Run-Time Analysis

Tao Hou

• Goal: Measure the *efficiency* (running time) of algorithms for comparing which one is *faster* among different algorithms

- Goal: Measure the *efficiency* (running time) of algorithms for comparing which one is *faster* among different algorithms
- Difficulty:
 - The running time of an algorithm varies with the *size* of input; even for different inputs of the *same* size, running time may vary.
 - Different *implementations* of an algorithms can run differently; the same implementation on different machines also runs differently
 - Parallelism; caching; hyper-threading

- Goal: Measure the *efficiency* (running time) of algorithms for comparing which one is *faster* among different algorithms
- Difficulty:
 - The running time of an algorithm varies with the *size* of input; even for different inputs of the *same* size, running time may vary.
 - Different *implementations* of an algorithms can run differently; the same implementation on different machines also runs differently
 - Parallelism; caching; hyper-threading

• Solution:

• Measure the *growth* of the running time w.r.t input size, where the growth is roughly like an order of magnitude

Example: Counting the number of iterations

Insertion Sort

Idea (review):

- Before each iteration i, we have an invariant that $A[1, \ldots, i-1]$ is already sorted
- At iteration *i*, insert A[*i*] after the the first element in A[1,...,*i*-1] (counting from the right) which is no greater than A[*i*]

Example: Counting the number of iterations

Insertion Sort

Input:6, 4, 3, 8, 5i = 2:6, 4, 3, 8, 5i = 3:4, 6, 3, 8, 5i = 3:4, 6, 3, 8, 5i = 4:3, 4, 6, 8, 5i = 5:3, 4, 6, 8, 5i = 5:3, 4, 6, 8, 5i = 5:3, 4, 6, 8, 5

Example: Counting the number of iterations

Insertion Sort

Number of iterations in the best and worst case:

Input Size: *n* Best case: n - 1Worst Case: $1 + 2 + \dots + n - 1 = \frac{n(n-1)}{2} = \frac{1}{2}n^2 - \frac{1}{2}n$ **Definition:** The time complexity function $T : \mathbb{N} \to \mathbb{R}$ of an algorithm is a function s.t. T(n) equals the *maximum* running time of any input with size n.

Definition taken from: Michael R. Garey, David S. Johnson. *Computers and Intractability: A Guide to the Theory of NP-Completeness*

Definition: The time complexity function $T : \mathbb{N} \to \mathbb{R}$ of an algorithm is a function s.t. T(n) equals the *maximum* running time of any input with size n.

Definition taken from: Michael R. Garey, David S. Johnson. *Computers and Intractability: A Guide to the Theory of NP-Completeness*

Notice:

- The above defined is indeed the *worst-case* time complexity, which we care about the most in computer science
- If we replace 'maximum' with 'average', then this becomes the definition of *average* time complexity, which we occasionally do
- If we replace 'running time' with 'memory', then this becomes the definition of memory/space complexity function

Best notion for 'input size' depends on specific problems:

- For most problems, *n* is the number of items in input, e.g., array size
- Sometimes, the size of input is measured with two numbers rather than one, e.g., for graph inputs, the input size is typically number of vertices (*n*) and number of edges (*m*)
- Some other problems (e.g., multiplying two integers) take input size as the total number of bits needed to represent the input in ordinary binary notation: we may only very occasionally do this in this course

Difficulty: It is hard or even impossible to really define what T is • e.g., what is T(10) for input size 10? Difficulty: It is hard or even impossible to really define what T is • e.g., what is T(10) for input size 10?

Solution: We measure the running time T asymptotically using O-, Θ -, and Ω -analysis

Let $f, g : \mathbb{N} \to \mathbb{R}$ be asymptotically positive functions (f(n), g(n) are always positive for large enough n)

Let $f, g : \mathbb{N} \to \mathbb{R}$ be asymptotically positive functions (f(n), g(n) are always positive for large enough n)

Definition (Big-O): $f(n) \in O(g(n))$ if $\exists c > 0$ and $n_0 \in \mathbb{N}$ such that $f(n) \leq cg(n) \quad \forall n \geq n_0$; we also say that g(n) is an *asymptotic upper bound* of f(n)

Let $f, g : \mathbb{N} \to \mathbb{R}$ be asymptotically positive functions (f(n), g(n) are always positive for large enough n)

Definition (Big-O): $f(n) \in O(g(n))$ if $\exists c > 0$ and $n_0 \in \mathbb{N}$ such that $f(n) \leq cg(n) \quad \forall n \geq n_0$; we also say that g(n) is an *asymptotic upper bound* of f(n)

Three things to mention:

• The part in the definition accounting for being "upper bound":

Let $f, g : \mathbb{N} \to \mathbb{R}$ be asymptotically positive functions (f(n), g(n) are always positive for large enough n)

Definition (Big-O): $f(n) \in O(g(n))$ if $\exists c > 0$ and $n_0 \in \mathbb{N}$ such that $f(n) \leq cg(n) \quad \forall n \geq n_0$; we also say that g(n) is an *asymptotic upper bound* of f(n)

Three things to mention:

The part in the definition accounting for being "upper bound":
 f(n) ≤ cg(n)

Let $f, g : \mathbb{N} \to \mathbb{R}$ be asymptotically positive functions (f(n), g(n) are always positive for large enough n)

Definition (Big-O): $f(n) \in O(g(n))$ if $\exists c > 0$ and $n_0 \in \mathbb{N}$ such that $f(n) \leq cg(n) \quad \forall n \geq n_0$; we also say that g(n) is an *asymptotic upper bound* of f(n)

- The part in the definition accounting for being "upper bound":
 f(n) ≤ cg(n)
- Is g(n) = n an upper bound of f(n) = 10n then?

Let $f, g : \mathbb{N} \to \mathbb{R}$ be asymptotically positive functions (f(n), g(n) are always positive for large enough n)

Definition (Big-O): $f(n) \in O(g(n))$ if $\exists c > 0$ and $n_0 \in \mathbb{N}$ such that $f(n) \leq cg(n) \quad \forall n \geq n_0$; we also say that g(n) is an *asymptotic upper bound* of f(n)

- The part in the definition accounting for being "upper bound":
 f(n) ≤ cg(n)
- Is g(n) = n an upper bound of f(n) = 10n then? Answer: yes, by letting c = 20

Let $f, g : \mathbb{N} \to \mathbb{R}$ be asymptotically positive functions (f(n), g(n) are always positive for large enough n)

Definition (Big-O): $f(n) \in O(g(n))$ if $\exists c > 0$ and $n_0 \in \mathbb{N}$ such that $f(n) \leq cg(n) \quad \forall n \geq n_0$; we also say that g(n) is an *asymptotic upper bound* of f(n)

- The part in the definition accounting for being "upper bound":
 f(n) ≤ cg(n)
- Is g(n) = n an upper bound of f(n) = 10n then? Answer: yes, by letting c = 20
- The part in the definition accounting for being "asymptotic":

Let $f, g : \mathbb{N} \to \mathbb{R}$ be asymptotically positive functions (f(n), g(n) are always positive for large enough n)

Definition (Big-O): $f(n) \in O(g(n))$ if $\exists c > 0$ and $n_0 \in \mathbb{N}$ such that $f(n) \leq cg(n) \quad \forall n \geq n_0$; we also say that g(n) is an *asymptotic upper bound* of f(n)

- The part in the definition accounting for being "upper bound":
 f(n) ≤ cg(n)
- Is g(n) = n an upper bound of f(n) = 10n then? Answer: yes, by letting c = 20
- The part in the definition accounting for being "asymptotic": When we say something is "asymptotically" true, we typically mean this is true for **all** large integers *n* greater than a fixed integer *n*₀

Let $f, g : \mathbb{N} \to \mathbb{R}$ be asymptotically positive functions (f(n), g(n) are always positive for large enough n)

Definition (Big-O): $f(n) \in O(g(n))$ if $\exists c > 0$ and $n_0 \in \mathbb{N}$ such that $f(n) \leq cg(n) \quad \forall n \geq n_0$; we also say that g(n) is an *asymptotic upper bound* of f(n)

Examples:

```
n \in O(n^{2}) 
n \log n \notin O(n) 
2n + 5 \in O(n) 
<math>\frac{1}{2}n^{2} + 2n + 10 \in O(n^{2}) 
\log_{100} n \in O(n^{0.0001}) 
n^{100} \in O(2^{n})
```

Remark: We have $f \in \Omega(g)$ iff $g \in O(f)$

Remark: We have $f \in \Omega(g)$ iff $g \in O(f)$

Definition (Big-Theta): $f(n) \in \Theta(g(n))$ iff $f(n) \in \Omega(g(n))$ and $f(n) \in O(g(n))$; we also say that g(n) is an *asymptotic tight bound* of f(n)

Remark: We have $f \in \Omega(g)$ iff $g \in O(f)$

Definition (Big-Theta): $f(n) \in \Theta(g(n))$ iff $f(n) \in \Omega(g(n))$ and $f(n) \in O(g(n))$; we also say that g(n) is an *asymptotic tight bound* of f(n)

Remark: We have $f \in \Theta(g)$ iff $g \in \Theta(f)$ (try to think of why!)

Remark: We have $f \in \Omega(g)$ iff $g \in O(f)$

Definition (Big-Theta): $f(n) \in \Theta(g(n))$ iff $f(n) \in \Omega(g(n))$ and $f(n) \in O(g(n))$; we also say that g(n) is an *asymptotic tight bound* of f(n)

Remark: We have $f \in \Theta(g)$ iff $g \in \Theta(f)$ (try to think of why!)

Examples: $n^{100} + 2n^{90} + n^{70} + n^2 + 1 \in \Theta(n^{100})$ $\log(n!) \in \Theta(n \log n)$ Stirling's Approximation: $n! \approx \frac{n^n}{e^n} \sqrt{2\pi n}$

Note:

- We use '∈' to denote the asymptotic relations for a reason: O(g(n)) can be thought of as the set of functions having g(n) as an asymptotic upper bound (the same for Big-Θ and -Ω)
- Sometimes we simply write $f(n) \in O/\Omega/\Theta(g(n))$ as $f(n) = O/\Omega/\Theta(g(n))$, e.g., $n = O(n^2)$, $\log(n!) = \Theta(n \log n)$

Transitivity:

• If
$$f = O(g)$$
 and $g = O(h)$, then $f = O(h)$

• If
$$f = \Omega(g)$$
 and $g = \Omega(h)$, then $f = \Omega(h)$

• If
$$f = \Theta(g)$$
 and $g = \Theta(h)$, then $f = \Theta(h)$

Additivity:

•
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0 \implies f(n) \in O(g(n)) \text{ but } g(n) \notin O(f(n))$$

• $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty \implies f(n) \in \Omega(g(n)) \text{ but } g(n) \notin \Omega(f(n))$
• $\lim_{n\to\infty} \frac{f(n)}{g(n)} = c > 0 \ (c \neq \infty) \implies f(n) \in \Theta(g(n))$

L'Hopital's rule

For two functions f(n), g(n), if $\lim_{n\to a} f(n)$ and $\lim_{n\to a} g(n)$ are both 0 or both ∞ (notice that a could be ∞), then

$$\lim_{n\to a}\frac{f(n)}{g(n)}=\lim_{n\to a}\frac{f'(n)}{g'(n)}$$

Example:

$$\lim_{n\to\infty}\frac{n}{e^n}=\lim_{n\to\infty}\frac{1}{e^n}=0$$

(i.e., $n \in O(e^n)$)

Polynomials.

•
$$a_d n^d + a_{d-1} n^{d-1} + \dots + a_1 n + a_0 \in \Theta(n^d)$$
 for $a_d > 0$

Logarithms.

• $\log_a n = \Theta(\log_b n)$ for any base a, b > 1

• For every
$$a > 0$$
, log $n = O(n^a)$

Exponentials.

• For every r > 1 and every d > 0, $n^d = O(r^n)$

Polynomials.

•
$$a_d n^d + a_{d-1} n^{d-1} + \dots + a_1 n + a_0 \in \Theta(n^d)$$
 for $a_d > 0$

Logarithms.

• $\log_a n = \Theta(\log_b n)$ for any base a, b > 1

• For every
$$a > 0$$
, log $n = O(n^a)$

Exponentials.

• For every r > 1 and every d > 0, $n^d = O(r^n)$

So,

• logarithm "<" polynomial "<" exponential

- Whenever we say the time complexity of an algorithm is O(f(n)), what we really mean is that the *time complexity function* of the algorithm $\in O(f(n))$
- E.g., an algorithm is $O(n \log(n))$, or an algorithm is $\Omega(n^2)$
- Question: When we want to know the lower bound for the time complexity of an algorithm, do we consider the worst-case time complexity or the best-case?

- Linear Time: O(n)
- ' $n \log n$ ' time: $O(n \log n)$
- Quadratic Time: $O(n^2)$
- Cubic Time: $O(n^3)$
- Polynomial Time: $O(n^k)$, for k > 0
- Exponential Time: $O(a^n)$, for a > 1

"Efficient" algorithms

Definition : An algorithm is called *efficient* if its time complexity function $T(n) \in O(n^k)$ for a fixed integer k; the algorithm is also called a *polynomial-time algorithm*

Question: Is $O(n \log n)$ polynomial time algorithm?

"Efficient" algorithms

Definition : An algorithm is called *efficient* if its time complexity function $T(n) \in O(n^k)$ for a fixed integer k; the algorithm is also called a *polynomial-time algorithm*

Question: Is $O(n \log n)$ polynomial time algorithm?

Why we have a definition like this?

- Although an $O(N^{20})$ algorithm is useless in practice, the polynomial time algorithms that people develop almost *always* have low constants and exponents
- Breaking through the exponential barrier of brute force typically exposes some *crucial structure* of the problem

Exceptions

- Some polynomial-time algorithms do have high constants and/or exponents, and are useless in practice.
- Some exponential-time (or worse) algorithms are widely used because the worst-case instances seem to be rare (simplex algorithm, grep)

Sort the following functions in a non-decreasing order of their asymptotic growth

(1) 2 <i>n</i> ³ – 5 <i>n</i>	(6) $4 \lg n - 1$
(2) 5 <i>n</i> −3	(7) <i>n</i> !
(3) $n^n - 2$	(8) $2n(\lg n)^2 + 3n$
(4) $3n^2 - 3n + 1$	(9) $10n - 2$
(5) $2^n + n + 1$	(10) 10 ¹⁰⁰

Solution: (10), (6), (2)=(9), (8), (4), (1), (5), (7), (3)

Example of asymptotic analysis (in full detail)

Insertion Sort

- Assume Line *i* takes *c_i* time to execute
- Line 1, 2, 3, 8 executes n-1 times
- In worst case, Line 4 executes i times, Line 5 and 6 executes i 1 times for each i

Example of asymptotic analysis (in full detail)

$$T(n) = (c_1 + c_2 + c_3 + c_8) * (n - 1) + \sum_{i=2}^{n} (c_4 * i + (c_5 + c_6) * (i - 1))$$

= $(c_1 + c_2 + c_3 + c_8) * (n - 1) + \sum_{i=2}^{n} (c_4 + c_5 + c_6) * i$
+ $(c_5 + c_6) * (n - 1)$
= $(c_4 + c_5 + c_6)(n + 2)(n - 1)/2$
+ $(c_1 + c_2 + c_3 + c_8 + c_5 + c_6) * (n - 1)$
= $\alpha n^2 + \beta n + c \in O(n^2)$

Note: You don't need to provide such level of details in hw/exams

We know that the running time of the insertion sort is dominated by the inner loop (Line 4–6), which runs for $\leq n^2$ times in the worst case, so we have:

$$T(n) \leq c * n^2 \in O(n^2)$$

We know that the running time of the insertion sort is dominated by the inner loop (Line 4–6), which runs for $\leq n^2$ times in the worst case, so we have:

$$T(n) \leq c * n^2 \in O(n^2)$$

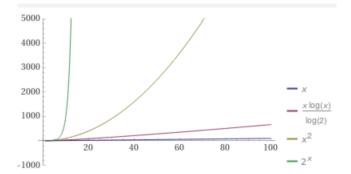
Note: You will be asked to give an upper bound (Big-O) which should be as tight as possible, e.g., $O(n^2)$ is a tight upper bound for insertion sort but $O(n^{100})$ is not

We know that the running time of the insertion sort is dominated by the inner loop (Line 4–6), which runs for $\leq n^2$ times in the worst case, so we have:

$$T(n) \leq c * n^2 \in O(n^2)$$

Note: You will be asked to give an upper bound (Big-O) which should be as tight as possible, e.g., $O(n^2)$ is a tight upper bound for insertion sort but $O(n^{100})$ is not

Question: Is the time complexity of insertion sort $\Omega(n^2)$? (If the answer is yes, then insertion sort is indeed $\Theta(n^2)$ so n^2 is the *tightest* possible bound)



https:

 $//www.wolframalpha.com/input?i=x\%2C+x+log_2\%28x\%29\%2C+x\%5E2\%2C+2\%5Ex\%2C+x+from+1+to+100\%2C+y+from+1+to+5000$

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10²⁵ years, we simply record the algorithm as taking a very long time.

	п	$n \log_2 n$	<i>n</i> ²	<i>n</i> ³	1.5 ⁿ	2 ⁿ	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	1017 years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

(Figure from *Algorithm design* by Kleinberg and Tardos)

An Example: The Fibonacci Sequence

A well-known sequence of numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

Mathematical definition:

$$F_n = \begin{cases} 0 & \text{if } n = 0 \\ 1 & \text{if } n = 1 \\ F_{n-1} + F_{n-2} & \text{if } n > 1 \end{cases}$$

Our First Algorithm

FIBONACCI(*n*)

- 1 **if** *n* == 0
- 2 return 0
- 3 **elseif** *n* == 1
- 4 return 1
- 5 else return FIBONACCI(n-1) + FIBONACCI(n-2)

Our First Algorithm

FIBONACCI(*n*) 1 if *n* == 0 2 return 0 3 elseif *n* == 1 4 return 1 5 else return FIBONACCI(*n* - 1) + FIBONACCI(*n* - 2)

The three fundamental questions for algorithmists:

- 1. Is the algorithm *correct?*
 - for every valid input, does it terminate?
 - if so, does it do the right thing?
- 2. How much *time* does it take to complete?
- 3. Can we do better?

Complexity of Our First Algorithm

■ Let *T*(*n*) be the number of *basic steps* needed to compute **FIBONACCI**(*n*)

FIBONACCI(*n*) 1 if *n* == 0 2 return 0 3 elseif *n* == 1 4 return 1 5 else return FIBONACCI(*n* - 1) + FIBONACCI(*n* - 2)

$$T(0) = 2; T(1) = 3$$

$$T(n) = T(n-1) + T(n-2) + 3$$

Complexity of Our First Algorithm

■ Let *T*(*n*) be the number of *basic steps* needed to compute **FIBONACCI**(*n*)

FIBONACCI(*n*) 1 if *n* == 0 2 return 0 3 elseif *n* == 1 4 return 1 5 else return FIBONACCI(*n* - 1) + FIBONACCI(*n* - 2)

$$T(0) = 2; T(1) = 3$$

 $T(n) = T(n-1) + T(n-2) + 3 \implies T(n) \ge F_n$

Complexity of Our First Algorithm (2)

So, let's try to understand how F_n grows with n

 $T(n) \geq F_n = F_{n-1} + F_{n-2}$

Now, since $F_n \ge F_{n-1} \ge F_{n-2} \ge F_{n-3} \ge ...$

$$F_n \ge 2F_{n-2} \ge 2(2F_{n-4}) \ge 2(2(2F_{n-6})) \ge \ldots \ge 2^{\frac{n}{2}}$$

This means that

 $T(n) \geq (\sqrt{2})^n \approx (1.4)^n$

Complexity of Our First Algorithm (2)

So, let's try to understand how F_n grows with n

 $T(n) \geq F_n = F_{n-1} + F_{n-2}$

Now, since $F_n \ge F_{n-1} \ge F_{n-2} \ge F_{n-3} \ge ...$

$$F_n \ge 2F_{n-2} \ge 2(2F_{n-4}) \ge 2(2(2F_{n-6})) \ge \ldots \ge 2^{\frac{n}{2}}$$

This means that

$$T(n) \ge (\sqrt{2})^n \approx (1.4)^n$$

■ *T*(*n*) *grows exponentially* with *n*

Can we do better?

A Better Algorithm

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

Idea: we compute F_n only from the previous two numbers!

SmartFibonacci(n)		
1	if <i>n</i> == 0	
2	return 0	
3	elseif <i>n</i> == 1	
4	return 1	
5	else pprev = 0	
6	prev = 1	
7	for <i>i</i> = 2 to <i>n</i>	
8	f = prev + pprev	
9	pprev = prev	
10	prev = f	
11	return f	

A Better Algorithm

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

Idea: we compute F_n only from the previous two numbers!

SmartFibonacci(<i>n</i>)		
1	if <i>n</i> == 0	
2	return 0	
3	elseif <i>n</i> == 1	
4	return 1	
5	else pprev = 0	
6	prev = 1	
7	for <i>i</i> = 2 to <i>n</i>	
8	f = prev + pprev	
9	pprev = prev	
10	prev = f	
11	return f	

T(n) = 6 + 6(n - 1) = 6nThe *complexity* of **SMARTFIBONACCI**(*n*) is *linear* in *n*

Results

