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PersLay

A general and versatile framework for learning vectorizations of persistence diagrams, which
encompasses most of the vectorization techniques used in the literature

Aka. it is still a vectorization technique, but somehow not a fixed one (e.g., parameter wise)

Instead, the parameters used for the vectorization can be learned from the data using
gradient descent

So that the layer is truly a part of the model (neural network), you will have a
“custom-made” vectorization layer targeting your data specifically
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PersLay

Inspired by Deep Set architecture, which focuses on learning from features that are sets

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan Salakhutdinov,
and Alexander Smola. Deep sets. In Advances in Neural Information Processing Systems, pages
33913401, 2017.

Major goal is to be permutation invariant and to accommodate inputs of different size

Generic neural network layer:

PersLay(PD) := op({w(p) · φ(p)}p∈PD)

Note:

w(p) is a scalar weight
φ(p) may be a vector (aka. a function φ : R2 → Rq)
op is an “aggregate” function performed on each component of the vector φ(p) but over all points
p in PD, which could be any permutation invariant operation (such as minimum, maximum, sum,
k-th largest value...)
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PersLay

For PD = {p1, . . . , pn}, suppose:

w(p1) · φ(p1) = [x1
1 , . . . , x

1
q ]

...

w(pn) · φ(pn) = [xn1 , . . . , x
n
q ]

Let op = sum and the output vector be [z1, . . . , zq] then:

zi = sum(x1
i , . . . , x

n
i )

Setting the different φ,w , op give you different vectorizations
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Recovering persistence landscape

φ := φΛ, where
φΛ(p) = [Λp(t1),Λp(t2), . . . ,Λp(tq)],

Λp associated to a point p = (x , y) ∈ R2 is

Λp(t) = max{0, y − |t − x |},

and t1, . . . , tq ∈ R.

w(p) = 1

op = maxk



Recovering persistence silhouette

φ := φΛ as before

w(p) arbitrary

op = sum



Recovering persistence image

φ := φΓ, where
φΓ(p) = [Γp(t1), Γp(t2), . . . , Γp(tq)],

Γp associated to a point p = (x , y) ∈ R2 is

Γp(t) = exp
(
−‖p − t‖2

2/(2σ2)
)

and t1, . . . , tq ∈ R2.

w(p) arbitrary

op = sum



Another φ

φ := φΛ, where
φΛ(p) = [L∆1(p), L∆2(p), . . . , L∆q(p)],

the line function L∆ associated to a line ∆ with direction vector e∆ ∈ R2 and bias b∆ ∈ R is

L∆(p) = 〈p, e∆〉+ b∆,

∆1, . . . ,∆q are q lines in the plane.

It can be used to recover the Sliced Wasserstein kernel:

Mathieu Carriere, Marco Cuturi, and Steve Oudot. Sliced Wasserstein kernel for persistence
diagrams. In International Conference on Machine Learning, volume 70, pages 664 - 673, jul 2017.



Choosing the weight in practice

In the application that follows, the authors adopts a way to choose the weight w(p) for a
p ∈ PD that is also general enough:

First normalize all points in PD to a unit square [0, 1]× [0, 1]

Divide the unit square into N × N grids, assign a weight wi ,j to each point p falling in cell
(i , j)

All the weights, {wi ,j}1≤i ,j≤N , are learnable

For this, we have to show that the weight is “differentiable”
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Then
∂zi
∂wα,β

=
∑

c(pj )=(α,β)

x ji
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Example of PersLay: Graph classification

Task: We have a collection of graphs (social networks, medical or biological frameworks)
which are labelled as different classes, and we want to train a classifier

Graph classifications are generally hard even with the current deep neural networks, because
it’s not so easily vectorized (it’s two sets but with some additional structures)

The first thing the authors do is to convert graphs (the raw data) into PDs (features)

Of course, we need to build filtration on graphs, and here, we assign values to the vertices
and build sublevelset filtration

Notice that the vertices do not automatically come with real values, so the authors utilize
Heat Kernel Signatures (HKS) which assigns a value to a vertex based on the graph
structure
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Setting

They use a very simple network architecture, namely a two-layer network

The first layer is PersLay, which processes persistence diagrams

The second is a fully-connected layer whose output is used for predictions

This simplistic two-layer architecture is designed to understanding the effect of the PD and
PersLay rather than achieving the best possible performances.





Test

They run on 11 datasets some of which are social networks and others are from biology or
medical areas

For each dataset, they also perform ten-fold validation and report the average and best
ten-fold results



Test Results

Comparison of using the traditional graph features (the eigenvalues of the normalized graph
Laplacian along with the deciles of the computed HKS), PD alone, and combination



Comparison with other methods

The authors compare performances with five other graph classification methods with general
good performance:

Scale-Variant topo: leverages a kernel for ordinary persistence diagrams computed on point
cloud used to encode the graphs

RetGK: a kernel method for graphs that leverages eventual attributes on the graph vertices
and edges

FGSD: a finite-dimensional graph embedding that does not leverage attributes

GCNN and GIN: two graph neural network approaches that reach top-tier results



Test Results


