Topological Regularizer

Tao Hou, CS410/510

University of Oregon

Acknowledgment

Contents of the slide (including figures) are based on the paper:

• Chen, Chao, Xiuyan Ni, Qinxun Bai, and Yusu Wang. "A topological regularizer for classifiers via persistent homology." In The 22nd International Conference on Artificial Intelligence and Statistics, pp. 2573-2582. PMLR, 2019.

• Regularization plays a crucial role in supervised learning: a successfully regularized model strikes a balance between a *perfect description of the training data* and *the ability to generalize to unseen data*

- Regularization plays a crucial role in supervised learning: a successfully regularized model strikes a balance between a *perfect description of the training data* and *the ability to generalize to unseen data*
- The authors propose to enforce the structural simplicity of the classification boundary by regularizing over its *topological complexity*
- The measurement of topological complexity incorporates the importance of topological features (e.g., connected components, handles, and so on), and provides a direct control over spurious topological structures

- Regularization plays a crucial role in supervised learning: a successfully regularized model strikes a balance between a *perfect description of the training data* and *the ability to generalize to unseen data*
- The authors propose to enforce the structural simplicity of the classification boundary by regularizing over its *topological complexity*
- The measurement of topological complexity incorporates the importance of topological features (e.g., connected components, handles, and so on), and provides a direct control over spurious topological structures
- They incorporate the new measurement as a topological penalty in training classifiers
- They also propose an algorithm to compute the partial derivatives (gradient) of such penalty

- Regularization plays a crucial role in supervised learning: a successfully regularized model strikes a balance between a *perfect description of the training data* and *the ability to generalize to unseen data*
- The authors propose to enforce the structural simplicity of the classification boundary by regularizing over its *topological complexity*
- The measurement of topological complexity incorporates the importance of topological features (e.g., connected components, handles, and so on), and provides a direct control over spurious topological structures
- They incorporate the new measurement as a topological penalty in training classifiers
- They also propose an algorithm to compute the partial derivatives (gradient) of such penalty
- They demonstrate the effectiveness of the topological regularizer on synthetic and real-world datasets

Regularizer

- A common intuition for regularization is the "Occam's razor" principle, where a regularizer enforces certain simplicity of the model in order to avoid overfitting.
- Classic regularization techniques include functional norms (L_1 or L_2 norm)

Regularizer

- A common intuition for regularization is the "Occam's razor" principle, where a regularizer enforces certain simplicity of the model in order to avoid overfitting.
- Classic regularization techniques include functional norms (L_1 or L_2 norm)
- A particularly interesting category of methods is inspired by the geometry: design new penalty terms to enforce a geometric simplicity of the classifier (e.g., enforce the classification boundary to be smooth)

Regularizer

- A common intuition for regularization is the "Occam's razor" principle, where a regularizer enforces certain simplicity of the model in order to avoid overfitting.
- Classic regularization techniques include functional norms (L_1 or L_2 norm)
- A particularly interesting category of methods is inspired by the geometry: design new penalty terms to enforce a geometric simplicity of the classifier (e.g., enforce the classification boundary to be smooth)
- But as claimed by the authors, the geometric regularizers are "structure agnostic"

• To demonstrate the idea, we will focus on **binary classification** and its **classification boundary**

- To demonstrate the idea, we will focus on **binary classification** and its **classification boundary**
- Suppose your feature is d dimensional, then a binary classifier is a function $f:\mathbb{R}^d\to\mathbb{R}$

- To demonstrate the idea, we will focus on **binary classification** and its **classification boundary**
- Suppose your feature is d dimensional, then a binary classifier is a function $f : \mathbb{R}^d \to \mathbb{R}$
- f(x) ≥ 0 means x is in one class (e.g., "yes") and f(x) < 0 means x is in another class (e.g., "no")

- To demonstrate the idea, we will focus on **binary classification** and its **classification boundary**
- Suppose your feature is d dimensional, then a binary classifier is a function $f: \mathbb{R}^d \to \mathbb{R}$
- f(x) ≥ 0 means x is in one class (e.g., "yes") and f(x) < 0 means x is in another class (e.g., "no")
- f(x) = 0 gives the classification boundary (the boundary between the "yes" and "no" regions)

- To demonstrate the idea, we will focus on **binary classification** and its **classification boundary**
- Suppose your feature is d dimensional, then a binary classifier is a function $f: \mathbb{R}^d \to \mathbb{R}$
- f(x) ≥ 0 means x is in one class (e.g., "yes") and f(x) < 0 means x is in another class (e.g., "no")
- f(x) = 0 gives the classification boundary (the boundary between the "yes" and "no" regions)
- Here, a regularizer aims at reducing the complexity of the classification boundary

• (b) Overfitting to data without regularizer (aka. only minimize the empirical risk)

- (b) Overfitting to data without regularizer (aka. only minimize the empirical risk)
- (c) Geometry of model (smoothness of the classification boundary) is minimized

- (a)
- (b) Overfitting to data without regularizer (aka. only minimize the empirical risk)
- (c) Geometry of model (smoothness of the classification boundary) is minimized
- (d) An actual classification boundary achieved with a geometric regularizer by [Bai, Q., Rosenberg, S., Wu, Z., and Sclaroff, S. (2016). Differential geometric regularization for supervised learning of classifiers.]

Advantage of topological regularizer

• (a) By reducing the topological complexity of the classification boundary (in this case, the no. of connected components), we achieve structural simplicity without over-smoothing the classifier boundary

- Reduce the no. of connected components (0-dimensional topological feature) in the classification boundary
- We can also do everything for higher dimensional topological features
- But everything is demonstrated for 0-dimensional feature

- Reduce the no. of connected components (0-dimensional topological feature) in the classification boundary
- We can also do everything for higher dimensional topological features
- But everything is demonstrated for 0-dimensional feature
- Formally, the classification boundary is called the **0-level set** of *f*:

$$f^{-1}(0) = \{x \in \mathbb{R}^d \mid f(x) = 0\}$$

- Reduce the no. of connected components (0-dimensional topological feature) in the classification boundary
- We can also do everything for higher dimensional topological features
- But everything is demonstrated for 0-dimensional feature
- Formally, the classification boundary is called the **0-level set** of *f*:

$$f^{-1}(0) = \{x \in \mathbb{R}^d \mid f(x) = 0\}$$

 Observe: persistent homology provides a way of counting the number of connected components of f⁻¹(0) and also measure the "robustness" of each connected component

- Reduce the no. of connected components (0-dimensional topological feature) in the classification boundary
- We can also do everything for higher dimensional topological features
- But everything is demonstrated for 0-dimensional feature
- Formally, the classification boundary is called the **0-level set** of *f*:

$$f^{-1}(0) = \{x \in \mathbb{R}^d \mid f(x) = 0\}$$

- Observe: persistent homology provides a way of counting the number of connected components of f⁻¹(0) and also measure the "robustness" of each connected component
- The "robustness" is roughly how easy it is to change the function value of f to make a component disappear

Theorem

Let Π_f be the intervals in the 0-th persistence barcode of (sublevelset filtration of) f
 containing value 0

Theorem

- Let Π_f be the intervals in the 0-th persistence barcode of (sublevelset filtration of) f
 containing value 0
- Let Π_{-f} be similarly defined

Theorem

- Let Π_f be the intervals in the 0-th persistence barcode of (sublevelset filtration of) f
 containing value 0
- Let Π_{-f} be similarly defined
- There is a one-to-one correspondence between:
 - all but one connected components in $f^{-1}(0)$
 - and $\Pi_f \cup \Pi_{-f}$

Theorem

- Let Π_f be the intervals in the 0-th persistence barcode of (sublevelset filtration of) f
 containing value 0
- Let Π_{-f} be similarly defined
- There is a one-to-one correspondence between:
 - all but one connected components in $f^{-1}(0)$
 - and $\Pi_f \cup \Pi_{-f}$

Above theorem implies:

- Each interval $\Pi_f \cup \Pi_{-f}$ tracks a connected component in $f^{-1}(0)$
- We could thus track almost all connected components in $f^{-1}(0)$ except one

Theorem

- Let Π_f be the intervals in the 0-th persistence barcode of (sublevelset filtration of) f
 containing value 0
- Let Π_{-f} be similarly defined
- There is a one-to-one correspondence between:
 - all but one connected components in $f^{-1}(0)$
 - and $\Pi_f \cup \Pi_{-f}$

Above theorem implies:

- Each interval $\Pi_f \cup \Pi_{-f}$ tracks a connected component in $f^{-1}(0)$
- We could thus track almost all connected components in $f^{-1}(0)$ except one
- But this doesn't matter: we should always allow at least one connected component in $f^{-1}(0)$

Theorem

- Let Π_f be the intervals in the 0-th persistence barcode of (sublevelset filtration of) f
 containing value 0
- Let Π_{-f} be similarly defined
- There is a one-to-one correspondence between:
 - all but one connected components in $f^{-1}(0)$
 - and $\Pi_f \cup \Pi_{-f}$

Above theorem implies:

- Each interval $\Pi_f \cup \Pi_{-f}$ tracks a connected component in $f^{-1}(0)$
- We could thus track almost all connected components in $f^{-1}(0)$ except one
- But this doesn't matter: we should always allow at least one connected component in $f^{-1}(0)$
- So as long as we are able to track all other connected components in $f^{-1}(0)$ and have a way of measuring their "robustness" and make those less robust ones disappear, we are good

- For an interval [b, d) ∈ Π_f: b is a local minimum of f below 0 creating a component, and d is a saddle above 0 merging two components
- We have similar facts for intervals in Π_{-f}

- For an interval [b, d) ∈ Π_f: b is a local minimum of f below 0 creating a component, and d is a saddle above 0 merging two components
- We have similar facts for intervals in Π_{-f}

(b)

We have that for the interval [b, d) ∈ Π_f, b and d measures how hard it is to remove the connected component in f⁻¹(0)

- We have that for the interval [b, d) ∈ Π_f, b and d measures how hard it is to remove the connected component in f⁻¹(0)
- If we "push" the birth (local minimum) up, the left component disappears:

- We have that for the interval [b, d) ∈ Π_f, b and d measures how hard it is to remove the connected component in f⁻¹(0)
- If we "pull" the death (saddle) down, the left component merges with the right one:

- We have that for the interval [b, d) ∈ Π_f, b and d measures how hard it is to remove the connected component in f⁻¹(0)
- If we "pull" the death (saddle) down, the left component merges with the right one:

• So the robustness of the connected component (min. effort to remove it) is:

 $\min\{|b|,|d|\}$

Topological penalty of the classifier

• The topological penalty of the classifier is then sum of the squared robustness of each interval (connected component) in $\Pi_f \cup \Pi_{-f}$, excluding the one with the maximum robustness (we should always ensure there is at least one major component in the classification boundary)

$$\mathcal{R}_{\mathcal{T}}(f) = \sum_{[b,d)\in \Pi_f\cup\Pi_{-f}\setminus \max(\Pi_f\cup\Pi_{-f})} (\min\{|b|,|d|\})^2$$

Computing the partial derivatives for $\mathcal{R}_{\mathcal{T}}(f)$

• Computing partial derivatives exactly for $\mathcal{R}_T(f)$ can be hard as the function f itself can contain a lot of local min., local max., or saddles

Computing the partial derivatives for $\mathcal{R}_{\mathcal{T}}(f)$

- Computing partial derivatives exactly for R_T(f) can be hard as the function f itself can contain a lot of local min., local max., or saddles
- They try to discretize the domain \mathbb{R}^d (essentially a cube by making it bounded) into graphs (e.g., regular grids), and them compute the PD on the discretized domain

Computing the partial derivatives for $\mathcal{R}_{\mathcal{T}}(f)$

- Computing partial derivatives exactly for $\mathcal{R}_T(f)$ can be hard as the function f itself can contain a lot of local min., local max., or saddles
- They try to discretize the domain \mathbb{R}^d (essentially a cube by making it bounded) into graphs (e.g., regular grids), and them compute the PD on the discretized domain
- They then show that $\mathcal{R}_T(f)$ is *differentiable almost everywhere* (except some isolated points), which should be good enough for gradient descent

• combine it with a kernel logistic regression classifier to demonstrate its advantage

- combine it with a kernel logistic regression classifier to demonstrate its advantage
- compare their method with several baselines: k-nearest-neighbor classifier (KNN), logistic regression (LG), Support Vector Machine (SVM), and Kernel Logistic Regression (KLR) with functional norms (L_1 and L_2) as regularizers

- combine it with a kernel logistic regression classifier to demonstrate its advantage
- compare their method with several baselines: k-nearest-neighbor classifier (KNN), logistic regression (LG), Support Vector Machine (SVM), and Kernel Logistic Regression (KLR) with functional norms (L_1 and L_2) as regularizers
- also compare with two state-of-the-art methods based on geometric regularizers: the Eulers Elastica classifier (EE) and the Classifier with Differential Geometric Regularization (DGR)

- combine it with a kernel logistic regression classifier to demonstrate its advantage
- compare their method with several baselines: k-nearest-neighbor classifier (KNN), logistic regression (LG), Support Vector Machine (SVM), and Kernel Logistic Regression (KLR) with functional norms (L_1 and L_2) as regularizers
- also compare with two state-of-the-art methods based on geometric regularizers: the Eulers Elastica classifier (EE) and the Classifier with Differential Geometric Regularization (DGR)
- In order to thoroughly evaluate the behavior of the model, especially in large noise regime, created synthetic data with various noise levels: beside feature space noise, also inject different levels of label noise, e.g., randomly perturb labels of 0%, 5%, 10% and 20% of the training data
- also evaluate their method on real world data

Synthetic							
	KNN	LG	SVM	\mathbf{EE}	DGR	KLR	TopoReg
Blob-2 (500,5)	7.61	8.20	7.61	8.41	7.41	7.80	7.20
Moons (500,2)	20.62	20.00	19.80	19.00	19.01	18.83	18.63
Moons (1000,2,Noise 0%)	19.30	19.59	19.89	17.90	19.20	17.80	17.60
Moons (1000,2,Noise 5%)	21.60	19.29	19.59	22.00	22.30	19.00	19.00
Moons (1000,2,Noise 10%)	21.10	19.19	19.89	24.40	26.30	20.00	19.70
Moons (1000,2,Noise 20%)	23.00	19.79	19.40	30.60	30.20	19.50	19.40
AVERAGE	18.87	17.68	17.70	20.39	20.74	21.63	16.92
UCI							
	KNN	LG	SVM	\mathbf{EE}	DGR	KLR	TopoReg
SPECT (267,22)	17.57	17.20	18.68	16.38	23.92	18.31	17.54
Congress $(435, 16)$	5.04	4.13	4.59	4.59	4.80	4.12	4.58
Molec. (106,57)	24.54	19.10	19.79	17.25	16.32	19.10	12.62
Cancer (286,9)	29.36	28.65	28.64	28.68	31.42	29.00	28.31
Vertebral (310,6)	15.47	15.46	23.23	17.15	13.56	12.56	12.24
Energy (768,8)	0.78	0.65	0.65	0.91	0.78	0.52	0.52
AVERAGE	15.46	14.20	15.93	14.16	15.13	13.94	11.80
Biomedicine							
	KNN	LG	SVM	\mathbf{EE}	DGR	KLR	TopoReg
KIRC (243,166)	30.12	28.87	32.56	31.38	35.50	31.38	26.81
fMRI (1092, 19)	46.70	74.91	74.08	82.51	31.32	34.07	33.24