements in $L \leq$ elements in R
- (ii) **Conquer:** If $k \le |L|$, recurse to find the k-th smallest element in L; otherwise, recurse to find the (k |L|)-th smallest element in R

RandSelect(A, k)

- 1. if |A| == 1 then return A[1];
- 2. L, R = Partition(A);
- 3. if $k \leq |L|$ then return RandSelect(L, k);

4. else return RandSelect(R, k - |L|);

• Best case:

• Best case: O(n)

- Best case: O(n)
- Worst case:

- Best case: O(n)
- Worst case: $O(n^2)$

- Best case: O(n)
- Worst case: $O(n^2)$
- Average case:

- Best case: O(n)
- Worst case: $O(n^2)$
- Average case: O(n)

Can we have a selection algorithm which runs in linear time in the worst case?

- Observe that the previous random selection runs in quadratic time because sometimes the partition can be unbalanced
- Can we try to choose a "good" pivot for the partition each time so that the partitioned arrays are always balanced?

Can we have a selection algorithm which runs in linear time in the worst case?

- Observe that the previous random selection runs in quadratic time because sometimes the partition can be unbalanced
- Can we try to choose a "good" pivot for the partition each time so that the partitioned arrays are always balanced?
- The answer is that we can

Solution:

- (i) Partition the array into $m = \lceil n/5 \rceil$ subarrays, each consisting of 5 (maybe less) consecutive elements
- (ii) Find the median of each of the m arrays by brute force
- (iii) Recursively find the median M of the m medians
- (iv) Using M as pivot, partition A into two subarrays L and R
- (v) If $k \le |L|$, recurse to find the k-th smallest element in L; otherwise, recurse to find the (k |L|)-th smallest element in R

Select(A, k)

- 1. if $n \leq 25$ then return the *k*-th smallest element in A by brute force;
- 2. $m = \lceil n/5 \rceil$; create an array C[1..m];
- 3. for i = 1 to m C[i] := the median of A[(5i 4)..(5i)];
- 4. M = Select(C, m/2);
- 5. Partition A using M as the pivot into L and R, where L contains all elements that are smaller or equal to M and R contains the rest;
- 6. if $k \leq |L|$ then return Select(*L*, *k*);
- 7. else return Select(R, k |L|);

- Take n = 35
- For simplicity, assume all elements are distinct
- Order each small array, and then order the 7 small arrays by their medians

greater than M; about n/10*3

In general:

- Ignore the floors and ceilings
- The number of medians in the array C less than M is: $(1/2) \cdot (n/5) = n/10$
- The number of other elements less than M is at least: 2n/10
- So, at lease 3n/10 elements is less than M
- Similarly, at lease 3n/10 elements is greater than M
- Whether we go to L or R in the algorithm, we drop at least 3n/10 elements (i.e., keep at most 7n/10 elements).

$$T(n) \leq \left\{ egin{array}{ll} O(1) & ext{if } n \leq 25 \ T(7n/10) + T(n/5) + O(n) & ext{otherwise} \end{array}
ight.$$

We cannot solve T(n) using the master method.

Instead, use the *substitution* method:

- Guess the solution
- Plug in the guess and prove the equation to be true based on the assumption that the equation is true for sub-cases

Notice: The substitution method is in some sense a proof by induction
- Our induction hypothesis:
 - Suppose that $T(i) \le c \cdot i$ for any i < n, where c is a constant
 - Want to prove that $T(n) \leq c \cdot n$, which means T(n) = O(n) by definition

- Our induction hypothesis:
 - Suppose that $T(i) \le c \cdot i$ for any i < n, where c is a constant
 - Want to prove that $T(n) \leq c \cdot n$, which means T(n) = O(n) by definition
- We have

$$T(n) \le T(7n/10) + T(n/5) + O(n)$$

$$\le c \cdot (7n/10) + c \cdot (n/5) + c'n$$

$$= 9cn/10 + c'n = cn \cdot (9/10 + c'/c)$$

- Our induction hypothesis:
 - Suppose that $T(i) \le c \cdot i$ for any i < n, where c is a constant
 - Want to prove that $T(n) \le c \cdot n$, which means T(n) = O(n) by definition
- We have

$$T(n) \le T(7n/10) + T(n/5) + O(n)$$

$$\le c \cdot (7n/10) + c \cdot (n/5) + c'n$$

$$= 9cn/10 + c'n = cn \cdot (9/10 + c'/c)$$

• So we only need to choose a c s.t. $c'/c+9/10\leq 1,$ which is $c\geq 10c',$ so that we will have

$$T(n) \leq cn \cdot (9/10 + c'/c) \leq cn$$

Problem

Given a set $S = \{p_1, \ldots, p_n\}$ of points in the plane, where $p_i = (x_i, y_i)$, compute a closest-pair of points in S, that is, a pair of distinct points $p_i, p_j \in S$ such that $|p_i p_j| = \min\{|p_r p_s| : p_r \neq p_s \in S\}$

Note: we assume the points in S to have *distinct* coordinates; if there are duplicate points in S, this is easy to pre-check and the answer is 0

- **Divide:** Partition the input set *S* into two sets *S*_L and *S*_R of the same size s.t. points in *S*_L are to the left of points in *S*_R
- Conquer: Recursively find the minimum distances of S_L and S_R
- **Combine:** Find the minimum distance of point pairs where one is from S_L and the other is from S_R ; return the minimum of the three minimums

We aim to achieve O(n) time for both the divide and combine phase so that the entire complexity is $O(n \log n)$

• Let X be a list containing the points in S sorted w.r.t. their x-coordinates, and Y a list containing the points in S sorted w.r.t. their y-coordinates. Clearly, X and Y can be obtained in $O(n \log n)$ time (we only do this *once* at the beginning).

So the input to the algorithm, i.e., the set of points, is encoded as a tuple of three arrays (S, X, Y)

- Partition S into S_L and S_R of equal size s.t. points in S_L are to the *left* of S_R using a central vertical line D
- Let X_L , Y_L each represent the set of points in S_L sorted by x- and y-coordinates respectively; X_R and Y_R are similarly defined for S_R

1. m = |X|/22. D = X[m].x3. $X_L = X[1...m]$ 4. $X_R = X[m+1...|X|]$ 5. for i = 1...|Y|: 6. if $Y[i].x \le D$: 7. append Y[i] to Y_L 8. else: 9. append Y[i] to Y_R 10. separate *S* into S_L, S_R similarly Recursively call the algorithm on (S_L, X_L, Y_L) to obtain the min-distance δ_L for S_L, and on (S_R, X_R, Y_R) to obtain the min-distance δ_R for S_R.

Idea

- We have:
 - δ_L : The min dis of pairs in S_L
 - δ_R : The min dis of pairs in S_R
- Aim of combine phase: Compute the min-dis of the pairs where one point is from S_L and the other is from S_R (i.e., pairs of points from different sides)
- Answer: The minimum of above three minimums

The first observation

- Let $\delta = \min\{\delta_L, \delta_R\}$
- We only need to consider pairs within a 2δ -wide vertical strip centered around D

Consider only 2δ -wide vertical strip centered around D

- We have computed min-dis of points from the same side, which is δ .
- So, to compute the overall min-dis, we can ignore those point pairs whose distances are greater than δ .
- If two points from different sides are not both from the 2δ -wide vertical strip (at least one point is outside the strip), then their distance is greater than δ , and so we can ignore them.

- Let $\delta = \min\{\delta_L, \delta_R\}$
- From Y, create Y_{mid} (also sorted by y-coordinates) which is the set of points within the 2δ -wide vertical strip centered around D

- Let $\delta = \min\{\delta_L, \delta_R\}$
- From Y, create Y_{mid} (also sorted by y-coordinates) which is the set of points within the 2δ -wide vertical strip centered around D
- Go over Y_{mid} , and for each point p, compute its distance to **at most 7** points in Y_{mid} that follow p, and keep track of the min-distance
- Return the smaller of δ and what we have by scanning Y_{mid}

```
1. for i = 1 ... |Y|:

2. if Y[i].x \ge D - \delta and Y[i].x \le D + \delta:

3. append Y[i] to Y_{mid}

4. \overline{\delta} = \infty

5. for i = 1 ... |Y_{mid}|:

6. for j = 1 ... 7:

7. if i + j \le |Y_{mid}| and dis(Y_{mid}[i], Y_{mid}[i + j]) < \overline{\delta} then

8. \overline{\delta} = \text{dis}(Y_{mid}[i], Y_{mid}[i + j])

9. return min\{\delta, \overline{\delta}\}
```

• For each point p in Y_{mid} , we only need to consider other points in Y_{mid} whose distances to p is $< \delta$. This means we only need to consider points within a $2\delta \times 2\delta$ square of p.

- For each point p in Y_{mid} , we only need to consider other points in Y_{mid} whose distances to p is $< \delta$. This means we only need to consider points within a $2\delta \times 2\delta$ square of p.
- Key observation: Each $\delta \times \delta$ square contains at most 4 points
 - This square is totally within the left or right side of the vertical separator D, meaning that points in the square are either all from S_L or all from S_R , so these points are at least δ -distance apart
 - A fact from computational geometry says that such a square cannot fit in more than 4 points

- Therefore, each $2\delta \times \delta$ square contains at most 8 points (including *p*)
- So we only need to scan the 7 points that precede p (ones that are in the upper $2\delta \times \delta$ square) and the 7 points that follow p (ones that are in the lower $2\delta \times \delta$ square) in Y_{mid} .
- Further observation: we only need to scan the 7 points that follow *p*, and ignore the 7 points that precede *p*:
 - Suppose there is a point q preceding p in Y_{mid} falling within the upper $2\delta \times \delta$ square for p. Then p also falls in the lower $2\delta \times \delta$ square for q. So we have checked the pair p, q when we scan q.

Closest-Pair-Algo

- 1. if $|S| \leq 3$ return a closes pair (p_{min}, q_{min}) in S by brute force;
- 2. using X, compute a vertical line D of equation $x = \ell$ that partitions S into S_L, S_R of equal size such that all points in S_L are on D or to the left of it, and all points in S_R are on D or to the right of it;
- 3. using X and Y, create the arrays X_L , Y_L and X_R , Y_R ;
- 4. recurse on S_L, X_L, Y_L to compute a closest pair (p_L, q_L) ; let $\delta_L = |p_L q_L|$;
- 5. recurse on S_R , X_R , Y_R to compute a closest pair (p_R, q_R) ; let $\delta_R = |p_R q_R|$;
- 6. let $\delta = \min \{\delta_L, \delta_R\};$
- 7. let S_{mid} be the set of points in S whose x-coordinate satisfies $\ell \delta \leq x \leq x + \delta$;
- 8. using Y, compute the list of points in S_{mid} sorted by their y-coordinates;
- 9. go over Y_{mid} (in the sorted order), and for each point, compute its distance to the next (at most) 7 points in Y_{mid} and keep track of the pair of points (p_{mid}, q_{mid}) of minimum distance;
- 10. return the closest pair (p_{min}, q_{min}) among, $(p_L, q_L), (p_R, q_R)$, and (p_{mid}, q_{mid}) ;

Let T(n) be the running time of Closest-Pair in the worst case on n points.

- Divide phase takes O(n) time.
- Combine phase takes O(n) time.
- Recursive call on (S_L, X_L, Y_L) takes T(n/2) time; recursive call on (S_R, X_R, Y_R) takes T(n/2) time.

Therefore, T(n) obeys the following recurrence relation:

$$T(n) = \left\{ egin{array}{cc} O(1) & ext{if } n \leq 3 \ 2T(n/2) + O(n) & ext{otherwise} \end{array}
ight.$$

We can solve T(n) using the Master Theorem to obtain $T(n) = O(n \lg n)$

Problem

Multiply two integers x, y represented as sequences (e.g., arrays) of 0-1 bits where the lengths of the sequences can be **arbitrarily** large (assume the length of the two to be both *n*, with possibly padding 0's)

Notice: This cannot be simply done in constant time: the multiplication of provided by the CPU only supports a *fixed* length on the sequence (e.g., 64).

An Algorithm Everybody Knows

Solution:

- Compute a "partial product" by multiplying each digit of y separately by x, and then you add up all the partial products.
- Only this time we do the *binary* version, i.e., we multiplying each *bit* of y by x and then add up.

	1100
	$\times 1101$
12	1100
× 13	0000
36	1100
12	1100
156	10011100
(a)	(b)

(Figure taken from [Kleinberg&Tardos - Algorithm Design])

Time complexity:

An Algorithm Everybody Knows

Solution:

- Compute a "partial product" by multiplying each digit of y separately by x, and then you add up all the partial products.
- Only this time we do the *binary* version, i.e., we multiplying each *bit* of y by x and then add up.

	1100
12	$\frac{\times 1101}{1100}$
× 13	0000
36	1100
12	1100
156	10011100
(a)	(b)

(Figure taken from [Kleinberg&Tardos - Algorithm Design])

Time complexity: $O(n^2)$

Using, of course, divide and conquer:

Using, of course, divide and conquer:

- Write x as $x = x_1 \cdot 2^{n/2} + x_0$, where x_1 is the "high-order" half bits x_0 is the "low-order" half bits
- Similarly write y as $y = y_1 \cdot 2^{n/2} + y_0$

Using, of course, divide and conquer:

- Write x as $x = x_1 \cdot 2^{n/2} + x_0$, where x_1 is the "high-order" half bits x_0 is the "low-order" half bits
- Similarly write y as $y = y_1 \cdot 2^{n/2} + y_0$
- Rewrite *xy* as

$$\begin{aligned} xy &= (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0) \\ &= x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0 \end{aligned}$$

Using, of course, divide and conquer:

- Write x as $x = x_1 \cdot 2^{n/2} + x_0$, where x_1 is the "high-order" half bits x_0 is the "low-order" half bits
- Similarly write y as $y = y_1 \cdot 2^{n/2} + y_0$
- Rewrite xy as

$$\begin{aligned} xy &= (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0) \\ &= x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0 \end{aligned}$$

So, to compute xy (multiplying two *n*-sequences), we only need to:

• Recursively compute four multiplications of n/2-sequences:

 x_1y_1 , x_1y_0 , x_0y_1 , and x_0y_0

• Then take the sum $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$ (which can be done in O(n) time)

Recursive-Multiply(x,y)

1. write
$$x = x_1 \cdot 2^{n/2} + x_0$$
, $y = y_1 \cdot 2^{n/2} + y_0$

- 2. $x_1y_1 = \text{Recursive-Multiply}(x_1, y_1)$
- 3. $x_1y_0 = \text{Recursive-Multiply}(x_1, y_0)$
- 4. $x_0y_1 = \text{Recursive-Multiply}(x_0, y_1)$
- 5. $x_0 y_0 = \text{Recursive-Multiply}(x_0, y_0)$
- 6. return $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

Time complexity:

Recursive-Multiply(x,y)

1. write
$$x = x_1 \cdot 2^{n/2} + x_0$$
, $y = y_1 \cdot 2^{n/2} + y_0$

- 2. $x_1y_1 = \text{Recursive-Multiply}(x_1, y_1)$
- 3. $x_1y_0 = \text{Recursive-Multiply}(x_1, y_0)$
- 4. $x_0y_1 = \text{Recursive-Multiply}(x_0, y_1)$
- 5. $x_0 y_0 = \text{Recursive-Multiply}(x_0, y_0)$
- 6. return $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

Time complexity:

•
$$T(n) = 4T(n/2) + O(n)$$
 which is $O(n^2)$ (no improvement at all!)

- The problem with the previous divide-and-conquer approach is that it involves **four** recursive calls
- If we can reduce the number of recursive calls to three, we would have

$$T(n) = 3T(n/2) + O(n)$$

which is $O(n^{1.59})$ (quite an improvement!)

Second Attempt to Improve the Naive Algorithm

• Notice that our goal is to compute the sum

$$xy = x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0 \tag{1}$$

Second Attempt to Improve the Naive Algorithm

Notice that our goal is to compute the sum

$$xy = x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0 \tag{1}$$

• Consider another multiplication

$$p = (x_1 + x_0)(y_1 + y_0) = x_1y_1 + x_1y_0 + x_0y_1 + x_0y_0$$

where we observe $x_1y_0 + x_0y_1 = p - x_1y_1 - x_0y_0$

Second Attempt to Improve the Naive Algorithm

• Notice that our goal is to compute the sum

$$xy = x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0 \tag{1}$$

• Consider another multiplication

$$p = (x_1 + x_0)(y_1 + y_0) = x_1y_1 + x_1y_0 + x_0y_1 + x_0y_0$$

where we observe $x_1y_0 + x_0y_1 = p - x_1y_1 - x_0y_0$

• So, to get the three components in the sum (1), we only need the three multiplications of *n*/2-sequences:

$$x_1y_1$$
, x_0y_0 , and $p = (x_1 + x_0)(y_1 + y_0)$

by letting $x_1y_0 + x_0y_1 = p - x_1y_1 - x_0y_0$

• And then we can get xy with only three recursive calls!

Recursive-Multiply(x,y)

1. write
$$x = x_1 \cdot 2^{n/2} + x_0$$
 and $y = y_1 \cdot 2^{n/2} + y_0$

2. compute
$$x_1 + x_0$$
 and $y_1 + y_0$

3.
$$p = \text{Recursive-Multiply}(x_1 + x_0, y_1 + y_0)$$

4.
$$x_1y_1 = \text{Recursive-Multiply}(x_1, y_1)$$

5.
$$x_0 y_0 = \text{Recursive-Multiply}(x_0, y_0)$$

6. return
$$x_1y_1 \cdot 2^n + (p - x_1y_1 - x_0y_0) \cdot 2^{n/2} + x_0y_0$$

Time complexity:

•
$$T(n) = 3T(n/2) + O(n)$$
 which is $O(n^{1.59})$

Problem

Given two $n \times n$ matrix $A = (a_{i,j})$ and $B = (b_{i,j})$, compute $C = A \cdot B$ which is another $n \times n$ matrix $(c_{i,j})$ with:

$$c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}$$
Problem

Given two $n \times n$ matrix $A = (a_{i,j})$ and $B = (b_{i,j})$, compute $C = A \cdot B$ which is another $n \times n$ matrix $(c_{i,j})$ with:

$$c_{i,j} = \sum_{k=1}^n a_{i,k} b_{k,j}$$

The straightforward algorithm runs in $\Theta(n^3)$ time as we need to computer n^2 number of entries $c_{i,j}$, each takes $\Theta(n)$ multiplications and additions

A Divide-and-conquer approach

• Partition each of A, B, and C into four $n/2 \times n/2$ matrices:

$$A = \begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix} \quad B = \begin{pmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{pmatrix} \quad C = \begin{pmatrix} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{pmatrix}$$

• For simplicity, assume $n = 2^k$ so that we can keep on recursively performing such partitioning into smaller matrices

A Divide-and-conquer approach

• Partition each of A, B, and C into four $n/2 \times n/2$ matrices:

$$A = \begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix} \quad B = \begin{pmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{pmatrix} \quad C = \begin{pmatrix} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{pmatrix}$$

- For simplicity, assume $n = 2^k$ so that we can keep on recursively performing such partitioning into smaller matrices
- We have that $C = A \cdot B$ can be expressed as:

$$\left(\begin{array}{cc} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{array}\right) = \left(\begin{array}{cc} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{array}\right) \cdot \left(\begin{array}{cc} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{array}\right)$$

A Divide-and-conquer approach

• Partition each of A, B, and C into four $n/2 \times n/2$ matrices:

$$A = \begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix} \quad B = \begin{pmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{pmatrix} \quad C = \begin{pmatrix} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{pmatrix}$$

- For simplicity, assume $n = 2^k$ so that we can keep on recursively performing such partitioning into smaller matrices
- We have that $C = A \cdot B$ can be expressed as:

$$\left(\begin{array}{cc} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{array}\right) = \left(\begin{array}{cc} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{array}\right) \cdot \left(\begin{array}{cc} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{array}\right)$$

That is,

$$C_{1,1} = A_{1,1} \cdot B_{1,1} + A_{1,2} \cdot B_{2,1}$$

$$C_{1,2} = A_{1,1} \cdot B_{1,2} + A_{1,2} \cdot B_{2,2}$$

$$C_{2,1} = A_{2,1} \cdot B_{1,1} + A_{2,2} \cdot B_{2,1}$$

$$C_{2,2} = A_{2,1} \cdot B_{1,2} + A_{2,2} \cdot B_{2,2}$$

RecurMatMul(A,B)

- 1. Let n be the number of rows on A and B
- 2. let C be a new $n \times n$ matrix
- 3. if n == 1:
- 4. $c_{1,1} = a_{1,1} \cdot b_{1,1}$
- 5. return C
- 6. partition A, B, and C each into four sub-matrices
- 7. $C_{1,1} = \text{RecurMatMul}(A_{1,1}, B_{1,1}) + \text{RecurMatMul}(A_{1,2}, B_{2,1})$
- 8. $C_{1,2} = \text{RecurMatMul}(A_{1,1}, B_{1,2}) + \text{RecurMatMul}(A_{1,2}, B_{2,2})$
- 9. $C_{2,1} = \text{RecurMatMul}(A_{2,1}, B_{1,1}) + \text{RecurMatMul}(A_{2,2}, B_{2,1})$
- 10. $C_{2,2} = \text{RecurMatMul}(A_{2,1}, B_{1,2}) + \text{RecurMatMul}(A_{2,2}, B_{2,2})$
- 11. return C

RecurMatMul(A,B)

- 1. Let n be the number of rows on A and B
- 2. let C be a new $n \times n$ matrix
- 3. if n == 1:
- 4. $c_{1,1} = a_{1,1} \cdot b_{1,1}$

- 6. partition A, B, and C each into four sub-matrices
- 7. $C_{1,1} = \text{RecurMatMul}(A_{1,1}, B_{1,1}) + \text{RecurMatMul}(A_{1,2}, B_{2,1})$
- 8. $C_{1,2} = \text{RecurMatMul}(A_{1,1}, B_{1,2}) + \text{RecurMatMul}(A_{1,2}, B_{2,2})$
- 9. $C_{2,1} = \text{RecurMatMul}(A_{2,1}, B_{1,1}) + \text{RecurMatMul}(A_{2,2}, B_{2,1})$
- 10. $C_{2,2} = \text{RecurMatMul}(A_{2,1}, B_{1,2}) + \text{RecurMatMul}(A_{2,2}, B_{2,2})$
- 11. return C
- 4 matrix summations in line 7-10 takes $O(n^2)$ time (so other than the recursive calls it takes $O(n^2)$ time)

RecurMatMul(A,B)

- 1. Let n be the number of rows on A and B
- 2. let C be a new $n \times n$ matrix
- 3. if n == 1:
- 4. $c_{1,1} = a_{1,1} \cdot b_{1,1}$

- 6. partition A, B, and C each into four sub-matrices
- 7. $C_{1,1} = \text{RecurMatMul}(A_{1,1}, B_{1,1}) + \text{RecurMatMul}(A_{1,2}, B_{2,1})$
- 8. $C_{1,2} = \text{RecurMatMul}(A_{1,1}, B_{1,2}) + \text{RecurMatMul}(A_{1,2}, B_{2,2})$
- 9. $C_{2,1} = \text{RecurMatMul}(A_{2,1}, B_{1,1}) + \text{RecurMatMul}(A_{2,2}, B_{2,1})$
- 10. $C_{2,2} = \text{RecurMatMul}(A_{2,1}, B_{1,2}) + \text{RecurMatMul}(A_{2,2}, B_{2,2})$
- 11. return C
- 4 matrix summations in line 7-10 takes O(n²) time (so other than the recursive calls it takes O(n²) time)
- There are 8 recursive calls each of which takes T(n/2) time

RecurMatMul(A,B)

- 1. Let n be the number of rows on A and B
- 2. let C be a new $n \times n$ matrix
- 3. if n == 1:
- 4. $c_{1,1} = a_{1,1} \cdot b_{1,1}$

- 6. partition A, B, and C each into four sub-matrices
- 7. $C_{1,1} = \text{RecurMatMul}(A_{1,1}, B_{1,1}) + \text{RecurMatMul}(A_{1,2}, B_{2,1})$
- 8. $C_{1,2} = \text{RecurMatMul}(A_{1,1}, B_{1,2}) + \text{RecurMatMul}(A_{1,2}, B_{2,2})$
- 9. $C_{2,1} = \text{RecurMatMul}(A_{2,1}, B_{1,1}) + \text{RecurMatMul}(A_{2,2}, B_{2,1})$
- 10. $C_{2,2} = \text{RecurMatMul}(A_{2,1}, B_{1,2}) + \text{RecurMatMul}(A_{2,2}, B_{2,2})$

11. return C

- 4 matrix summations in line 7-10 takes O(n²) time (so other than the recursive calls it takes O(n²) time)
- There are 8 recursive calls each of which takes T(n/2) time
- $T(n) = 8T(n/2) + O(n^2)$ which is $O(n^3)$ (no improvement at all!)

Idea:

- Use **seven** recursive calls to multiplication of smaller matrix (instead of eight)
- Recursive equation becomes $T(n) = 7T(n/2) + O(n^2)$
- So overall complexity becomes $O(n^{\log_2 7})$ which is $O(n^{2.81})$

Create the following 10 matrices:

$$\begin{array}{l} S_1 = B_{1,2} - B_{2,2} \\ S_2 = A_{1,1} + A_{1,2} \\ S_3 = A_{2,1} + A_{2,2} \\ S_4 = B_{2,1} - B_{1,1} \\ S_5 = A_{1,1} + A_{2,2} \\ S_6 = B_{1,1} + B_{2,2} \\ S_7 = A_{1,2} - A_{2,2} \\ S_8 = B_{2,1} + B_{2,2} \\ S_9 = A_{1,1} - A_{2,1} \\ S_{10} = B_{1,1} + B_{1,2} \end{array}$$

Recursively multiply the smaller matrices $(n/2 \times n/2)$ for **seven** times:

$$P_{1} = A_{1,1} \cdot S_{1}$$

$$P_{2} = S_{2} \cdot B_{2,2}$$

$$P_{3} = S_{3} \cdot B_{1,1}$$

$$P_{4} = A_{2,2} \cdot S_{4}$$

$$P_{5} = S_{5} \cdot S_{6}$$

$$P_{6} = S_{7} \cdot S_{8}$$

$$P_{7} = S_{9} \cdot S_{10}$$

Recover the smaller matrices of C using the matrices in Step 2:

$$C_{1,1} = P_5 + P_4 - P_2 + P_6$$

$$C_{1,2} = P_1 + P_2$$

$$C_{2,1} = P_3 + P_4$$

$$C_{2,2} = P_5 + P_1 - P_3 - P_7$$

Step 3: Further details (1)

$$A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{11} + A_{22} \cdot B_{22} - A_{22} \cdot B_{11} + A_{22} \cdot B_{21} - A_{11} \cdot B_{22} - A_{22} \cdot B_{22} - A_{22} \cdot B_{21} + A_{12} \cdot B_{22} + A_{12} \cdot B_{21}$$

 $A_{11} \cdot B_{11}$

 $+A_{12} \cdot B_{21}$,

 $\begin{array}{c} A_{11} \cdot B_{12} - A_{11} \cdot B_{22} \\ + A_{11} \cdot B_{22} + A_{12} \cdot B_{22} \end{array}$

-

 $A_{11} \cdot B_{12} + A_{12} \cdot B_{22}$,

(Figure from [CLRS])

Step 3: Further details (2)

$$\begin{array}{c} A_{21} \cdot B_{11} + A_{22} \cdot B_{11} \\ - A_{22} \cdot B_{11} + A_{22} \cdot B_{21} \end{array}$$

 $A_{21} \cdot B_{11} + A_{22} \cdot B_{21} ,$

$$\begin{array}{cccc} A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{11} + A_{22} \cdot B_{22} \\ & & -A_{11} \cdot B_{22} \\ & & -A_{22} \cdot B_{11} \\ -A_{11} \cdot B_{11} \\ \end{array} \begin{array}{c} A_{22} \cdot B_{11} \\ & -A_{11} \cdot B_{12} + A_{21} \cdot B_{11} \\ & -A_{11} \cdot B_{12} + A_{21} \cdot B_{11} \\ \end{array}$$

$$A_{22} \cdot B_{22} + A_{21} \cdot B_{12} ,$$

(Figure from [CLRS])

- Verifying the correctness of the equations in Step 3 is tedious work
- The takeaway is that Strassen has come a long way to reduce the number of smaller matrix multiplications to **seven** with a constant number of matrix additions and subtractions
 - Imaginably, finding such equations is very hard
- So overall we have $T(n) = 7T(n/2) + O(n^2)$ which is $O(n^{2.81})$