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Run-Time Analysis

Goal: Measure the efficiency (running time) of algorithms for
comparing which one is faster among different algorithms

Difficulty:
The running time of an algorithm varies with the size of input; even for
different inputs of the same size, running time may vary.
Different implementations of an algorithms can run differently; the
same implementation on different machines also runs differently
Parallelism; caching; hyper-threading

Solution:
Measure the growth of the running time w.r.t input size, where the
growth is roughly like an order of magnitude
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Example: Counting the number of iterations

Insertion Sort

1 for i=2 to n do
2 key ← A[i ];
3 j = i − 1;
4 while (j > 0) and (A[j] > key) do
5 A[j + 1]← A[j];
6 j ← j − 1;
7 end
8 A[j + 1]← key ;
9 end

Idea (review):
Before each iteration i , we have an invariant that A[1, . . . , i − 1] is
already sorted
At iteration i , insert A[i ] after the the first element in A[1, . . . , i − 1]
(counting from the right) which is no greater than A[i ]
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4 while (j > 0) and (A[j] > key) do
5 A[j + 1]← A[j];
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9 end

Input: 6, 4, 3, 8, 5
i = 2: 6, 4, 3, 8, 5 ⇒ 4, 6, 3, 8, 5
i = 3: 4, 6, 3, 8, 5 ⇒ 3, 4, 6, 8, 5
i = 4: 3, 4, 6, 8, 5 ⇒ 3, 4, 6, 8, 5
i = 5: 3, 4, 6, 8, 5 ⇒ 3, 4, 5, 6, 8



Example: Counting the number of iterations

Insertion Sort

1 for i=2 to n do
2 key ← A[i ];
3 j = i − 1;
4 while (j > 0) and (A[j] > key) do
5 A[j + 1]← A[j];
6 j ← j − 1;
7 end
8 A[j + 1]← key ;
9 end

Number of iterations in the best and worst case:

Input Size: n
Best case: n − 1
Worst Case: 1 + 2 + · · ·+ n − 1 = n(n−1)

2 = 1
2n2 − 1

2n



Time complexity function

Definition: The time complexity function T : N→ R of an algorithm is
a function s.t. T (n) equals the maximum running time of any input with
size n.

Definition taken from: Michael R. Garey, David S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-Completeness

Notice:
The above defined is indeed the worst-case time complexity, which we
care about the most in computer science
If we replace ‘maximum’ with ‘average’, then this becomes the
definition of average time complexity, which we occasionally do
If we replace ‘running time’ with ‘memory’, then this becomes the
definition of memory/space complexity function
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Input size

Best notion for ‘input size’ depends on specific problems:
For most problems, n is the number of items in input, e.g., array size
Sometimes, the size of input is measured with two numbers rather
than one, e.g., for graph inputs, the input size is typically number of
vertices (n) and number of edges (m)
Some other problems (e.g., multiplying two integers) take input size
as the total number of bits needed to represent the input in ordinary
binary notation: we may only very occasionally do this in this course



Problem with previous time complexity function

Difficulty: It is hard or even impossible to really define what T is
e.g., what is T (10) for input size 10?

Solution: We measure the running time T asymptotically using O-, Θ-,
and Ω-analysis
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Asymptotic Notations

Let f , g : N→ R be asymptotically positive functions
(f (n), g(n) are always positive for large enough n)

Definition (Big-O): f (n) ∈ O(g(n)) if ∃c > 0 and n0 ∈ N such that
f (n) ≤ cg(n) ∀n ≥ n0; we also say that g(n) is an asymptotic upper
bound of f (n)

Three things to mention:
The part in the definition accounting for being “upper bound”:
f (n) ≤ cg(n)
Is g(n) = n an upper bound of f (n) = 10n then?Answer: yes, by
letting c = 20
The part in the definition accounting for being “asymptotic”: When
we say something is “asymptotically” true, we typically mean this is
true for all large integers n greater than a fixed integer n0
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Asymptotic Notations

Let f , g : N→ R be asymptotically positive functions
(f (n), g(n) are always positive for large enough n)

Definition (Big-O): f (n) ∈ O(g(n)) if ∃c > 0 and n0 ∈ N such that
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Asymptotic Notations

Definition (Big-Omega): f (n) ∈ Ω(g(n)) if ∃c > 0 and n0 ∈ N such
that f (n) ≥ cg(n) ∀n ≥ n0; we also say that g(n) is an asymptotic lower
bound of f (n)

Remark: We have f ∈ Ω(g) iff g ∈ O(f )

Definition (Big-Theta): f (n) ∈ Θ(g(n)) iff f (n) ∈ Ω(g(n)) and
f (n) ∈ O(g(n)); we also say that g(n) is an asymptotic tight bound of
f (n)

Remark: We have f ∈ Θ(g) iff g ∈ Θ(f ) (try to think of why!)

Examples:
n100 + 2n90 + n70 + n2 + 1 ∈ Θ(n100)
log(n!) ∈ Θ(n log n)
Stirling’s Approximation: n! ≈ nn

en

√
2πn



Asymptotic Notations

Definition (Big-Omega): f (n) ∈ Ω(g(n)) if ∃c > 0 and n0 ∈ N such
that f (n) ≥ cg(n) ∀n ≥ n0; we also say that g(n) is an asymptotic lower
bound of f (n)

Remark: We have f ∈ Ω(g) iff g ∈ O(f )

Definition (Big-Theta): f (n) ∈ Θ(g(n)) iff f (n) ∈ Ω(g(n)) and
f (n) ∈ O(g(n)); we also say that g(n) is an asymptotic tight bound of
f (n)

Remark: We have f ∈ Θ(g) iff g ∈ Θ(f ) (try to think of why!)

Examples:
n100 + 2n90 + n70 + n2 + 1 ∈ Θ(n100)
log(n!) ∈ Θ(n log n)
Stirling’s Approximation: n! ≈ nn

en

√
2πn



Asymptotic Notations

Definition (Big-Omega): f (n) ∈ Ω(g(n)) if ∃c > 0 and n0 ∈ N such
that f (n) ≥ cg(n) ∀n ≥ n0; we also say that g(n) is an asymptotic lower
bound of f (n)

Remark: We have f ∈ Ω(g) iff g ∈ O(f )

Definition (Big-Theta): f (n) ∈ Θ(g(n)) iff f (n) ∈ Ω(g(n)) and
f (n) ∈ O(g(n)); we also say that g(n) is an asymptotic tight bound of
f (n)

Remark: We have f ∈ Θ(g) iff g ∈ Θ(f ) (try to think of why!)

Examples:
n100 + 2n90 + n70 + n2 + 1 ∈ Θ(n100)
log(n!) ∈ Θ(n log n)
Stirling’s Approximation: n! ≈ nn

en

√
2πn



Asymptotic Notations

Definition (Big-Omega): f (n) ∈ Ω(g(n)) if ∃c > 0 and n0 ∈ N such
that f (n) ≥ cg(n) ∀n ≥ n0; we also say that g(n) is an asymptotic lower
bound of f (n)

Remark: We have f ∈ Ω(g) iff g ∈ O(f )

Definition (Big-Theta): f (n) ∈ Θ(g(n)) iff f (n) ∈ Ω(g(n)) and
f (n) ∈ O(g(n)); we also say that g(n) is an asymptotic tight bound of
f (n)

Remark: We have f ∈ Θ(g) iff g ∈ Θ(f ) (try to think of why!)

Examples:
n100 + 2n90 + n70 + n2 + 1 ∈ Θ(n100)
log(n!) ∈ Θ(n log n)
Stirling’s Approximation: n! ≈ nn

en

√
2πn



Asymptotic Notations

Definition (Big-Omega): f (n) ∈ Ω(g(n)) if ∃c > 0 and n0 ∈ N such
that f (n) ≥ cg(n) ∀n ≥ n0; we also say that g(n) is an asymptotic lower
bound of f (n)

Remark: We have f ∈ Ω(g) iff g ∈ O(f )

Definition (Big-Theta): f (n) ∈ Θ(g(n)) iff f (n) ∈ Ω(g(n)) and
f (n) ∈ O(g(n)); we also say that g(n) is an asymptotic tight bound of
f (n)

Remark: We have f ∈ Θ(g) iff g ∈ Θ(f ) (try to think of why!)

Examples:
n100 + 2n90 + n70 + n2 + 1 ∈ Θ(n100)
log(n!) ∈ Θ(n log n)
Stirling’s Approximation: n! ≈ nn

en

√
2πn



Asymptotic Notations

Note:

We use ‘∈’ to denote the asymptotic relations for a reason: O(g(n))
can be thought of as the set of functions having g(n) as an
asymptotic upper bound (the same for Big-Θ and -Ω)
Sometimes we simply write f (n) ∈ O/Ω/Θ(g(n)) as
f (n) = O/Ω/Θ(g(n)), e.g., n = O(n2), log(n!) = Θ(n log n)



Properties

Transitivity:

If f = O(g) and g = O(h), then f = O(h)
If f = Ω(g) and g = Ω(h), then f = Ω(h)
If f = Θ(g) and g = Θ(h), then f = Θ(h)

Additivity:
If f = O(h) and g = O(h), then f + g = O(h)
If f = Ω(h) and g = Ω(h), then f + g = Ω(h)
If f = Θ(h) and g = Θ(h), then f + g = Θ(h)



Using limits to determine asymptotic order

limn→∞
f (n)
g(n) = 0 ⇒ f (n) ∈ O(g(n)) but g(n) ̸∈ O(f (n))

limn→∞
f (n)
g(n) =∞ ⇒ f (n) ∈ Ω(g(n)) but g(n) ̸∈ Ω(f (n))

limn→∞
f (n)
g(n) = c > 0 (c ̸=∞) ⇒ f (n) ∈ Θ(g(n))



L’Hopital’s rule: convenient for determining the limit

L’Hopital’s rule
For two functions f (n), g(n), if limn→a f (n) and limn→a g(n) are both 0 or
both ∞ (notice that a could be ∞), then

lim
n→a

f (n)
g(n) = lim

n→a

f ′(n)
g ′(n)

Example:
lim

n→∞

n
en = lim

n→∞

1
en = 0

(i.e., n ∈ O(en))



Asymptotic Bounds for Some Common Functions

Polynomials.

adnd + ad−1nd−1 + · · ·+ a1n + a0 ∈ Θ(nd) for ad > 0

Logarithms.

loga n = Θ(logb n) for any base a, b > 1
For every a > 0, log n = O(na)

Exponentials.

For every r > 1 and every d > 0, nd = O(rn)

So,
logarithm “<” polynomial “<” exponential
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Some Notes

Whenever we say the time complexity of an algorithm is O(f (n)),
what we really mean is that the time complexity function of the
algorithm ∈ O(f (n))
E.g., an algorithm is O(n log(n)), or an algorithm is Ω(n2)

Question: When we want to know the lower bound for the time
complexity of an algorithm, do we consider the worst-case time
complexity or the best-case?



Some common running time

Linear Time: O(n)
‘n log n’ time: O(n log n)
Quadratic Time: O(n2)

Cubic Time: O(n3)

Polynomial Time: O(nk), for k > 0
Exponential Time: O(an), for a > 1



“Efficient” algorithms

Definition : An algorithm is called efficient if its time complexity
function T (n) ∈ O(nk) for a fixed integer k; the algorithm is also called a
polynomial-time algorithm

Question: Is O(n log n) polynomial time algorithm?

Why we have a definition like this?
Although an O(N20) algorithm is useless in practice, the polynomial
time algorithms that people develop almost always have low constants
and exponents
Breaking through the exponential barrier of brute force typically
exposes some crucial structure of the problem

Exceptions
Some polynomial-time algorithms do have high constants and/or
exponents, and are useless in practice.
Some exponential-time (or worse) algorithms are widely used because
the worst-case instances seem to be rare (simplex algorithm, grep)
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Asymptotic Growth

Sort the following functions in a non-decreasing order of their
asymptotic growth

(1) 2n3 − 5n (6) 4 lg n − 1
(2) 5n − 3 (7) n!
(3) nn − 2 (8) 2n(lg n)2 + 3n
(4) 3n2 − 3n + 1 (9) 10n − 2
(5) 2n + n + 1 (10) 10100

Solution: (10), (6), (2)=(9), (8), (4), (1), (5), (7), (3)



Example of asymptotic analysis (in full detail)
Insertion Sort

1 for i=2 to n do
2 key ← A(i);
3 j = i − 1;
4 while (j > 0) and (A(j) > key) do
5 A(j + 1)← A(j);
6 j ← j − 1;
7 end
8 A(j + 1)← key ;
9 end

Assume Line i takes ci time to execute
Line 1, 2, 3, 8 executes n − 1 times
In worst case, Line 4 executes i times, Line 5 and 6 executes i − 1
times for each i



Example of asymptotic analysis (in full detail)

T (n) =(c1 + c2 + c3 + c8) ∗ (n − 1) +
n∑

i=2
(c4 ∗ i + (c5 + c6) ∗ (i − 1))

=(c1 + c2 + c3 + c8) ∗ (n − 1) +
n∑

i=2
(c4 + c5 + c6) ∗ i

+ (c5 + c6) ∗ (n − 1)
=(c4 + c5 + c6)(n + 2)(n − 1)/2

+ (c1 + c2 + c3 + c8 + c5 + c6) ∗ (n − 1)
=αn2 + βn + c ∈ O(n2)

Note: You don’t need to provide such level of details in hw/exams



Example of asymptotic analysis (in short)

We know that the running time of the insertion sort is dominated by the
inner loop (Line 4–6), which runs for ≤ n2 times in the worst case, so we
have:

T (n) ≤ c ∗ n2 ∈ O(n2)

Note: You will be asked to give an upper bound (Big-O) which should be
as tight as possible, e.g., O(n2) is a tight upper bound for insertion sort
but O(n100) is not

Question: Is the time complexity of insertion sort Ω(n2)? (If the answer
is yes, then insertion sort is indeed Θ(n2) so n2 is the tightest possible
bound)
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Asymptotic Growth

https:

//www.wolframalpha.com/input?i=x%2C+x+log_2%28x%29%2C+x%5E2%2C+2%5Ex%2C+x+from+1+to+100%2C+y+from+1+to+5000

https://www.wolframalpha.com/input?i=x%2C+x+log_2%28x%29%2C+x%5E2%2C+2%5Ex%2C+x+from+1+to+100%2C+y+from+1+to+5000
https://www.wolframalpha.com/input?i=x%2C+x+log_2%28x%29%2C+x%5E2%2C+2%5Ex%2C+x+from+1+to+100%2C+y+from+1+to+5000


Asymptotic Growth

(Figure from Algorithm design by Kleinberg and Tardos)



An Example: The Fibonacci Sequence

A well-known sequence of numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

Mathematical definition:

Fn =


0 if n = 0
1 if n = 1
Fn−1 + Fn−2 if n > 1



Our First Algorithm

FIBONACCI(n)
1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else return FIBONACCI(n − 1) + FIBONACCI(n − 2)

The three fundamental questions for algorithmists:

1. Is the algorithm correct?
I for every valid input, does it terminate?
I if so, does it do the right thing?

2. Howmuch time does it take to complete?
3. Can we do better?
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Complexity of Our First Algorithm

Let T(n) be the number of basic steps needed to compute FIBONACCI(n)

FIBONACCI(n)
1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else return FIBONACCI(n − 1) + FIBONACCI(n − 2)

T(0) = 2; T(1) = 3
T(n) = T(n − 1) + T(n − 2) + 3

⇒ T(n) ≥ Fn
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FIBONACCI(n)
1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else return FIBONACCI(n − 1) + FIBONACCI(n − 2)

T(0) = 2; T(1) = 3
T(n) = T(n − 1) + T(n − 2) + 3 ⇒ T(n) ≥ Fn



Complexity of Our First Algorithm (2)

So, let’s try to understand how Fn grows with n

T(n) ≥ Fn = Fn−1 + Fn−2

Now, since Fn ≥ Fn−1 ≥ Fn−2 ≥ Fn−3 ≥ . . .

Fn ≥ 2Fn−2 ≥ 2(2Fn−4) ≥ 2(2(2Fn−6)) ≥ . . . ≥ 2
n
2

This means that

T(n) ≥ (
√
2)n ≈ (1.4)n

T(n) grows exponentiallywith n

Can we do better?
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A Better Algorithm
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .
Idea: we compute Fn only from the previous two numbers!

SMARTFIBONACCI(n)
1 if n == 0
2 return 0
3 elseif n == 1
4 return 1
5 else pprev = 0
6 prev = 1
7 for i = 2 to n
8 f = prev + pprev
9 pprev = prev
10 prev = f
11 return f

T(n) = 6 + 6(n − 1) = 6n
The complexity of SMARTFIBONACCI(n) is linear in n
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Results

20 40 60 80 100 120 140 160 180 200
0

20

40

60

n

ru
nn
in
g
tim

e
(s
ec
on
ds
)

Ruby
Scheme
Python
C

C-wiz
Java
C-gcc

(Python) SmartFibonacci


