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The Divide-and-Conquer Paradigm

Divide phase: Divide the problem into subproblems

Conquer phase: Conquer/solve the subproblems (recursively)

Combine phase: Combine the solutions to the subproblems into a
solution for the whole problem



Example: Merge Sort (Review)

Divide phase: Divide the array into two halves from the middle

Conquer Phase: Sort each half recursively

Combine phase: Merge the two sorted halves



Merge Sort

MERGESORT(A)
1 if length(A) == 1
2 return A
3 m = ⌊length(A)/2⌋
4 AL = MERGESORT(A[1 . .m])
5 AR = MERGESORT(A[m+ 1 . . length(A)])
6 return MERGE(AL, AR)

What the MERGE routine does: given two sorted arrays, return a single sorted array
containing all elements of the given two arrays
The MERGE routine runs in O(n) time where n is the size of the larger given array



MERGE Algorithm

MERGE(A, B)
1 i, j = 1
2 X = ∅
3 while i ≤ length(A) and j ≤ length(B)
4 if A[i] ≤ B[j]
5 X = X ◦ A[i] // appends A[i] to X
6 i = i+ 1
7 else
8 X = X ◦ B[j]
9 j = j+ 1
10 while i ≤ length(A)
11 X = X ◦ A[i]
12 i = i+ 1
13 while j ≤ length(B)
14 X = X ◦ B[j]
15 j = j+ 1
16 return X



Run-Time Analysis of Merge Sort

Input Size: n

T (n) =
{

C1 if n=1
2T (n/2) + n ∗ C2 otherwise

Q: How to solve it?



The Master Theorem

Let a ≥ 1, b > 1, f (n) = O(nd) where d ≥ 0, and c = logb a

T (n) =
{

O(1) if n = O(1)
aT (n/b) + f (n) otherwise

1. c < d : T (n) = Θ(f (n)) = Θ(nd)

2. c > d : T (n) = Θ(nc)

3. c = d : T (n) = Θ(nc log n)

Remark: For case 1, f (n) must also satisfy a regularity condition which
states that there is some C < 1 such that a · f (n/b) ≤ C · f (n) for
sufficiently large n. This regularity condition is almost always true and we
will not worry about it.
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Run-Time Analysis of Merge Sort using Master Theorem

T (n) =
{

C1 if n=1
2T (n/2) + C2 · n otherwise

Applying the Master Theorem with a = 2, b = 2, and d = 1, we get
c = log2 2 = d and T (n) = Θ(n log n)



Master Theorem: Additional Examples

Example 1

T (n) = T (n/2) + 5n

Applying the Master Theorem with a = 1, b = 2, d = 1, we get c = 0 < d
and hence T (n) = Θ(n)

Example 2

T (n) = 4T (n/2) + 2n

Applying the Master Theorem with a = 4, b = 2, d = 1, we get c = 2 > d
and hence T (n) = Θ(n2)
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Examples: Using the Master Theorem

Example 3

T (n) = T (n − 5) + n

The Master Theorem does not apply here.
The iteration method (briefly reviewed next) can be used to solve this
equation



Run-Time Analysis of Merge Sort (Iteration Method)

We can also solve T (n) using the Iteration Method (aka. keep on
expanding the formula by applying T (n) to itself, until reaching the base
case):

(1) : T (n) = 2T (n/2) + C2n
(2) : T (n) = 22T (n/22) + 2C2n
(3) : T (n) = 23T (n/23) + 3C2n

...
(i) : T (n) = 2iT (n/2i) + i · C2n

We stop iterating when n/2i = 1
Setting n/2i = 1 gives a number of iterations i = log n
Plugging the value of i = log n gives:
T (n) = 2iT (n/2i) + i · C2n = 2log nC1 + n · log n = nC1 + log n · C2 · n =
Θ(n log n)



Quicksort (Review)

Divide: Partition A into A[1 . . . q − 1] and A[q+ 1 . . . n] such that

A[1], . . . , A[q − 1] ≤ A[q] ≤ A[q+ 1], . . . , A[n]

▶ The partition is done by a PARTITION procedure which may change the positions of elements
▶ q is returned from the partition procedure and in general we don’t have any control over q

Conquer: Sort A[1 . . . q − 1] and A[q+ 1 . . . n] recursively

Combine: Nothing to do here

QUICKSORT(A, begin, end)
1 if begin < end
2 q = PARTITION(A, begin, end)
3 QUICKSORT(A, begin, q − 1)
4 QUICKSORT(A, q+ 1, end)



Partition

PARTITION(A, begin, end)
1 q = begin
2 v = A[end]
3 for i = begin to end − 1
4 if A[i] < v
5 swap A[i] and A[q]
6 q = q+ 1
7 swap A[q] and A[end]
8 return q

Runs inΘ(n) time
Further remarks:
▶ Assume a pivot (center of the partition) v to be at the end
▶ Loop invariant (always true at the beginning of each iteration):

q is a separation of A[begin . . . i − 1] s.t.

A[begin], . . . , A[q − 1] < v and A[q], . . . , A[i − 1] ≥ v



Worst-Case Run-Time Analysis of Quick Sort (Review)

Input Size: n
Worst Case: The array partition is very skewed: 0 element on one side,
pivot, and the rest on the other side (the pivot is the smallest or largest
element)

T (n) =
{

1 if n=1
T (n − 1) + n otherwise

We cannot solve T (n) using the master method.



Using the Iteration Method

We solve T (n) by expanding the recursive formula directly:

(1) : T (n) = T (n − 1) + n
(2) : T (n) = T (n − 2) + n − 1 + n
(3) : T (n) = T (n − 3) + n − 2 + n − 1 + n

.

.

(i) : T (n) = T (n − i) + (n − i + 1) + (n − i + 2) + · · ·+ n

We stop expanding when n − i = 1
Setting n − i = 1 gives i = n − 1
Plugging this value of i in the generic form gives
T (n) = T (1)+ 2+ 3+ · · ·+ n = 1+ 2+ 3+ · · ·+ n = n(n+ 1)/2 = Θ(n2)



Average-Case Run-Time Analysis of Quick Sort (Advanced)

Idea: count the number of comparisons
Rename elements (assumed to be distinct) in A as z1 < z2 < · · · < zn

Define a random variable Xij as:

Xij =

{
0 if zi and zj does not compare
1 if zi and zj does compare

The random variable for the number of comparison is:

X =
n−1∑
i=1

n∑
j=i+1

Xij



Average-Case Run-Time Analysis of Quick Sort (Advanced)

We have

E [X ] = E
[ n−1∑

i=1

n∑
j=i+1

Xij
]

=
n−1∑
i=1

n∑
j=i+1

E [Xij ]

By some analysis (we omit),

E [Xij ] =
2

j − i + 1



Average-Case Run-Time Analysis of Quick Sort (Advanced)

Then

E [X ] =
n−1∑
i=1

n∑
j=i+1

E [Xij ] =
n−1∑
i=1

n∑
j=i+1

2
j − i + 1

=
n−1∑
i=1

n−i∑
k=1

2
k + 1 <

n−1∑
i=1

n−i∑
k=1

2
k

<

n−1∑
i=1

(
2

∞∑
k=1

1
k

)
(inner sum harmonic series)

=
n−1∑
i=1

O(log n) = O(n log n)



Selection

Problem
Given an (unsorted) array A[1 . . . n] of numbers and k ∈ N, find the k-th
smallest number in A



A First Random Solution

(i) Divide: Randomly select a pivot from A, partition A into two
subarrays L and R s.t. elements in L ≤ elements in R

(ii) Conquer: If k ≤ |L|, recurse to find the k-th smallest element in L;
otherwise, recurse to find the (k − |L|)-th smallest element in R



Random select

RandSelect(A, k)

1. if |A| == 1 then return A[1];
2. L,R = Partition(A);
3. if k ≤ |L| then return RandSelect(L, k);
4. else return RandSelect(R, k − |L|);



Random solution: Complexity

(Analysis similar to quicksort)

Best case:

O(n)
Worst case: O(n2)

Average case: O(n)
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Linear-Time Selection

Can we have a selection algorithm which runs in linear time in the worst
case?

Observe that the previous random selection runs in quadratic time
because sometimes the partition can be unbalanced
Can we try to choose a “good” pivot for the partition each time so
that the partitioned arrays are always balanced?

The answer is that we can
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Can we have a selection algorithm which runs in linear time in the worst
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Observe that the previous random selection runs in quadratic time
because sometimes the partition can be unbalanced
Can we try to choose a “good” pivot for the partition each time so
that the partitioned arrays are always balanced?
The answer is that we can



Linear-Time Selection

Solution:
(i) Partition the array into m = ⌈n/5⌉ subarrays, each consisting of 5

(maybe less) consecutive elements
(ii) Find the median of each of the m arrays by brute force
(iii) Recursively find the median M of the m medians
(iv) Using M as pivot, partition A into two subarrays L and R
(v) If k ≤ |L|, recurse to find the k-th smallest element in L; otherwise,

recurse to find the (k − |L|)-th smallest element in R



The Selection Algorithm

Select(A, k)
1. if n ≤ 25 then return the k-th smallest element in A by brute force;
2. m = ⌈n/5⌉; create an array C [1..m];
3. for i = 1 to m C [i ] := the median of A[(5i − 4)..(5i)];
4. M = Select(C , m/2);
5. Partition A using M as the pivot into L and R, where L contains all elements

that are smaller or equal to M and R contains the rest;
6. if k ≤ |L| then return Select(L, k);
7. else return Select(R, k − |L|);



Run-Time Analysis of Select

Take n = 35
For simplicity, assume all elements are distinct
Order each small array, and then order the 7 small arrays by their
medians
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less than M; about n/10*3

greater than M; about n/10*3

array C



Run-Time Analysis of Select

In general:
Ignore the floors and ceilings
The number of medians in the array C less than M is:
(1/2) · (n/5) = n/10
The number of other elements less than M is at least: 2n/10
So, at lease 3n/10 elements is less than M
Similarly, at lease 3n/10 elements is greater than M
Whether we go to L or R in the algorithm, we drop at least 3n/10
elements (i.e., keep at most 7n/10 elements).



Run-Time Analysis of Select

T (n) ≤
{

O(1) if n ≤ 25
T (7n/10) + T (n/5) + O(n) otherwise

We cannot solve T (n) using the master method.

Instead, use the substitution method:
1 Guess the solution
2 Plug in the guess and prove the equation to be true based on the

assumption that the equation is true for sub-cases

Notice: The substitution method is in some sense a proof by induction



Run-Time Analysis of Select

Our induction hypothesis:
Suppose that T (i) ≤ c · i for any i < n, where c is a constant
Want to prove that T (n) ≤ c · n, which means T (n) = O(n) by
definition

We have

T (n) ≤ T (7n/10) + T (n/5) + O(n)
≤ c · (7n/10) + c · (n/5) + c ′n
= 9cn/10 + c ′n = cn · (9/10 + c ′/c)

So we only need to choose a c s.t. c ′/c + 9/10 ≤ 1, which is
c ≥ 10c ′, so that we will have

T (n) ≤ cn · (9/10 + c ′/c) ≤ cn



Run-Time Analysis of Select

Our induction hypothesis:
Suppose that T (i) ≤ c · i for any i < n, where c is a constant
Want to prove that T (n) ≤ c · n, which means T (n) = O(n) by
definition

We have

T (n) ≤ T (7n/10) + T (n/5) + O(n)
≤ c · (7n/10) + c · (n/5) + c ′n
= 9cn/10 + c ′n = cn · (9/10 + c ′/c)

So we only need to choose a c s.t. c ′/c + 9/10 ≤ 1, which is
c ≥ 10c ′, so that we will have

T (n) ≤ cn · (9/10 + c ′/c) ≤ cn



Run-Time Analysis of Select

Our induction hypothesis:
Suppose that T (i) ≤ c · i for any i < n, where c is a constant
Want to prove that T (n) ≤ c · n, which means T (n) = O(n) by
definition

We have

T (n) ≤ T (7n/10) + T (n/5) + O(n)
≤ c · (7n/10) + c · (n/5) + c ′n
= 9cn/10 + c ′n = cn · (9/10 + c ′/c)

So we only need to choose a c s.t. c ′/c + 9/10 ≤ 1, which is
c ≥ 10c ′, so that we will have

T (n) ≤ cn · (9/10 + c ′/c) ≤ cn



The Closest Pair of Points

Problem
Given a set S = {p1, . . . , pn} of points in the plane, where pi = (xi , yi),
compute a closest-pair of points in S, that is, a pair of distinct points
pi , pj ∈ S such that |pipj | = min{|pr ps | : pr ̸= ps ∈ S}

Note: we assume the points in S to have distinct coordinates; if there are
duplicate points in S, this is easy to pre-check and the answer is 0



The Closest-Pair Algorithm: Overview

Divide: Partition the input set S into two sets SL and SR of the same
size s.t. points in SL are to the left of points in SR

Conquer: Recursively find the minimum distances of SL and SR

Combine: Find the minimum distance of point pairs where one is
from SL and the other is from SR ; return the minimum of the three
minimums

We aim to achieve O(n) time for both the divide and combine phase so
that the entire complexity is O(n log n)



Preprocessing Step

Let X be a list containing the points in S sorted w.r.t. their
x -coordinates, and Y a list containing the points in S sorted
w.r.t. their y -coordinates. Clearly, X and Y can be obtained in
O(n log n) time (we only do this once at the beginning).

So the input to the algorithm, i.e., the set of points, is encoded as a tuple
of three arrays (S,X ,Y )



Divide Phase

Partition S into SL and SR of equal size s.t. points in SL are to the
left of SR using a central vertical line D
Let XL, YL each represent the set of points in SL sorted by x- and
y-coordinates respectively; XR and YR are similarly defined for SR



Divide Phase: Pseudocode

1. m = |X |/2
2. D = X [m].x
3. XL = X [1 . . .m]

4. XR = X [m + 1 . . . |X |]
5. for i = 1 . . . |Y |:
6. if Y [i ].x ≤ D:
7. append Y [i ] to YL

8. else:
9. append Y [i ] to YR

10. separate S into SL, SR similarly



Conquer Phase

Recursively call the algorithm on (SL,XL,YL) to obtain the
min-distance δL for SL, and on (SR ,XR ,YR) to obtain the
min-distance δR for SR .



Combine Phase

Idea
We have:

δL: The min dis of pairs in SL
δR : The min dis of pairs in SR

Aim of combine phase: Compute the min-dis of the pairs where one
point is from SL and the other is from SR (i.e., pairs of points from
different sides)
Answer: The minimum of above three minimums



Details of Combine Phase

The first observation
Let δ = min{δL, δR}
We only need to consider pairs within a 2δ-wide vertical strip
centered around D



Consider only 2δ-wide vertical strip centered around D



Explanation

We have computed min-dis of points from the same side, which is δ.
So, to compute the overall min-dis, we can ignore those point pairs
whose distances are greater than δ.

If two points from different sides are not both from the 2δ-wide
vertical strip (at least one point is outside the strip), then their
distance is greater than δ, and so we can ignore them.



The Combine Phase

Let δ = min{δL, δR}
From Y , create Ymid (also sorted by y-coordinates) which is the set
of points within the 2δ-wide vertical strip centered around D

Go over Ymid , and for each point p, compute its distance to at most
7 points in Ymid that follow p, and keep track of the min-distance
Return the smaller of δ and what we have by scanning Ymid
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Combine Phase: Pseudocode

1. for i = 1 . . . |Y |:
2. if Y [i ].x ≥ D − δ and Y [i ].x ≤ D + δ:
3. append Y [i ] to Ymid

4. δ̄ = ∞
5. for i = 1 . . . |Ymid |:
6. for j = 1 . . . 7:
7. if i + j ≤ |Ymid | and dis(Ymid [i ],Ymid [i + j]) < δ̄ then
8. δ̄ = dis(Ymid [i ],Ymid [i + j])
9. return min{δ, δ̄}



Why only scan 7 points?

For each point p in Ymid , we only need to consider other points in
Ymid whose distances to p is < δ. This means we only need to
consider points within a 2δ × 2δ square of p.

Key observation: Each δ × δ square contains at most 4 points

This square is totally within the left or right side of the vertical
separator D, meaning that points in the square are either all from SL or
all from SR , so these points are at least δ-distance apart

A fact from computational geometry says that such a square cannot fit
in more than 4 points
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Why only scan 7 points?

Therefore, each 2δ× δ square contains at most 8 points (including p)

So we only need to scan the 7 points that precede p (ones that are in
the upper 2δ× δ square) and the 7 points that follow p (ones that are
in the lower 2δ × δ square) in Ymid .

Further observation: we only need to scan the 7 points that follow p,
and ignore the 7 points that precede p:

Suppose there is a point q preceding p in Ymid falling within the upper
2δ × δ square for p. Then p also falls in the lower 2δ × δ square for q.
So we have checked the pair p, q when we scan q.



The Closest-Pair Algorithm

Closest-Pair-Algo
1. if |S| ≤ 3 return a closes pair (pmin, qmin) in S by brute force;
2. using X , compute a vertical line D of equation x = ℓ that partitions S into

SL, SR of equal size such that all points in SL are on D or to the left of it, and
all points in SR are on D or to the right of it;

3. using X and Y , create the arrays XL,YL and XR ,YR ;
4. recurse on SL,XL,YL to compute a closest pair (pL, qL); let δL = |pLqL|;
5. recurse on SR ,XR ,YR to compute a closest pair (pR , qR); let δR = |pRqR |;
6. let δ = min {δL, δR};
7. let Smid be the set of points in S whose x -coordinate satisfies ℓ− δ ≤ x ≤ x + δ;
8. using Y , compute the list of points in Smid sorted by their y -coordinates;
9. go over Ymid (in the sorted order), and for each point, compute its distance to

the next (at most) 7 points in Ymid and keep track of the pair of points
(pmid , qmid) of minimum distance;

10. return the closest pair (pmin, qmin) among, (pL, qL), (pR , qR), and (pmid , qmid);



Run-Time Analysis of Closest-Pair

Let T (n) be the running time of Closest-Pair in the worst case on n
points.

Divide phase takes O(n) time.
Combine phase takes O(n) time.
Recursive call on (SL,XL,YL) takes T (n/2) time;
recursive call on (SR ,XR ,YR) takes T (n/2) time.

Therefore, T (n) obeys the following recurrence relation:

T (n) =
{

O(1) if n ≤ 3
2T (n/2) + O(n) otherwise

We can solve T (n) using the Master Theorem to obtain T (n) = O(n lg n)



Integer Multiplication

Problem
Multiply two integers x , y represented as sequences (e.g., arrays) of 0-1
bits where the lengths of the sequences can be arbitrarily large (assume
the length of the two to be both n, with possibly padding 0’s)

Notice: This cannot be simply done in constant time: the multiplication of
provided by the CPU only supports a fixed length on the sequence (e.g.,
64).



An Algorithm Everybody Knows

Solution:

Compute a “partial product” by multiplying each digit of y separately
by x, and then you add up all the partial products.
Only this time we do the binary version, i.e., we multiplying each bit
of y by x and then add up.

(Figure taken from [Kleinberg&Tardos - Algorithm Design])

Time complexity:

O(n2)
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Attempting to Improve the Naive Algorithm

Using, of course, divide and conquer:

Write x as x = x1 · 2n/2 + x0, where x1 is the “high-order” half bits x0
is the “low-order” half bits
Similarly write y as y = y1 · 2n/2 + y0

Rewrite xy as
xy = (x1 · 2n/2 + x0)(y1 · 2n/2 + y0)

= x1y1 · 2n + (x1y0 + x0y1) · 2n/2 + x0y0

So, to compute xy (multiplying two n-sequences), we only need to:
Recursively compute four multiplications of n/2-sequences:

x1y1, x1y0, x0y1, and x0y0

Then take the sum x1y1 · 2n + (x1y0 + x0y1) · 2n/2 + x0y0 (which can
be done in O(n) time)
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xy = (x1 · 2n/2 + x0)(y1 · 2n/2 + y0)

= x1y1 · 2n + (x1y0 + x0y1) · 2n/2 + x0y0

So, to compute xy (multiplying two n-sequences), we only need to:
Recursively compute four multiplications of n/2-sequences:

x1y1, x1y0, x0y1, and x0y0

Then take the sum x1y1 · 2n + (x1y0 + x0y1) · 2n/2 + x0y0 (which can
be done in O(n) time)



Pseudocode

Recursive-Multiply(x ,y)
1. write x = x1 · 2n/2 + x0, y = y1 · 2n/2 + y0

2. x1y1 = Recursive-Multiply(x1, y1)

3. x1y0 = Recursive-Multiply(x1, y0)

4. x0y1 = Recursive-Multiply(x0, y1)

5. x0y0 = Recursive-Multiply(x0, y0)

6. return x1y1 · 2n + (x1y0 + x0y1) · 2n/2 + x0y0

Time complexity:

T (n) = 4T (n/2) + O(n) which is O(n2) (no improvement at all!)
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Second Attempt to Improve the Naive Algorithm

The problem with the previous divide-and-conquer approach is that it
involves four recursive calls
If we can reduce the number of recursive calls to three, we would
have

T (n) = 3T (n/2) + O(n)

which is O(n1.59) (quite an improvement!)



Second Attempt to Improve the Naive Algorithm

Notice that our goal is to compute the sum

xy = x1y1 · 2n + (x1y0 + x0y1) · 2n/2 + x0y0 (1)

Consider another multiplication

p = (x1 + x0)(y1 + y0) = x1y1 + x1y0 + x0y1 + x0y0

where we observe x1y0 + x0y1 = p − x1y1 − x0y0

So, to get the three components in the sum (1), we only need the
three multiplications of n/2-sequences:

x1y1, x0y0, and p = (x1 + x0)(y1 + y0)

by letting x1y0 + x0y1 = p − x1y1 − x0y0

And then we can get xy with only three recursive calls!



Second Attempt to Improve the Naive Algorithm

Notice that our goal is to compute the sum

xy = x1y1 · 2n + (x1y0 + x0y1) · 2n/2 + x0y0 (1)

Consider another multiplication

p = (x1 + x0)(y1 + y0) = x1y1 + x1y0 + x0y1 + x0y0

where we observe x1y0 + x0y1 = p − x1y1 − x0y0

So, to get the three components in the sum (1), we only need the
three multiplications of n/2-sequences:

x1y1, x0y0, and p = (x1 + x0)(y1 + y0)

by letting x1y0 + x0y1 = p − x1y1 − x0y0

And then we can get xy with only three recursive calls!



Second Attempt to Improve the Naive Algorithm

Notice that our goal is to compute the sum

xy = x1y1 · 2n + (x1y0 + x0y1) · 2n/2 + x0y0 (1)

Consider another multiplication

p = (x1 + x0)(y1 + y0) = x1y1 + x1y0 + x0y1 + x0y0

where we observe x1y0 + x0y1 = p − x1y1 − x0y0

So, to get the three components in the sum (1), we only need the
three multiplications of n/2-sequences:

x1y1, x0y0, and p = (x1 + x0)(y1 + y0)

by letting x1y0 + x0y1 = p − x1y1 − x0y0

And then we can get xy with only three recursive calls!



Pseudocode (Improved)

Recursive-Multiply(x ,y)
1. write x = x1 · 2n/2 + x0 and y = y1 · 2n/2 + y0

2. compute x1 + x0 and y1 + y0

3. p = Recursive-Multiply(x1 + x0, y1 + y0)

4. x1y1 = Recursive-Multiply(x1, y1)

5. x0y0 = Recursive-Multiply(x0, y0)

6. return x1y1 · 2n + (p − x1y1 − x0y0) · 2n/2 + x0y0

Time complexity:
T (n) = 3T (n/2) + O(n) which is O(n1.59)



Strassen’s Algorithm for Matrix Multiplication

Problem
Given two n × n matrix A = (ai ,j) and B = (bi ,j), compute C = A · B
which is another n × n matrix (ci ,j) with:

ci ,j =
n∑

k=1
ai ,kbk,j

The straightforward algorithm runs in Θ(n3) time as we need to computer
n2 number of entries ci ,j , each takes Θ(n) multiplications and additions



Strassen’s Algorithm for Matrix Multiplication

Problem
Given two n × n matrix A = (ai ,j) and B = (bi ,j), compute C = A · B
which is another n × n matrix (ci ,j) with:

ci ,j =
n∑

k=1
ai ,kbk,j

The straightforward algorithm runs in Θ(n3) time as we need to computer
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A Divide-and-conquer approach

Partition each of A, B, and C into four n/2 × n/2 matrices:

A =

(
A1,1 A1,2
A2,1 A2,2

)
B =

(
B1,1 B1,2
B2,1 B2,2

)
C =

(
C1,1 C1,2
C2,1 C2,2

)
For simplicity, assume n = 2k so that we can keep on recursively
performing such partitioning into smaller matrices

We have that C = A · B can be expressed as:(
C1,1 C1,2
C2,1 C2,2

)
=

(
A1,1 A1,2
A2,1 A2,2

)
·
(

B1,1 B1,2
B2,1 B2,2

)

That is,
C1,1 = A1,1 · B1,1 + A1,2 · B2,1
C1,2 = A1,1 · B1,2 + A1,2 · B2,2
C2,1 = A2,1 · B1,1 + A2,2 · B2,1
C2,2 = A2,1 · B1,2 + A2,2 · B2,2
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Pseudocode

RecurMatMul(A,B)
1. let n be the number of rows on A and B
2. let C be a new n × n matrix
3. if n == 1:
4. c1,1 = a1,1 · b1,1

5. return C
6. partition A, B, and C each into four sub-matrices
7. C1,1 = RecurMatMul(A1,1,B1,1) + RecurMatMul(A1,2,B2,1)

8. C1,2 = RecurMatMul(A1,1,B1,2) + RecurMatMul(A1,2,B2,2)

9. C2,1 = RecurMatMul(A2,1,B1,1) + RecurMatMul(A2,2,B2,1)

10. C2,2 = RecurMatMul(A2,1,B1,2) + RecurMatMul(A2,2,B2,2)

11. return C

4 matrix summations in line 7-10 takes O(n2) time (so other than the
recursive calls it takes O(n2) time)
There are 8 recursive calls each of which takes T (n/2) time
T (n) = 8T (n/2) + O(n2) which is O(n3) (no improvement at all!)
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Strassen’s Algorithm for Matrix Multiplication

Idea:
Use seven recursive calls to multiplication of smaller matrix (instead
of eight)
Recursive equation becomes T (n) = 7T (n/2) + O(n2)

So overall complexity becomes O(nlog2 7) which is O(n2.81)



Step 1

Create the following 10 matrices:

S1 = B1,2 − B2,2
S2 = A1,1 + A1,2
S3 = A2,1 + A2,2
S4 = B2,1 − B1,1
S5 = A1,1 + A2,2
S6 = B1,1 + B2,2
S7 = A1,2 − A2,2
S8 = B2,1 + B2,2
S9 = A1,1 − A2,1
S10 = B1,1 + B1,2



Step 2

Recursively multiply the smaller matrices (n/2 × n/2) for seven times:

P1 = A1,1 · S1
P2 = S2 · B2,2
P3 = S3 · B1,1
P4 = A2,2 · S4
P5 = S5 · S6
P6 = S7 · S8
P7 = S9 · S10



Step 3

Recover the smaller matrices of C using the matrices in Step 2:

C1,1 = P5 + P4 − P2 + P6
C1,2 = P1 + P2
C2,1 = P3 + P4
C2,2 = P5 + P1 − P3 − P7



Step 3: Further details (1)

(Figure from [CLRS])



Step 3: Further details (2)

(Figure from [CLRS])



Final comments

Verifying the correctness of the equations in Step 3 is tedious work
The takeaway is that Strassen has come a long way to reduce the
number of smaller matrix multiplications to seven with a constant
number of matrix additions and subtractions

Imaginably, finding such equations is very hard

So overall we have T (n) = 7T (n/2) + O(n2) which is O(n2.81)


