
Topological Regularizer

Tao Hou, CS410/510

University of Oregon

Acknowledgment

Contents of the slide (including figures) are based on the paper:

Chen, Chao, Xiuyan Ni, Qinxun Bai, and Yusu Wang. ”A topological regularizer for
classifiers via persistent homology.” In The 22nd International Conference on Artificial
Intelligence and Statistics, pp. 2573-2582. PMLR, 2019.

Overview

Regularization plays a crucial role in supervised learning: a successfully regularized model
strikes a balance between a perfect description of the training data and the ability to
generalize to unseen data

The authors propose to enforce the structural simplicity of the classification boundary by
regularizing over its topological complexity

The measurement of topological complexity incorporates the importance of topological
features (e.g., connected components, handles, and so on), and provides a direct control
over spurious topological structures

They incorporate the new measurement as a topological penalty in training classifiers

They also propose an algorithm to compute the partial derivatives (gradient) of such penalty

They demonstrate the effectiveness of the topological regularizer on synthetic and real-world
datasets

Overview

Regularization plays a crucial role in supervised learning: a successfully regularized model
strikes a balance between a perfect description of the training data and the ability to
generalize to unseen data

The authors propose to enforce the structural simplicity of the classification boundary by
regularizing over its topological complexity

The measurement of topological complexity incorporates the importance of topological
features (e.g., connected components, handles, and so on), and provides a direct control
over spurious topological structures

They incorporate the new measurement as a topological penalty in training classifiers

They also propose an algorithm to compute the partial derivatives (gradient) of such penalty

They demonstrate the effectiveness of the topological regularizer on synthetic and real-world
datasets

Overview

Regularization plays a crucial role in supervised learning: a successfully regularized model
strikes a balance between a perfect description of the training data and the ability to
generalize to unseen data

The authors propose to enforce the structural simplicity of the classification boundary by
regularizing over its topological complexity

The measurement of topological complexity incorporates the importance of topological
features (e.g., connected components, handles, and so on), and provides a direct control
over spurious topological structures

They incorporate the new measurement as a topological penalty in training classifiers

They also propose an algorithm to compute the partial derivatives (gradient) of such penalty

They demonstrate the effectiveness of the topological regularizer on synthetic and real-world
datasets

Overview

Regularization plays a crucial role in supervised learning: a successfully regularized model
strikes a balance between a perfect description of the training data and the ability to
generalize to unseen data

The authors propose to enforce the structural simplicity of the classification boundary by
regularizing over its topological complexity

The measurement of topological complexity incorporates the importance of topological
features (e.g., connected components, handles, and so on), and provides a direct control
over spurious topological structures

They incorporate the new measurement as a topological penalty in training classifiers

They also propose an algorithm to compute the partial derivatives (gradient) of such penalty

They demonstrate the effectiveness of the topological regularizer on synthetic and real-world
datasets

Regularizer

A common intuition for regularization is the “Occam’s razor” principle, where a regularizer
enforces certain simplicity of the model in order to avoid overfitting.

Classic regularization techniques include functional norms (L1 or L2 norm)

A particularly interesting category of methods is inspired by the geometry: design new
penalty terms to enforce a geometric simplicity of the classifier (e.g., enforce the
classification boundary to be smooth)

But as claimed by the authors, the geometric regularizers are “structure agnostic”

Regularizer

A common intuition for regularization is the “Occam’s razor” principle, where a regularizer
enforces certain simplicity of the model in order to avoid overfitting.

Classic regularization techniques include functional norms (L1 or L2 norm)

A particularly interesting category of methods is inspired by the geometry: design new
penalty terms to enforce a geometric simplicity of the classifier (e.g., enforce the
classification boundary to be smooth)

But as claimed by the authors, the geometric regularizers are “structure agnostic”

Regularizer

A common intuition for regularization is the “Occam’s razor” principle, where a regularizer
enforces certain simplicity of the model in order to avoid overfitting.

Classic regularization techniques include functional norms (L1 or L2 norm)

A particularly interesting category of methods is inspired by the geometry: design new
penalty terms to enforce a geometric simplicity of the classifier (e.g., enforce the
classification boundary to be smooth)

But as claimed by the authors, the geometric regularizers are “structure agnostic”

Binary classification

To demonstrate the idea, we will focus on binary classification and its classification
boundary

Suppose your feature is d dimensional, then a binary classifier is a function f : Rd → R
f (x) ≥ 0 means x is in one class (e.g., “yes”) and f (x) < 0 means x is in another class
(e.g., “no”)

f (x) = 0 gives the classification boundary (the boundary between the “yes” and “no”
regions)

Here, a regularizer aims at reducing the complexity of the classification boundary

Binary classification

To demonstrate the idea, we will focus on binary classification and its classification
boundary

Suppose your feature is d dimensional, then a binary classifier is a function f : Rd → R

f (x) ≥ 0 means x is in one class (e.g., “yes”) and f (x) < 0 means x is in another class
(e.g., “no”)

f (x) = 0 gives the classification boundary (the boundary between the “yes” and “no”
regions)

Here, a regularizer aims at reducing the complexity of the classification boundary

Binary classification

To demonstrate the idea, we will focus on binary classification and its classification
boundary

Suppose your feature is d dimensional, then a binary classifier is a function f : Rd → R
f (x) ≥ 0 means x is in one class (e.g., “yes”) and f (x) < 0 means x is in another class
(e.g., “no”)

f (x) = 0 gives the classification boundary (the boundary between the “yes” and “no”
regions)

Here, a regularizer aims at reducing the complexity of the classification boundary

Binary classification

To demonstrate the idea, we will focus on binary classification and its classification
boundary

Suppose your feature is d dimensional, then a binary classifier is a function f : Rd → R
f (x) ≥ 0 means x is in one class (e.g., “yes”) and f (x) < 0 means x is in another class
(e.g., “no”)

f (x) = 0 gives the classification boundary (the boundary between the “yes” and “no”
regions)

Here, a regularizer aims at reducing the complexity of the classification boundary

Binary classification

To demonstrate the idea, we will focus on binary classification and its classification
boundary

Suppose your feature is d dimensional, then a binary classifier is a function f : Rd → R
f (x) ≥ 0 means x is in one class (e.g., “yes”) and f (x) < 0 means x is in another class
(e.g., “no”)

f (x) = 0 gives the classification boundary (the boundary between the “yes” and “no”
regions)

Here, a regularizer aims at reducing the complexity of the classification boundary

Problem with geometric regularizer

(b) Overfitting to data without regularizer (aka. only minimize the empirical risk)

(c) Geometry of model (smoothness of the classification boundary) is minimized

(d) An actual classification boundary achieved with a geometric regularizer by [Bai, Q.,
Rosenberg, S., Wu, Z., and Sclaroff, S. (2016). Differential geometric regularization for
supervised learning of classifiers.]

Problem with geometric regularizer

(b) Overfitting to data without regularizer (aka. only minimize the empirical risk)

(c) Geometry of model (smoothness of the classification boundary) is minimized

(d) An actual classification boundary achieved with a geometric regularizer by [Bai, Q.,
Rosenberg, S., Wu, Z., and Sclaroff, S. (2016). Differential geometric regularization for
supervised learning of classifiers.]

Problem with geometric regularizer

(b) Overfitting to data without regularizer (aka. only minimize the empirical risk)

(c) Geometry of model (smoothness of the classification boundary) is minimized

(d) An actual classification boundary achieved with a geometric regularizer by [Bai, Q.,
Rosenberg, S., Wu, Z., and Sclaroff, S. (2016). Differential geometric regularization for
supervised learning of classifiers.]

Problem with geometric regularizer

(b) Overfitting to data without regularizer (aka. only minimize the empirical risk)

(c) Geometry of model (smoothness of the classification boundary) is minimized

(d) An actual classification boundary achieved with a geometric regularizer by [Bai, Q.,
Rosenberg, S., Wu, Z., and Sclaroff, S. (2016). Differential geometric regularization for
supervised learning of classifiers.]

Advantage of topological regularizer

(a) By reducing the topological complexity of the classification boundary (in this case, the
no. of connected components), we achieve structural simplicity without over-smoothing the
classifier boundary

Idea

Reduce the no. of connected components (0-dimensional topological feature) in the
classification boundary

We can also do everything for higher dimensional topological features

But everything is demonstrated for 0-dimensional feature

Formally, the classification boundary is called the 0-level set of f :

f −1(0) = {x ∈ Rd | f (x) = 0}

Observe: persistent homology provides a way of counting the number of connected
components of f −1(0) and also measure the “robustness” of each connected component

The “robustness” is roughly how easy it is to change the function value of f to make a
component disappear

Idea

Reduce the no. of connected components (0-dimensional topological feature) in the
classification boundary

We can also do everything for higher dimensional topological features

But everything is demonstrated for 0-dimensional feature

Formally, the classification boundary is called the 0-level set of f :

f −1(0) = {x ∈ Rd | f (x) = 0}

Observe: persistent homology provides a way of counting the number of connected
components of f −1(0) and also measure the “robustness” of each connected component

The “robustness” is roughly how easy it is to change the function value of f to make a
component disappear

Idea

Reduce the no. of connected components (0-dimensional topological feature) in the
classification boundary

We can also do everything for higher dimensional topological features

But everything is demonstrated for 0-dimensional feature

Formally, the classification boundary is called the 0-level set of f :

f −1(0) = {x ∈ Rd | f (x) = 0}

Observe: persistent homology provides a way of counting the number of connected
components of f −1(0) and also measure the “robustness” of each connected component

The “robustness” is roughly how easy it is to change the function value of f to make a
component disappear

Idea

Reduce the no. of connected components (0-dimensional topological feature) in the
classification boundary

We can also do everything for higher dimensional topological features

But everything is demonstrated for 0-dimensional feature

Formally, the classification boundary is called the 0-level set of f :

f −1(0) = {x ∈ Rd | f (x) = 0}

Observe: persistent homology provides a way of counting the number of connected
components of f −1(0) and also measure the “robustness” of each connected component

The “robustness” is roughly how easy it is to change the function value of f to make a
component disappear

Tracking the connected components of f −1(0) using persistent homology

Theorem

Let Πf be the intervals in the 0-th persistence barcode of (sublevelset filtration of) f
containing value 0

Let Π−f be similarly defined

There is a one-to-one correspondence between:

all but one connected components in f −1(0)
and Πf ∪ Π−f

Above theorem implies:

Each interval Πf ∪ Π−f tracks a connected component in f −1(0)

We could thus track almost all connected components in f −1(0) except one

But this doesn’t matter: we should always allow at least one connected component in f −1(0)

So as long as we are able to track all other connected components in f −1(0) and have a way
of measuring their “robustness” and make those less robust ones disappear, we are good

Tracking the connected components of f −1(0) using persistent homology

Theorem

Let Πf be the intervals in the 0-th persistence barcode of (sublevelset filtration of) f
containing value 0

Let Π−f be similarly defined

There is a one-to-one correspondence between:

all but one connected components in f −1(0)
and Πf ∪ Π−f

Above theorem implies:

Each interval Πf ∪ Π−f tracks a connected component in f −1(0)

We could thus track almost all connected components in f −1(0) except one

But this doesn’t matter: we should always allow at least one connected component in f −1(0)

So as long as we are able to track all other connected components in f −1(0) and have a way
of measuring their “robustness” and make those less robust ones disappear, we are good

Tracking the connected components of f −1(0) using persistent homology

Theorem

Let Πf be the intervals in the 0-th persistence barcode of (sublevelset filtration of) f
containing value 0

Let Π−f be similarly defined

There is a one-to-one correspondence between:

all but one connected components in f −1(0)
and Πf ∪ Π−f

Above theorem implies:

Each interval Πf ∪ Π−f tracks a connected component in f −1(0)

We could thus track almost all connected components in f −1(0) except one

But this doesn’t matter: we should always allow at least one connected component in f −1(0)

So as long as we are able to track all other connected components in f −1(0) and have a way
of measuring their “robustness” and make those less robust ones disappear, we are good

Tracking the connected components of f −1(0) using persistent homology

Theorem

Let Πf be the intervals in the 0-th persistence barcode of (sublevelset filtration of) f
containing value 0

Let Π−f be similarly defined

There is a one-to-one correspondence between:

all but one connected components in f −1(0)
and Πf ∪ Π−f

Above theorem implies:

Each interval Πf ∪ Π−f tracks a connected component in f −1(0)

We could thus track almost all connected components in f −1(0) except one

But this doesn’t matter: we should always allow at least one connected component in f −1(0)

So as long as we are able to track all other connected components in f −1(0) and have a way
of measuring their “robustness” and make those less robust ones disappear, we are good

Tracking the connected components of f −1(0) using persistent homology

Theorem

Let Πf be the intervals in the 0-th persistence barcode of (sublevelset filtration of) f
containing value 0

Let Π−f be similarly defined

There is a one-to-one correspondence between:

all but one connected components in f −1(0)
and Πf ∪ Π−f

Above theorem implies:

Each interval Πf ∪ Π−f tracks a connected component in f −1(0)

We could thus track almost all connected components in f −1(0) except one

But this doesn’t matter: we should always allow at least one connected component in f −1(0)

So as long as we are able to track all other connected components in f −1(0) and have a way
of measuring their “robustness” and make those less robust ones disappear, we are good

Tracking the connected components of f −1(0) using persistent homology

Theorem

Let Πf be the intervals in the 0-th persistence barcode of (sublevelset filtration of) f
containing value 0

Let Π−f be similarly defined

There is a one-to-one correspondence between:

all but one connected components in f −1(0)
and Πf ∪ Π−f

Above theorem implies:

Each interval Πf ∪ Π−f tracks a connected component in f −1(0)

We could thus track almost all connected components in f −1(0) except one

But this doesn’t matter: we should always allow at least one connected component in f −1(0)

So as long as we are able to track all other connected components in f −1(0) and have a way
of measuring their “robustness” and make those less robust ones disappear, we are good

Measuring the robustness of a connected component in f −1(0)

For an interval [b, d) ∈ Πf : b is a local minimum of f below 0 creating a component, and d
is a saddle above 0 merging two components

We have similar facts for intervals in Π−f

Measuring the robustness of a connected component in f −1(0)

For an interval [b, d) ∈ Πf : b is a local minimum of f below 0 creating a component, and d
is a saddle above 0 merging two components

We have similar facts for intervals in Π−f

Measuring the robustness of a connected component in f −1(0)

We have that for the interval [b, d) ∈ Πf , b and d measures how hard it is to remove the
connected component in f −1(0)

If we “push” the birth (local minimum) up, the left component disappears:

Measuring the robustness of a connected component in f −1(0)

We have that for the interval [b, d) ∈ Πf , b and d measures how hard it is to remove the
connected component in f −1(0)

If we “push” the birth (local minimum) up, the left component disappears:

Measuring the robustness of a connected component in f −1(0)

We have that for the interval [b, d) ∈ Πf , b and d measures how hard it is to remove the
connected component in f −1(0)

If we “pull” the death (saddle) down, the left component merges with the right one:

So the robustness of the connected component (min. effort to remove it) is:

min{|b|, |d |}

Measuring the robustness of a connected component in f −1(0)

We have that for the interval [b, d) ∈ Πf , b and d measures how hard it is to remove the
connected component in f −1(0)

If we “pull” the death (saddle) down, the left component merges with the right one:

So the robustness of the connected component (min. effort to remove it) is:

min{|b|, |d |}

Topological penalty of the classifier

The topological penalty of the classifier is then sum of the squared robustness of each
interval (connected component) in Πf ∪ Π−f , excluding the one with the maximum
robustness (we should always ensure there is at least one major component in the
classification boundary)

RT (f) =
∑

[b,d)∈Πf ∪Π−f \max(Πf ∪Π−f)

(min{|b|, |d |})2

Computing the partial derivatives for RT (f)

Computing partial derivatives exactly for RT (f) can be hard as the function f itself can
contain a lot of local min., local max., or saddles

They try to discretize the domain Rd (essentially a cube by making it bounded) into graphs
(e.g., regular grids), and them compute the PD on the discretized domain

They then show that RT (f) is differentiable almost everywhere (except some isolated
points), which should be good enough for gradient descent

Computing the partial derivatives for RT (f)

Computing partial derivatives exactly for RT (f) can be hard as the function f itself can
contain a lot of local min., local max., or saddles

They try to discretize the domain Rd (essentially a cube by making it bounded) into graphs
(e.g., regular grids), and them compute the PD on the discretized domain

They then show that RT (f) is differentiable almost everywhere (except some isolated
points), which should be good enough for gradient descent

Computing the partial derivatives for RT (f)

Computing partial derivatives exactly for RT (f) can be hard as the function f itself can
contain a lot of local min., local max., or saddles

They try to discretize the domain Rd (essentially a cube by making it bounded) into graphs
(e.g., regular grids), and them compute the PD on the discretized domain

They then show that RT (f) is differentiable almost everywhere (except some isolated
points), which should be good enough for gradient descent

Experiments

combine it with a kernel logistic regression classifier to demonstrate its advantage

compare their method with several baselines: k-nearest-neighbor classifier (KNN), logistic
regression (LG), Support Vector Machine (SVM), and Kernel Logistic Regression (KLR)
with functional norms (L1 and L2) as regularizers

also compare with two state-of-the-art methods based on geometric regularizers: the Eulers
Elastica classifier (EE) and the Classifier with Differential Geometric Regularization (DGR)

In order to thoroughly evaluate the behavior of the model, especially in large noise regime,
created synthetic data with various noise levels: beside feature space noise, also inject
different levels of label noise, e.g., randomly perturb labels of 0%, 5%, 10% and 20% of the
training data

also evaluate their method on real world data

Experiments

combine it with a kernel logistic regression classifier to demonstrate its advantage

compare their method with several baselines: k-nearest-neighbor classifier (KNN), logistic
regression (LG), Support Vector Machine (SVM), and Kernel Logistic Regression (KLR)
with functional norms (L1 and L2) as regularizers

also compare with two state-of-the-art methods based on geometric regularizers: the Eulers
Elastica classifier (EE) and the Classifier with Differential Geometric Regularization (DGR)

In order to thoroughly evaluate the behavior of the model, especially in large noise regime,
created synthetic data with various noise levels: beside feature space noise, also inject
different levels of label noise, e.g., randomly perturb labels of 0%, 5%, 10% and 20% of the
training data

also evaluate their method on real world data

Experiments

combine it with a kernel logistic regression classifier to demonstrate its advantage

compare their method with several baselines: k-nearest-neighbor classifier (KNN), logistic
regression (LG), Support Vector Machine (SVM), and Kernel Logistic Regression (KLR)
with functional norms (L1 and L2) as regularizers

also compare with two state-of-the-art methods based on geometric regularizers: the Eulers
Elastica classifier (EE) and the Classifier with Differential Geometric Regularization (DGR)

In order to thoroughly evaluate the behavior of the model, especially in large noise regime,
created synthetic data with various noise levels: beside feature space noise, also inject
different levels of label noise, e.g., randomly perturb labels of 0%, 5%, 10% and 20% of the
training data

also evaluate their method on real world data

Experiments

combine it with a kernel logistic regression classifier to demonstrate its advantage

compare their method with several baselines: k-nearest-neighbor classifier (KNN), logistic
regression (LG), Support Vector Machine (SVM), and Kernel Logistic Regression (KLR)
with functional norms (L1 and L2) as regularizers

also compare with two state-of-the-art methods based on geometric regularizers: the Eulers
Elastica classifier (EE) and the Classifier with Differential Geometric Regularization (DGR)

In order to thoroughly evaluate the behavior of the model, especially in large noise regime,
created synthetic data with various noise levels: beside feature space noise, also inject
different levels of label noise, e.g., randomly perturb labels of 0%, 5%, 10% and 20% of the
training data

also evaluate their method on real world data

