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Run-Time Analysis

@ Goal: Measure the efficiency (running time) of algorithms for
comparing which one is faster among different algorithms

o Difficulty:
e The running time of an algorithm varies with the size of input; even for
different inputs of the same size, running time may vary.
o Different implementations of an algorithms can run differently; the
same implementation on different machines also runs differently
o Parallelism; caching; hyper-threading

@ Solution:

o Measure the growth of the running time w.r.t input size, where the
growth is roughly like an order of magnitude



Example: Counting the number of iterations

Insertion Sort

1 for i=2to n do
2 key + A[il;
3 j=i—-1
4 while (j > 0) and (A[j] > key) do
5 Alj + 1] « A[Jj];
6 j—j—1
7 end
8 Alj + 1] « key;
9 end
Idea (review):
o Before each iteration 7, we have an invariant that A[1,...,i —1] is
already sorted
@ At iteration i, insert A[i] after the the first element in A[1,...,7i —1]

(counting from the right) which is no greater than A[i]



Example: Counting the number of iterations

Insertion Sort

1 for =2 to n do

2 key + A[il;

3 j=i—-1

4 while (j > 0) and (A[j] > key) do

5 Alj + 1] « A[Jj];

6 j+—Jji—1

7 end

8 Alj + 1] « key;

9 end
Input: 6,4, 3,8,5
i=2. 6,43 85 = 4,6,3 85
i= 4,6,3,85 = 3,468 5
i = 3,4,6,8,5 = 3,4,6,8,5
i= 3,4,6,85 = 3,456,8




Example: Counting the number of iterations

Insertion Sort

for i=2 to n do

key < A[il;

j=i—-1

while (j > 0) and (A[j] > key) do
A+ 1]+ Al
Jj<i—-1

end

Alj + 1] < key;
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end

Number of iterations in the best and worst case:

Input Size: n
Best case: n—1
Worst Case: 1+2+---+n—1:@:%n2—%n




Time complexity function

Definition: The time complexity function T : N — R of an algorithm is
a function s.t. T(n) equals the maximum running time of any input with J
size n.

Definition taken from: Michael R. Garey, David S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-Completeness



Time complexity function

Definition: The time complexity function T : N — R of an algorithm is

a function s.t. T(n) equals the maximum running time of any input with
size n.

Definition taken from: Michael R. Garey, David S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-Completeness

Notice:

@ The above defined is indeed the worst-case time complexity, which we
care about the most in computer science

o If we replace ‘maximum’ with ‘average’, then this becomes the
definition of average time complexity, which we occasionally do

o If we replace ‘running time' with ‘memory’, then this becomes the
definition of memory/space complexity function



Best notion for ‘input size’ depends on specific problems:

@ For most problems, n is the number of items in input, e.g., array size

@ Sometimes, the size of input is measured with two numbers rather
than one, e.g., for graph inputs, the input size is typically number of
vertices (n) and number of edges (m)

@ Some other problems (e.g., multiplying two integers) take input size
as the total number of bits needed to represent the input in ordinary
binary notation: we may only very occasionally do this in this course
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Difficulty: It is hard or even impossible to really define what T is
@ e.g., what is T(10) for input size 107



Problem with previous time complexity function

Difficulty: It is hard or even impossible to really define what T is
@ e.g., what is T(10) for input size 107

Solution: We measure the running time T asymptotically using O-, ©-,
and Q-analysis
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Asymptotic Notations

Let f,g : N — R be asymptotically positive functions
(f(n), g(n) are always positive for large enough n)

Definition (Big-O): f(n) € O(g(n)) if 3c > 0 and np € N such that
f(n) < cg(n) Vn> no; we also say that g(n) is an asymptotic upper
bound of f(n)

Three things to mention:

@ The part in the definition accounting for being “upper bound”:
f(n) < cg(n)

@ Is g(n) = n an upper bound of f(n) = 10n then?Answer: yes, by
letting ¢ = 20

@ The part in the definition accounting for being “asymptotic”: When
we say something is “asymptotically” true, we typically mean this is
true for all large integers n greater than a fixed integer ng



Asymptotic Notations

Let f,g : N — R be asymptotically positive functions
(f(n), g(n) are always positive for large enough n)

Definition (Big-O): f(n) € O(g(n)) if 3c > 0 and np € N such that
f(n) < cg(n) Vn> no; we also say that g(n) is an asymptotic upper
bound of f(n)

Examples:

n€ O(n?)

nlogn ¢ O(n)
2n+5¢€ O(n)
3n*+2n+10 € O(n?)
logyg9 n € O(n%9%01)
nl00 c O(Qn)
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Asymptotic Notations

Definition (Big-Omega): f(n) € Q(g(n)) if 3c > 0 and ng € N such
that f(n) > cg(n) Vn > ng; we also say that g(n) is an asymptotic lower
bound of f(n)

Remark: We have f € Q(g) iff g € O(f)

Definition (Big-Theta): f(n) € ©(g(n)) iff f(n) € Q(g(n)) and
f(n) € O(g(n)); we also say that g(n) is an asymptotic tight bound of

f(n)

Remark: We have f € ©(g) iff g € ©(f) (try to think of why!)

Examples:
log(n!) € ©(nlog n)
Stirling’s Approximation: n! ~ 2—: 21n



Asymptotic Notations

Note:

@ We use ‘€’ to denote the asymptotic relations for a reason: O(g(n))
can be thought of as the set of functions having g(n) as an
asymptotic upper bound (the same for Big-© and -Q)

@ Sometimes we simply write f(n) € O/Q/©(g(n)) as
f(n) = 0/Q/0(g(n)), e.g., n= 0(n?), log(n!) = ©(nlog n)



Transitivity:
o If f = O(g) and g = O(h), then f = O(h)
o If f =Q(g) and g = Q(h), then f = Q(h)
o If f =0O(g) and g = ©(h), then f = ©(h)

Additivity:
o If f = O(h) and g = O(h), then f + g = O(h)
o If f =Q(h) and g = Q(h), then f + g = Q(h)
o If f =0©(h) and g = O(h), then f + g = O(h)



Using limits to determine asymptotic order

o limpoo 2 =0 = f(n) € O(g(n)) but g(n) & O(F(n))
o limy oo th =00 = f(n) € Q(g(n)) but g(n) & Q(f(n))
o limy_ 0o é% =c>0(c#x) = f(n)eO(gn)




L'Hopital's rule: convenient for determining the limit

L'Hopital's rule

For two functions f(n), g(n), if limp,_,, f(n) and lim,_,, g(n) are both 0 or
both co (notice that a could be oo), then

f(n) - f'(n)

Example:

(i.e., n€ O(e"))



Asymptotic Bounds for Some Common Functions

Polynomials.
o agn? +ag_1n? 1+ 4 ain+ag € O(n9) for ag > 0
Logarithms.

@ log, n = ©(log, n) for any base a,b >1
e For every a > 0, logn = O(n?)

Exponentials.

o For every r > 1 and every d > 0, n? = O(r")



Asymptotic Bounds for Some Common Functions

Polynomials.
o agn? +ag_1n? 1+ 4 ain+ag € O(n9) for ag > 0
Logarithms.

@ log, n = ©(log, n) for any base a,b >1
e For every a > 0, logn = O(n?)

Exponentials.

o For every r > 1 and every d > 0, n? = O(r")

So,

@ logarithm “<" polynomial “<" exponential



@ Whenever we say the time complexity of an algorithm is O(f(n)),
what we really mean is that the time complexity function of the
algorithm € O(f(n))

e E.g., an algorithm is O(nlog(n)), or an algorithm is Q(n?)

@ Question: When we want to know the lower bound for the time

complexity of an algorithm, do we consider the worst-case time
complexity or the best-case?



Some common running time

Linear Time: O(n)

‘nlog n’ time: O(nlog n)

Quadratic Time: O(n?)

Cubic Time: O(n%)

Polynomial Time: O(n), for k >0
Exponential Time: O(a"), for a > 1



“Efficient” algorithms

Definition : An algorithm is called efficient if its time complexity
function T(n) € O(n¥) for a fixed integer k; the algorithm is also called a

polynomial-time algorithm

Question: Is O(nlog n) polynomial time algorithm?



“Efficient” algorithms

Definition : An algorithm is called efficient if its time complexity
function T(n) € O(n¥) for a fixed integer k; the algorithm is also called a
polynomial-time algorithm

Question: Is O(nlog n) polynomial time algorithm?

Why we have a definition like this?

o Although an O(N?%) algorithm is useless in practice, the polynomial
time algorithms that people develop almost always have low constants
and exponents

@ Breaking through the exponential barrier of brute force typically
exposes some crucial structure of the problem

Exceptions
@ Some polynomial-time algorithms do have high constants and/or
exponents, and are useless in practice.
@ Some exponential-time (or worse) algorithms are widely used because
the worst-case instances seem to be rare (simplex algorithm, grep)



Asymptotic Growth

Sort the following functions in a non-decreasing order of their
asymptotic growth J
(1) 2n® —5n (6) 4lgn—1
(2) 5n—3 (7) n!
(3) n" -2 (8) 2n(Ig n)® + 3n
(4) 30> —3n+1 (9) 10n—2
(5)2"+n+1 (10) 10100

Solution: (10), (6), (2)=(9), (8), (4), (1), (5). (7), (3) J




Example of asymptotic analysis (in full detail)

Insertion Sort

for i=2 to n do

key « A(i);

j=i—1

while (j > 0) and (A(j) > key) do
A +1) < A();
Jj<i—-1

end

Al +1) < key;

© 00N O R W N =

end

@ Assume Line i takes ¢; time to execute
@ Line 1, 2, 3, 8 executes n — 1 times

@ In worst case, Line 4 executes i times, Line 5 and 6 executes /i — 1
times for each i




Example of asymptotic analysis (in full detail)

T(n) :(C1+C2+C3+Cg)*(n—1)—|—Z(C4*i+(C5+c6)*(i—1))
i=2

n
:(C1+C2+C3+C8)*(n—1)+Z(C4—|—C5+C6)*i
i=2
+ (s +cs)x(n—1)
=(ca+ s+ ¢c6)(n+2)(n—1)/2
+(a+tca+atagtotc)x(n—1)
=an® + Bn+ c € O(n?)

Note: You don't need to provide such level of details in hw/exams



Example of asymptotic analysis (in short)

We know that the running time of the insertion sort is dominated by the
inner loop (Line 4-6), which runs for < n? times in the worst case, so we
have:

T(n) < cxn? € O(n?)
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Example of asymptotic analysis (in short)

We know that the running time of the insertion sort is dominated by the
inner loop (Line 4-6), which runs for < n? times in the worst case, so we
have:

T(n) < cxn? € O(n?)

Note: You will be asked to give an upper bound (Big-O) which should be
as tight as possible, e.g., O(n?) is a tight upper bound for insertion sort
but O(n%) is not

Question: s the time complexity of insertion sort Q(n?)? (If the answer
is yes, then insertion sort is indeed @(n?) so n? is the tightest possible
bound)



Asymptotic Growth
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//www.wolframalpha.com/input?i=x%2C+x+log_2%28x%29%2C+x%5E2%,2C+2),5Ex%2C+x+from+1+to+100%2C+y+from+1+to+5000


https://www.wolframalpha.com/input?i=x%2C+x+log_2%28x%29%2C+x%5E2%2C+2%5Ex%2C+x+from+1+to+100%2C+y+from+1+to+5000
https://www.wolframalpha.com/input?i=x%2C+x+log_2%28x%29%2C+x%5E2%2C+2%5Ex%2C+x+from+1+to+100%2C+y+from+1+to+5000

Asymptotic Growth

Table 2.1 The running times (rounded up) of different algorithms on inputs of
increasing size, for a processor performing a million high-level instructions per second.
In cases where the running time exceeds 10%° years, we simply record the algorithm as
taking a very long time.

n nlog, n n? n? 1L 2 n!
n=10 < 1sec < 1sec < 1sec < 1sec < 1sec < 1sec 4 sec
n=30 < 1sec < 1sec < 1sec < 1sec < 1 sec 18 min 10%° years
n=>50 < 1sec < 1sec < 1sec < 1sec 11 min 36 years very long
n =100 <1lsec <lsec <1sec Isec 12,892 years 107 years  very long

n=1,000 < 1sec < 1sec 1 sec 18 min very long  very long very long
n=10,000 < 1sec < 1sec 2 min 12 days very long very long very long
n = 100,000 < 1sec 2 sec 3 hours 32 years very long very long very long
n = 1,000,000 1 sec 20 sec 12 days 31,710 years very long very long very long

(Figure from Algorithm design by Kleinberg and Tardos)



An Example: The Fibonacci Sequence

m A well-known sequence of numbers

0,1,1,2,3,5,8,13,21,34, ...

m Mathematical definition:

0 ifn=0
Fr=A1 ifn=1
Froi+Fpy ifn>1



Our First Algorithm

FIBONAccI(n)
1 ifn==

2 return 0

3 elseifn==1

4 return 1

5 else return FIBONAccI(n — 1) + FIBONAcCI(n — 2)



Our First Algorithm

FIBONAccI(n)
1 ifn==

2 return 0

3 elseifn==1

4 return 1

5 else return FIBONAccI(n — 1) + FIBONAcCI(n — 2)

The three fundamental questions for algorithmists:

1. Is the algorithm correct?
» forevery valid input, does it terminate?
» if so, does it do the right thing?

2. How much time does it take to complete?
3. Can we do better?



Complexity of Our First Algorithm
m Let T(n) be the number of basic steps needed to compute FIBONACCI(1)

FIBONAccI(n)
1 ifn==

2 return 0

3 elseifn==1

4 return 1

5 elsereturn FIBONAccI(n — 1) + FIBONAcCI(n — 2)

T(0)=2;T1) =3
TnN)=T(n-1)+T(n-2)+3



Complexity of Our First Algorithm
m Let T(n) be the number of basic steps needed to compute FIBONACCI(1)

FIBONAccI(n)
1 ifn==

2 return 0

3 elseifn==1

4 return1

5 else return FIBONAccI(n — 1) + FIBONACCI(n — 2)

T(0)=2;T(1) =3
TN=Tn-D+Tnh-2)+3 =T0h)>F,



Complexity of Our First Algorithm (2)

m So, let’s try to understand how F,, grows with n

T(n) > Fn = Fn_] + Fn_2

Now, since F, > Fpo1 > Fpa = Fp3 > ...

Fn > 2Fn 2 > 2(2Fn_q) = 2(2(2F6)) > ... > 23

This means that

T(n) > (V2)" ~ (1.4)"



Complexity of Our First Algorithm (2)

m So, let’s try to understand how F,, grows with n

T(n) > Fp=Fpq+ Fro

Now, since F, > Fpo1 > Fpa = Fp3 > ...

Fn > 2Fn 2 > 2(2Fn_q) = 2(2(2F6)) > ... > 23

This means that

T(n) = (V2)" ~ (1.4)"

m T(n) grows exponentially with n

m Can we do better?



A Better Algorithm

0,1,1,2,3,5,8,13,21,34, ...
Idea: we compute F,, only from the previous two numbers!

SMARTFIBONACCI(n)
1 ifn==

2 return 0

3 elseifn==

4 returni

5 elsepprev =0

6 prev =1

7 fori =2ton

8 f = prev + pprev

9 pprev = prev

0 prev = f

N

1 returnf



A Better Algorithm

0,1,1,2,3,5,8,13,21,34, ...
Idea: we compute F,, only from the previous two numbers!

SMARTFIBONACCI(n)
1 ifn==

2 return 0

3 elseifn==

4 returni

5 elsepprev =0

6 prev =1

7 fori =2ton

8 f = prev + pprev

9 pprev = prev

0 prev = f

= =

1 returnf

T(nN)=6+6(n—1)=6n
The complexity of SMARTFIBONACcCI(n) is linear in n



running time (seconds)
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