Topological Regularizer

Tao Hou, CS410/510

University of Oregon

Acknowledgment

Contents of the slide (including figures) are based on the paper:

@ Chen, Chao, Xiuyan Ni, Qinxun Bai, and Yusu Wang. "A topological regularizer for
classifiers via persistent homology.” In The 22nd International Conference on Artificial
Intelligence and Statistics, pp. 2573-2582. PMLR, 2019.

Overview

@ Regularization plays a crucial role in supervised learning: a successfully regularized model
strikes a balance between a perfect description of the training data and the ability to
generalize to unseen data

Overview

@ Regularization plays a crucial role in supervised learning: a successfully regularized model
strikes a balance between a perfect description of the training data and the ability to
generalize to unseen data

@ The authors propose to enforce the structural simplicity of the classification boundary by
regularizing over its topological complexity

@ The measurement of topological complexity incorporates the importance of topological
features (e.g., connected components, handles, and so on), and provides a direct control
over spurious topological structures

Overview

@ Regularization plays a crucial role in supervised learning: a successfully regularized model
strikes a balance between a perfect description of the training data and the ability to
generalize to unseen data

@ The authors propose to enforce the structural simplicity of the classification boundary by
regularizing over its topological complexity

@ The measurement of topological complexity incorporates the importance of topological
features (e.g., connected components, handles, and so on), and provides a direct control
over spurious topological structures

@ They incorporate the new measurement as a topological penalty in training classifiers

@ They also propose an algorithm to compute the partial derivatives (gradient) of such penalty

Overview

@ Regularization plays a crucial role in supervised learning: a successfully regularized model
strikes a balance between a perfect description of the training data and the ability to
generalize to unseen data

@ The authors propose to enforce the structural simplicity of the classification boundary by
regularizing over its topological complexity

@ The measurement of topological complexity incorporates the importance of topological
features (e.g., connected components, handles, and so on), and provides a direct control
over spurious topological structures

@ They incorporate the new measurement as a topological penalty in training classifiers
@ They also propose an algorithm to compute the partial derivatives (gradient) of such penalty

@ They demonstrate the effectiveness of the topological regularizer on synthetic and real-world
datasets

Regularizer

@ A common intuition for regularization is the "Occam’s razor” principle, where a regularizer
enforces certain simplicity of the model in order to avoid overfitting.

e Classic regularization techniques include functional norms (L; or Ly norm)

Regularizer

@ A common intuition for regularization is the “Occam’s razor” principle, where a regularizer
enforces certain simplicity of the model in order to avoid overfitting.

e Classic regularization techniques include functional norms (L; or Ly norm)

@ A particularly interesting category of methods is inspired by the geometry: design new
penalty terms to enforce a geometric simplicity of the classifier (e.g., enforce the
classification boundary to be smooth)

Regularizer

@ A common intuition for regularization is the “Occam’s razor” principle, where a regularizer
enforces certain simplicity of the model in order to avoid overfitting.

e Classic regularization techniques include functional norms (L; or Ly norm)

@ A particularly interesting category of methods is inspired by the geometry: design new
penalty terms to enforce a geometric simplicity of the classifier (e.g., enforce the
classification boundary to be smooth)

@ But as claimed by the authors, the geometric regularizers are “structure agnostic”

Binary classification

@ To demonstrate the idea, we will focus on binary classification and its classification
boundary

Binary classification

@ To demonstrate the idea, we will focus on binary classification and its classification
boundary

@ Suppose your feature is d dimensional, then a binary classifier is a function f : RY — R

Binary classification

@ To demonstrate the idea, we will focus on binary classification and its classification
boundary

@ Suppose your feature is d dimensional, then a binary classifier is a function f : RY — R

@ f(x) > 0 means x is in one class (e.g., “yes") and f(x) < 0 means x is in another class
(e.g., “no")

Binary classification

@ To demonstrate the idea, we will focus on binary classification and its classification
boundary

@ Suppose your feature is d dimensional, then a binary classifier is a function f : RY — R

@ f(x) > 0 means x is in one class (e.g., “yes") and f(x) < 0 means x is in another class
(e.g., “no")

e f(x) = 0 gives the classification boundary (the boundary between the “yes" and “no”
regions)

Binary classification

@ To demonstrate the idea, we will focus on binary classification and its classification
boundary

@ Suppose your feature is d dimensional, then a binary classifier is a function f : RY — R

@ f(x) > 0 means x is in one class (e.g., “yes") and f(x) < 0 means x is in another class
(e.g., “no")

e f(x) = 0 gives the classification boundary (the boundary between the “yes" and “no”
regions)

@ Here, a regularizer aims at reducing the complexity of the classification boundary

Problem with geometric regularizer

Problem with geometric regularizer

(b) () (d)

o (b) Overfitting to data without regularizer (aka. only minimize the empirical risk)

Problem with geometric regularizer

(b) () (d)
o (b) Overfitting to data without regularizer (aka. only minimize the empirical risk)
@ (c) Geometry of model (smoothness of the classification boundary) is minimized

Problem with geometric regularizer

(b) (c) (d)

@ (b) Overfitting to data without regularizer (aka. only minimize the empirical risk)

@ (c) Geometry of model (smoothness of the classification boundary) is minimized

@ (d) An actual classification boundary achieved with a geometric regularizer by [Bai, Q.,
Rosenberg, S., Wu, Z., and Sclaroff, S. (2016). Differential geometric regularization for
supervised learning of classifiers.]

Advantage of topological regularizer

(b) () (d)

e (a) By reducing the topological complexity of the classification boundary (in this case, the
no. of connected components), we achieve structural simplicity without over-smoothing the
classifier boundary

Idea

@ Reduce the no. of connected components (0-dimensional topological feature) in the
classification boundary

@ We can also do everything for higher dimensional topological features

@ But everything is demonstrated for O-dimensional feature

Idea

@ Reduce the no. of connected components (0-dimensional topological feature) in the
classification boundary

@ We can also do everything for higher dimensional topological features
@ But everything is demonstrated for O-dimensional feature

@ Formally, the classification boundary is called the 0-level set of f:

f~10) = {x e RY | f(x) = 0}

Idea

Reduce the no. of connected components (0-dimensional topological feature) in the
classification boundary

(]

We can also do everything for higher dimensional topological features

But everything is demonstrated for 0-dimensional feature

Formally, the classification boundary is called the 0-level set of f:

f~10) = {x e RY | f(x) = 0}

Observe: persistent homology provides a way of counting the number of connected
components of f~1(0) and also measure the “robustness’ of each connected component

Idea

@ Reduce the no. of connected components (0-dimensional topological feature) in the
classification boundary

@ We can also do everything for higher dimensional topological features
@ But everything is demonstrated for O-dimensional feature

@ Formally, the classification boundary is called the 0-level set of f:
f1(0) = {x e R?| f(x) = 0}

@ Observe: persistent homology provides a way of counting the number of connected
components of f~1(0) and also measure the “robustness’ of each connected component

@ The “robustness” is roughly how easy it is to change the function value of f to make a
component disappear

Tracking the connected components of f~(0) using persistent homology

Theorem

@ Let ¢ be the intervals in the 0-th persistence barcode of (sublevelset filtration of) f
containing value 0

Tracking the connected components of f~(0) using persistent homology

Theorem

@ Let ¢ be the intervals in the 0-th persistence barcode of (sublevelset filtration of) f
containing value 0

o Let IN_¢ be similarly defined

Tracking the connected components of f~(0) using persistent homology

Theorem
@ Let I¢ be the intervals in the 0-th persistence barcode of (sublevelset filtration of) f
containing value 0

o Let IN_f be similarly defined
@ There is a one-to-one correspondence between:

o all but one connected components in £~1(0)
e and NMrUM_¢

Tracking the connected components of f~(0) using persistent homology

Theorem

@ Let I¢ be the intervals in the 0-th persistence barcode of (sublevelset filtration of) f
containing value 0

o Let IN_f be similarly defined

@ There is a one-to-one correspondence between:

o all but one connected components in £~1(0)
e and NMrUM_¢

Above theorem implies:
e Each interval My UT_¢ tracks a connected component in f~1(0)

@ We could thus track almost all connected components in f~1(0) except one

Tracking the connected components of f~(0) using persistent homology

Theorem

@ Let I¢ be the intervals in the 0-th persistence barcode of (sublevelset filtration of) f
containing value 0

o Let IN_f be similarly defined

@ There is a one-to-one correspondence between:

o all but one connected components in £~1(0)
e and NMrUM_¢

Above theorem implies:
e Each interval My UT_¢ tracks a connected component in f~1(0)
@ We could thus track almost all connected components in f~1(0) except one

o But this doesn't matter: we should always allow at least one connected component in f~1(0)

Tracking the connected components of f~(0) using persistent homology

Theorem
@ Let I¢ be the intervals in the 0-th persistence barcode of (sublevelset filtration of) f
containing value 0

o Let IN_f be similarly defined
@ There is a one-to-one correspondence between:

o all but one connected components in £~1(0)
e and NMrUM_¢

Above theorem implies:

e Each interval My UT_¢ tracks a connected component in f~1(0)

@ We could thus track almost all connected components in f~1(0) except one

@ But this doesn't matter: we should always allow at least one connected component in £~1(0)

@ So as long as we are able to track all other connected components in f~1(0) and have a way
of measuring their “robustness” and make those less robust ones disappear, we are good

Measuring the robustness of a connected component in f71(0)

e For an interval [b,d) € M¢: b is a local minimum of f below 0 creating a component, and d
is a saddle above 0 merging two components

@ We have similar facts for intervals in NM_¢

Measuring the robustness of a connected component in f71(0)

e For an interval [b,d) € M¢: bis a local minimum of f below 0 creating a component, and d
is a saddle above 0 merging two components

@ We have similar facts for intervals in [1_¢

Measuring the robustness of a connected component in f71(0)

@ We have that for the interval [b, d) € ¢, b and d measures how hard it is to remove the
connected component in f~1(0)

Measuring the robustness of a connected component in f71(0)

@ We have that for the interval [b, d) € ¢, b and d measures how hard it is to remove the
connected component in f~1(0)

o If we “push” the birth (local minimum) up, the left component disappears:

Measuring the robustness of a connected component in f71(0)

@ We have that for the interval [b, d) € ¢, b and d measures how hard it is to remove the
connected component in f~1(0)

o If we “pull” the death (saddle) down, the left component merges with the right one:

Measuring the robustness of a connected component in f71(0)

@ We have that for the interval [b, d) € ¢, b and d measures how hard it is to remove the
connected component in f~1(0)

o If we “pull” the death (saddle) down, the left component merges with the right one:

(c) (d)

@ So the robustness of the connected component (min. effort to remove it) is:

min{|b], |d|}

Topological penalty of the classifier

@ The topological penalty of the classifier is then sum of the squared robustness of each
interval (connected component) in Mg UTl_¢, excluding the one with the maximum
robustness (we should always ensure there is at least one major component in the
classification boundary)

Rr(f) = > (min{[b], [d[})?

[b,d)el'lful'l_f\max(l'lful'l_f)

Computing the partial derivatives for R1(f)

e Computing partial derivatives exactly for R1(f) can be hard as the function f itself can
contain a lot of local min., local max., or saddles

Computing the partial derivatives for R1(f)

e Computing partial derivatives exactly for R7(f) can be hard as the function f itself can
contain a lot of local min., local max., or saddles

o They try to discretize the domain RY (essentially a cube by making it bounded) into graphs
(e.g., regular grids), and them compute the PD on the discretized domain

Computing the partial derivatives for R1(f)

e Computing partial derivatives exactly for R7(f) can be hard as the function f itself can
contain a lot of local min., local max., or saddles

o They try to discretize the domain RY (essentially a cube by making it bounded) into graphs
(e.g., regular grids), and them compute the PD on the discretized domain

@ They then show that R (f) is differentiable almost everywhere (except some isolated
points), which should be good enough for gradient descent

Experiments

@ combine it with a kernel logistic regression classifier to demonstrate its advantage

Experiments

@ combine it with a kernel logistic regression classifier to demonstrate its advantage

@ compare their method with several baselines: k-nearest-neighbor classifier (KNN), logistic
regression (LG), Support Vector Machine (SVM), and Kernel Logistic Regression (KLR)
with functional norms (L; and L) as regularizers

Experiments

@ combine it with a kernel logistic regression classifier to demonstrate its advantage

@ compare their method with several baselines: k-nearest-neighbor classifier (KNN), logistic

regression (LG), Support Vector Machine (SVM), and Kernel Logistic Regression (KLR)
with functional norms (L; and L) as regularizers

@ also compare with two state-of-the-art methods based on geometric regularizers: the Eulers
Elastica classifier (EE) and the Classifier with Differential Geometric Regularization (DGR)

Experiments

@ combine it with a kernel logistic regression classifier to demonstrate its advantage

@ compare their method with several baselines: k-nearest-neighbor classifier (KNN), logistic
regression (LG), Support Vector Machine (SVM), and Kernel Logistic Regression (KLR)
with functional norms (L; and L) as regularizers

@ also compare with two state-of-the-art methods based on geometric regularizers: the Eulers
Elastica classifier (EE) and the Classifier with Differential Geometric Regularization (DGR)

@ In order to thoroughly evaluate the behavior of the model, especially in large noise regime,
created synthetic data with various noise levels: beside feature space noise, also inject
different levels of label noise, e.g., randomly perturb labels of 0%, 5%, 10% and 20% of the
training data

@ also evaluate their method on real world data

Synthetic

KNN LG SVM EE DGR | KLR | TopoReg
Blob-2 (500,5) 7.61 8.20 7.61 8.41 7.41 7.80 7.20
Moons (500,2) 20.62 | 20.00 | 19.80 | 19.00 | 19.01 | 18.83 18.63
Moons (1000,2,Noise 0%) 19.30 | 19.59 | 19.89 | 17.90 | 19.20 | 17.80 17.60
Moons (1000,2,Noise 5%) 21.60 | 19.29 | 19.59 | 22.00 | 22.30 | 19.00 19.00
Moons (1000,2,Noise 10%) | 21.10 | 19.19 | 19.89 | 24.40 | 26.30 | 20.00 19.70
Moons (1000,2,Noise 20%) | 23.00 | 19.79 | 19.40 | 30.60 | 30.20 19.50 19.40
AVERAGE 18.87 | 17.68 | 17.70 | 20.39 | 20.74 | 21.63 16.92

UCI

KNN LG SVM EE DGR | KLR | TopoReg
SPECT (267,22) 17.57 | 17.20 18.68 | 16.38 | 23.92 18.31 17.54
Congress (435,16) 5.04 4.13 4.59 4.59 4.80 4.12 4.58
Molec. (106,57) 24.54 | 19.10 | 19.79 | 17.25 | 16.32 | 19.10 12.62
Cancer (286,9) 29.36 | 28.65 | 28.64 | 28.68 | 31.42 | 29.00 28.31
Vertebral (310,6) 15.47 | 15.46 | 23.23 | 17.15 | 13.56 | 12.56 12.24
Energy (768,8) 0.78 0.65 0.65 0.91 0.78 0.52 0.52
AVERAGE 15.46 | 14.20 15.93 14.16 15.13 13.94 11.80

Biomedicine

KNN LG SVM EE DGR | KLR | TopoReg
KIRC (243,166) 30.12 | 28.87 | 32.56 | 31.38 | 35.50 | 31.38 26.81
fMRI (1092,19) 46.70 | 74.91 74.08 | 82.51 | 31.32 | 34.07 33.24

