
Vectorizing PD for Machine Learning

Tao Hou

University of Oregon

Acknowledgment

Contents of the slide (including figures) are based on the book:

Baris Coskunuzer and Cneyt Grcan Akora. Topological Methods in Machine Learning: A
Tutorial for Practitioners

Background

Ultimate goal:

To effectively use persistence diagrams (PDs) in ML framework to strengthen your ML task
by harnessing the power of topological descriptors

Problem:

Directly inputting PDs into ML models is impractical because their variable-size points
conflicts with the fixed-size input required by most ML algorithms.

Even if we have PDs with fixed size, we don’t have a “fixed” meaning for a “component” in
your PD (because PD is a set):

e.g., “age”, “height”, “hobby” to describe a person

Vectorization:

Convert PDs into vectors where each component has a fixed meaning (e.g., an image)

Background

Ultimate goal:

To effectively use persistence diagrams (PDs) in ML framework to strengthen your ML task
by harnessing the power of topological descriptors

Problem:

Directly inputting PDs into ML models is impractical because their variable-size points
conflicts with the fixed-size input required by most ML algorithms.

Even if we have PDs with fixed size, we don’t have a “fixed” meaning for a “component” in
your PD (because PD is a set):

e.g., “age”, “height”, “hobby” to describe a person

Vectorization:

Convert PDs into vectors where each component has a fixed meaning (e.g., an image)

Background

Ultimate goal:

To effectively use persistence diagrams (PDs) in ML framework to strengthen your ML task
by harnessing the power of topological descriptors

Problem:

Directly inputting PDs into ML models is impractical because their variable-size points
conflicts with the fixed-size input required by most ML algorithms.

Even if we have PDs with fixed size, we don’t have a “fixed” meaning for a “component” in
your PD (because PD is a set):

e.g., “age”, “height”, “hobby” to describe a person

Vectorization:

Convert PDs into vectors where each component has a fixed meaning (e.g., an image)

Background

Ultimate goal:

To effectively use persistence diagrams (PDs) in ML framework to strengthen your ML task
by harnessing the power of topological descriptors

Problem:

Directly inputting PDs into ML models is impractical because their variable-size points
conflicts with the fixed-size input required by most ML algorithms.

Even if we have PDs with fixed size, we don’t have a “fixed” meaning for a “component” in
your PD (because PD is a set):

e.g., “age”, “height”, “hobby” to describe a person

Vectorization:

Convert PDs into vectors where each component has a fixed meaning (e.g., an image)

Outline

Fixed vectorization:

A fixed mapping from a PD to a vector (which may involve a hyperparameter choice)
All described vectorization methods are applicable to any type of data (they simply transform a
given PD into a vector)
However, the effectiveness and common usage of certain vectorization methods can vary
depending on the data type and the density or sparsity of the PDs

Automated vectorization:

Avoid the intricacies of hyperparameter tuning (learned from the data by the algorithm)

Notice:

We will only show how to convert a PDp into a vector vp for a certain dimension p
If you want the features in all the dimensions, you can concatenate all vectors v0‖v1‖ . . . ‖vd
assuming the maximum dimension is d
Alternatively, you can convert the PD of all dimensions, PD∗, into a single vector v∗

Outline

Fixed vectorization:

A fixed mapping from a PD to a vector (which may involve a hyperparameter choice)
All described vectorization methods are applicable to any type of data (they simply transform a
given PD into a vector)
However, the effectiveness and common usage of certain vectorization methods can vary
depending on the data type and the density or sparsity of the PDs

Automated vectorization:

Avoid the intricacies of hyperparameter tuning (learned from the data by the algorithm)

Notice:

We will only show how to convert a PDp into a vector vp for a certain dimension p
If you want the features in all the dimensions, you can concatenate all vectors v0‖v1‖ . . . ‖vd
assuming the maximum dimension is d
Alternatively, you can convert the PD of all dimensions, PD∗, into a single vector v∗

Outline

Fixed vectorization:

A fixed mapping from a PD to a vector (which may involve a hyperparameter choice)
All described vectorization methods are applicable to any type of data (they simply transform a
given PD into a vector)
However, the effectiveness and common usage of certain vectorization methods can vary
depending on the data type and the density or sparsity of the PDs

Automated vectorization:

Avoid the intricacies of hyperparameter tuning (learned from the data by the algorithm)

Notice:

We will only show how to convert a PDp into a vector vp for a certain dimension p

If you want the features in all the dimensions, you can concatenate all vectors v0‖v1‖ . . . ‖vd
assuming the maximum dimension is d
Alternatively, you can convert the PD of all dimensions, PD∗, into a single vector v∗

Outline

Fixed vectorization:

A fixed mapping from a PD to a vector (which may involve a hyperparameter choice)
All described vectorization methods are applicable to any type of data (they simply transform a
given PD into a vector)
However, the effectiveness and common usage of certain vectorization methods can vary
depending on the data type and the density or sparsity of the PDs

Automated vectorization:

Avoid the intricacies of hyperparameter tuning (learned from the data by the algorithm)

Notice:

We will only show how to convert a PDp into a vector vp for a certain dimension p
If you want the features in all the dimensions, you can concatenate all vectors v0‖v1‖ . . . ‖vd
assuming the maximum dimension is d

Alternatively, you can convert the PD of all dimensions, PD∗, into a single vector v∗

Outline

Fixed vectorization:

A fixed mapping from a PD to a vector (which may involve a hyperparameter choice)
All described vectorization methods are applicable to any type of data (they simply transform a
given PD into a vector)
However, the effectiveness and common usage of certain vectorization methods can vary
depending on the data type and the density or sparsity of the PDs

Automated vectorization:

Avoid the intricacies of hyperparameter tuning (learned from the data by the algorithm)

Notice:

We will only show how to convert a PDp into a vector vp for a certain dimension p
If you want the features in all the dimensions, you can concatenate all vectors v0‖v1‖ . . . ‖vd
assuming the maximum dimension is d
Alternatively, you can convert the PD of all dimensions, PD∗, into a single vector v∗

Betti vectors

Consider a continuous filtration Fc : {Kα | α ∈ [0,∞)}, where a topological space Kα varies
over the real line

Recall that βp(Kα), the p-th Betti number of Kα, is the cardinality of the p-th homology
basis of Kα

By selecting a set of the real values α1, α2, . . . , αn, the p-th Betti vector ~βp is defined as:

~βp = [βp(Kα1), βp(Kα2), . . . , βp(Kαn)]

Aka. by selecting the set of values α1, α2, . . . , αn we get a vector of size n which is a sample
of the p-th Betti curve Bp : [0,∞)→ N where Bp(α) = βp(Kα)

n, α1, α2, . . . , αn are the hyperparameters that you need to determine in practice (e.g., we
could let n = 50)

Betti vectors

Consider a continuous filtration Fc : {Kα | α ∈ [0,∞)}, where a topological space Kα varies
over the real line

Recall that βp(Kα), the p-th Betti number of Kα, is the cardinality of the p-th homology
basis of Kα

By selecting a set of the real values α1, α2, . . . , αn, the p-th Betti vector ~βp is defined as:

~βp = [βp(Kα1), βp(Kα2), . . . , βp(Kαn)]

Aka. by selecting the set of values α1, α2, . . . , αn we get a vector of size n which is a sample
of the p-th Betti curve Bp : [0,∞)→ N where Bp(α) = βp(Kα)

n, α1, α2, . . . , αn are the hyperparameters that you need to determine in practice (e.g., we
could let n = 50)

Betti vectors

Consider a continuous filtration Fc : {Kα | α ∈ [0,∞)}, where a topological space Kα varies
over the real line

Recall that βp(Kα), the p-th Betti number of Kα, is the cardinality of the p-th homology
basis of Kα

By selecting a set of the real values α1, α2, . . . , αn, the p-th Betti vector ~βp is defined as:

~βp = [βp(Kα1), βp(Kα2), . . . , βp(Kαn)]

Aka. by selecting the set of values α1, α2, . . . , αn we get a vector of size n which is a sample
of the p-th Betti curve Bp : [0,∞)→ N where Bp(α) = βp(Kα)

n, α1, α2, . . . , αn are the hyperparameters that you need to determine in practice (e.g., we
could let n = 50)

Betti vectors

Consider a continuous filtration Fc : {Kα | α ∈ [0,∞)}, where a topological space Kα varies
over the real line

Recall that βp(Kα), the p-th Betti number of Kα, is the cardinality of the p-th homology
basis of Kα

By selecting a set of the real values α1, α2, . . . , αn, the p-th Betti vector ~βp is defined as:

~βp = [βp(Kα1), βp(Kα2), . . . , βp(Kαn)]

Aka. by selecting the set of values α1, α2, . . . , αn we get a vector of size n which is a sample
of the p-th Betti curve Bp : [0,∞)→ N where Bp(α) = βp(Kα)

n, α1, α2, . . . , αn are the hyperparameters that you need to determine in practice (e.g., we
could let n = 50)

Betti vectors

Consider a continuous filtration Fc : {Kα | α ∈ [0,∞)}, where a topological space Kα varies
over the real line

Recall that βp(Kα), the p-th Betti number of Kα, is the cardinality of the p-th homology
basis of Kα

By selecting a set of the real values α1, α2, . . . , αn, the p-th Betti vector ~βp is defined as:

~βp = [βp(Kα1), βp(Kα2), . . . , βp(Kαn)]

Aka. by selecting the set of values α1, α2, . . . , αn we get a vector of size n which is a sample
of the p-th Betti curve Bp : [0,∞)→ N where Bp(α) = βp(Kα)

n, α1, α2, . . . , αn are the hyperparameters that you need to determine in practice (e.g., we
could let n = 50)

Example

Example

Select the α values: [0, 0.25, 0.75, 1.5, 1.75]

~β0 = [35, 20, 1, 1, 1]
~β1 = [0, 0, 2, 1, 0]

Example

Select the α values: [0, 0.25, 0.75, 1.5, 1.75]
~β0 = [35, 20, 1, 1, 1]

~β1 = [0, 0, 2, 1, 0]

Example

Select the α values: [0, 0.25, 0.75, 1.5, 1.75]
~β0 = [35, 20, 1, 1, 1]
~β1 = [0, 0, 2, 1, 0]

Remarks

Some advantages of Betti vectors:

While being able to be derived from persistence diagrams, Betti vectors do not require the
computation of persistence diagrams.

Indeed, there are computationally more effective ways to produce Betti vectors.

Another favorable aspect of Betti vectors is their ease of interpretation: Simply put, βp(Kα)
is equal to the number of p-dimensional holes in Kα.

Remarks

Some advantages of Betti vectors:

While being able to be derived from persistence diagrams, Betti vectors do not require the
computation of persistence diagrams.

Indeed, there are computationally more effective ways to produce Betti vectors.

Another favorable aspect of Betti vectors is their ease of interpretation: Simply put, βp(Kα)
is equal to the number of p-dimensional holes in Kα.

Persistence Landscapes

Persistence Landscapes are one of the first vectorization methods in TDA, directly utilizing
the lifespan information

Using Persistence Landscapes, the points away from the diagonal (large features) are easily
distinguished and promoted

Consider a persistence diagram PDp = {(bi , di)}
For each (bi , di) ∈ PDp, first define its generating function

Λi : [0,∞)→ R,

which is a piece-wise linear function obtained by two line segments connecting (bi , 0) and

(di , 0) to (bi+di
2 , di−bi2)

Note: It is 0 elsewhere

Observe that the longer the interval [bi , di) is, the “higher” and “wider” the generating
function Λi is (so longer bars are emphasized)

Persistence Landscapes

Persistence Landscapes are one of the first vectorization methods in TDA, directly utilizing
the lifespan information

Using Persistence Landscapes, the points away from the diagonal (large features) are easily
distinguished and promoted

Consider a persistence diagram PDp = {(bi , di)}
For each (bi , di) ∈ PDp, first define its generating function

Λi : [0,∞)→ R,

which is a piece-wise linear function obtained by two line segments connecting (bi , 0) and

(di , 0) to (bi+di
2 , di−bi2)

Note: It is 0 elsewhere

Observe that the longer the interval [bi , di) is, the “higher” and “wider” the generating
function Λi is (so longer bars are emphasized)

Persistence Landscapes

Persistence Landscapes are one of the first vectorization methods in TDA, directly utilizing
the lifespan information

Using Persistence Landscapes, the points away from the diagonal (large features) are easily
distinguished and promoted

Consider a persistence diagram PDp = {(bi , di)}
For each (bi , di) ∈ PDp, first define its generating function

Λi : [0,∞)→ R,

which is a piece-wise linear function obtained by two line segments connecting (bi , 0) and

(di , 0) to (bi+di
2 , di−bi2)

Note: It is 0 elsewhere

Observe that the longer the interval [bi , di) is, the “higher” and “wider” the generating
function Λi is (so longer bars are emphasized)

Persistence Landscapes

Persistence Landscapes are one of the first vectorization methods in TDA, directly utilizing
the lifespan information

Using Persistence Landscapes, the points away from the diagonal (large features) are easily
distinguished and promoted

Consider a persistence diagram PDp = {(bi , di)}
For each (bi , di) ∈ PDp, first define its generating function

Λi : [0,∞)→ R,

which is a piece-wise linear function obtained by two line segments connecting (bi , 0) and

(di , 0) to (bi+di
2 , di−bi2)

Note: It is 0 elsewhere

Observe that the longer the interval [bi , di) is, the “higher” and “wider” the generating
function Λi is (so longer bars are emphasized)

Persistence Landscapes

Given all generating functions {Λi}, we take the k-th largest value at each α ∈ [0,∞)

In particular, the k-th Persistence Landscape function λk : [0,∞)→ R is defined as:

λk(α) = kth- max{Λi (α)}

E.g.: λ1 and λ2 for PD1 of the previous 8-shaped point cloud:

Persistence Landscapes

Given all generating functions {Λi}, we take the k-th largest value at each α ∈ [0,∞)

In particular, the k-th Persistence Landscape function λk : [0,∞)→ R is defined as:

λk(α) = kth- max{Λi (α)}

E.g.: λ1 and λ2 for PD1 of the previous 8-shaped point cloud:

Persistence Landscapes

Given all generating functions {Λi}, we take the k-th largest value at each α ∈ [0,∞)

In particular, the k-th Persistence Landscape function λk : [0,∞)→ R is defined as:

λk(α) = kth- max{Λi (α)}

E.g.: λ1 and λ2 for PD1 of the previous 8-shaped point cloud:

Remarks

The previously defined λk is a continuous function from [0,∞) to R

We still need to vectorize (or discretize) it by selecting values

α1, α2, . . . , αn,

and take the vector
λk(α1), λk(α2), . . . , λk(αn)

Also note that λ1 and λ2 are the most commonly used to produce the vectors, and the
vectors are used with concatenation in the applications

Remarks

The previously defined λk is a continuous function from [0,∞) to R
We still need to vectorize (or discretize) it by selecting values

α1, α2, . . . , αn,

and take the vector
λk(α1), λk(α2), . . . , λk(αn)

Also note that λ1 and λ2 are the most commonly used to produce the vectors, and the
vectors are used with concatenation in the applications

Remarks

The previously defined λk is a continuous function from [0,∞) to R
We still need to vectorize (or discretize) it by selecting values

α1, α2, . . . , αn,

and take the vector
λk(α1), λk(α2), . . . , λk(αn)

Also note that λ1 and λ2 are the most commonly used to produce the vectors, and the
vectors are used with concatenation in the applications

Silhouette

A practical modification for persistence landscapes by eliminating the k-th maxima in
persistence landscapes and introducing a tuning parameter p to better utilize the lifespans
of the bars in the barcode

To differentiate from the tuning parameter p, we use q to denote the dimension of a PD

For a persistence diagram

PDq = {(bi , di) | i = 1, . . . ,N},

let Λi be the generating function for (bi , di) as defined in the persistence landscapes

The Silhouette function Ψq : [0,∞)→ R is defined as the weighted sum of the Λi ’s:

Ψq(α) =

∑N
i=1 wiΛi (α)∑N

i=1 wi

,

where wi is the weight of the function Λi

Silhouette

A practical modification for persistence landscapes by eliminating the k-th maxima in
persistence landscapes and introducing a tuning parameter p to better utilize the lifespans
of the bars in the barcode

To differentiate from the tuning parameter p, we use q to denote the dimension of a PD

For a persistence diagram

PDq = {(bi , di) | i = 1, . . . ,N},

let Λi be the generating function for (bi , di) as defined in the persistence landscapes

The Silhouette function Ψq : [0,∞)→ R is defined as the weighted sum of the Λi ’s:

Ψq(α) =

∑N
i=1 wiΛi (α)∑N

i=1 wi

,

where wi is the weight of the function Λi

Silhouette

A practical modification for persistence landscapes by eliminating the k-th maxima in
persistence landscapes and introducing a tuning parameter p to better utilize the lifespans
of the bars in the barcode

To differentiate from the tuning parameter p, we use q to denote the dimension of a PD

For a persistence diagram

PDq = {(bi , di) | i = 1, . . . ,N},

let Λi be the generating function for (bi , di) as defined in the persistence landscapes

The Silhouette function Ψq : [0,∞)→ R is defined as the weighted sum of the Λi ’s:

Ψq(α) =

∑N
i=1 wiΛi (α)∑N

i=1 wi

,

where wi is the weight of the function Λi

Silhouette

A practical modification for persistence landscapes by eliminating the k-th maxima in
persistence landscapes and introducing a tuning parameter p to better utilize the lifespans
of the bars in the barcode

To differentiate from the tuning parameter p, we use q to denote the dimension of a PD

For a persistence diagram

PDq = {(bi , di) | i = 1, . . . ,N},

let Λi be the generating function for (bi , di) as defined in the persistence landscapes

The Silhouette function Ψq : [0,∞)→ R is defined as the weighted sum of the Λi ’s:

Ψq(α) =

∑N
i=1 wiΛi (α)∑N

i=1 wi

,

where wi is the weight of the function Λi

Silhouette

The weight wi for a Λi is typically taken as (di − bi)
p, so Ψq becomes:

Ψq =

∑N
i=1(di − bi)

pΛi∑N
i=1(di − bi)p

E.g.: for the previous 8-shaped point cloud:

Silhouette

The weight wi for a Λi is typically taken as (di − bi)
p, so Ψq becomes:

Ψq =

∑N
i=1(di − bi)

pΛi∑N
i=1(di − bi)p

E.g.: for the previous 8-shaped point cloud:

Remakrs

The tuning parameter p is crucial as it adjusts the silhouette function’s emphasis on
topological features with varying lifespans

For example, when p > 1, features with longer lifespans are assigned even larger weights,
highlighting these longer features

When p < 1, shorter lifespans are given more weight compared to previous case,
emphasizing shorter features

Common choices for p are 1/2, 1, and 2

If the persistence diagram has a few points and the goal is to emphasize these significant
features, p = 2 would be a good choice

If there are many points in PD and the key information comes from smaller features, 1/2
can be used

Remakrs

The tuning parameter p is crucial as it adjusts the silhouette function’s emphasis on
topological features with varying lifespans

For example, when p > 1, features with longer lifespans are assigned even larger weights,
highlighting these longer features

When p < 1, shorter lifespans are given more weight compared to previous case,
emphasizing shorter features

Common choices for p are 1/2, 1, and 2

If the persistence diagram has a few points and the goal is to emphasize these significant
features, p = 2 would be a good choice

If there are many points in PD and the key information comes from smaller features, 1/2
can be used

Remakrs

The tuning parameter p is crucial as it adjusts the silhouette function’s emphasis on
topological features with varying lifespans

For example, when p > 1, features with longer lifespans are assigned even larger weights,
highlighting these longer features

When p < 1, shorter lifespans are given more weight compared to previous case,
emphasizing shorter features

Common choices for p are 1/2, 1, and 2

If the persistence diagram has a few points and the goal is to emphasize these significant
features, p = 2 would be a good choice

If there are many points in PD and the key information comes from smaller features, 1/2
can be used

Remakrs

The tuning parameter p is crucial as it adjusts the silhouette function’s emphasis on
topological features with varying lifespans

For example, when p > 1, features with longer lifespans are assigned even larger weights,
highlighting these longer features

When p < 1, shorter lifespans are given more weight compared to previous case,
emphasizing shorter features

Common choices for p are 1/2, 1, and 2

If the persistence diagram has a few points and the goal is to emphasize these significant
features, p = 2 would be a good choice

If there are many points in PD and the key information comes from smaller features, 1/2
can be used

Remakrs

The tuning parameter p is crucial as it adjusts the silhouette function’s emphasis on
topological features with varying lifespans

For example, when p > 1, features with longer lifespans are assigned even larger weights,
highlighting these longer features

When p < 1, shorter lifespans are given more weight compared to previous case,
emphasizing shorter features

Common choices for p are 1/2, 1, and 2

If the persistence diagram has a few points and the goal is to emphasize these significant
features, p = 2 would be a good choice

If there are many points in PD and the key information comes from smaller features, 1/2
can be used

Persistence Curve

The Persistence Curve is a framework for vectorization PD which generalizes the previous
vectorization techniques

The core idea is to consider the intervals in a PD containing a real value α, denoted PD(α),
and utilize a real-valued generating function Λ, a summary statistic T :

pcΛ,T (α) = T
([

Λ(b, d , α) | (b, d) ∈ PD(α)
])

We have:

“[· · ·]” encloses a “vector” which produces a real value for each (b, d) ∈ PD(α)

Given the vector, T then provides a “aggregate” (e.g., sum, mean, or max)

Persistence Curve

The Persistence Curve is a framework for vectorization PD which generalizes the previous
vectorization techniques

The core idea is to consider the intervals in a PD containing a real value α, denoted PD(α),
and utilize a real-valued generating function Λ, a summary statistic T :

pcΛ,T (α) = T
([

Λ(b, d , α) | (b, d) ∈ PD(α)
])

We have:

“[· · ·]” encloses a “vector” which produces a real value for each (b, d) ∈ PD(α)

Given the vector, T then provides a “aggregate” (e.g., sum, mean, or max)

Persistence Curve

The Persistence Curve is a framework for vectorization PD which generalizes the previous
vectorization techniques

The core idea is to consider the intervals in a PD containing a real value α, denoted PD(α),
and utilize a real-valued generating function Λ, a summary statistic T :

pcΛ,T (α) = T
([

Λ(b, d , α) | (b, d) ∈ PD(α)
])

We have:

“[· · ·]” encloses a “vector” which produces a real value for each (b, d) ∈ PD(α)

Given the vector, T then provides a “aggregate” (e.g., sum, mean, or max)

Persistence Curve

Persistence Curves provide a general and unifying framework for vectorization methods

By selecting different combinations of Λ and T , one can generate various functional
summaries of the PD, each potentially highlighting different aspects of the data

Specifically, all previous vectorization methods can be considered as special cases of
Persistence Curves by choosing a certain Λ and T

E.g., let

and T be the kth-max function, then we get the persistence landscape

Persistence Curve

Persistence Curves provide a general and unifying framework for vectorization methods

By selecting different combinations of Λ and T , one can generate various functional
summaries of the PD, each potentially highlighting different aspects of the data

Specifically, all previous vectorization methods can be considered as special cases of
Persistence Curves by choosing a certain Λ and T

E.g., let

and T be the kth-max function, then we get the persistence landscape

Persistence Images

Unlike previous vectorizations, Persistence Images, as the name suggests, produce 2D-arrays

The idea is to capture the location of the points in the PDs by using the 2D Gaussian
functions centered at these points

Recall (1D) Gaussian (normal) distribution (where µ is the mean and σ2 the variance)

g(x) =
1

σ
√

2π
exp

(
− (x − µ)2

2σ2

)
A Gaussian function is a relaxation of it but in 2D. We don’t need the integral to be 1 and
the function always has the same height:

φ(x) = exp
(
− ‖x − µ‖

2
2

σ2

)
where µ is still the “mean” (center) and σ2 is the “width” (spread) now

Persistence Images

Unlike previous vectorizations, Persistence Images, as the name suggests, produce 2D-arrays

The idea is to capture the location of the points in the PDs by using the 2D Gaussian
functions centered at these points

Recall (1D) Gaussian (normal) distribution (where µ is the mean and σ2 the variance)

g(x) =
1

σ
√

2π
exp

(
− (x − µ)2

2σ2

)

A Gaussian function is a relaxation of it but in 2D. We don’t need the integral to be 1 and
the function always has the same height:

φ(x) = exp
(
− ‖x − µ‖

2
2

σ2

)
where µ is still the “mean” (center) and σ2 is the “width” (spread) now

Persistence Images

Unlike previous vectorizations, Persistence Images, as the name suggests, produce 2D-arrays

The idea is to capture the location of the points in the PDs by using the 2D Gaussian
functions centered at these points

Recall (1D) Gaussian (normal) distribution (where µ is the mean and σ2 the variance)

g(x) =
1

σ
√

2π
exp

(
− (x − µ)2

2σ2

)
A Gaussian function is a relaxation of it but in 2D. We don’t need the integral to be 1 and
the function always has the same height:

φ(x) = exp
(
− ‖x − µ‖

2
2

σ2

)
where µ is still the “mean” (center) and σ2 is the “width” (spread) now

Gaussian functions

(Figure from handwiki and wolfram mathworld)

So the function value is basically just an indication of how far a point x is from the center µ
(instead of directly using the inverse distance 1/‖x − µ‖2)

Gaussian functions

(Figure from handwiki and wolfram mathworld)

So the function value is basically just an indication of how far a point x is from the center µ
(instead of directly using the inverse distance 1/‖x − µ‖2)

Persistence Images

Consider
PD = {(bi , di) | i = 1, . . . ,N}

For each (bi , di), we have a Gaussian function φi centered at (bi , di)

Notice that the spread σ is hyperparameter shared by all φi ’s

The Persistence Image of PD is a 2D function pi : R2 → R:

pi(x) =
∑
i

wiφi (x),

which is nothing but the weighted sum of the Gaussian functions of all the PD points

wi is typically (di − bi)
p

Persistence Images

Consider
PD = {(bi , di) | i = 1, . . . ,N}

For each (bi , di), we have a Gaussian function φi centered at (bi , di)

Notice that the spread σ is hyperparameter shared by all φi ’s

The Persistence Image of PD is a 2D function pi : R2 → R:

pi(x) =
∑
i

wiφi (x),

which is nothing but the weighted sum of the Gaussian functions of all the PD points

wi is typically (di − bi)
p

Persistence Images

Consider
PD = {(bi , di) | i = 1, . . . ,N}

For each (bi , di), we have a Gaussian function φi centered at (bi , di)

Notice that the spread σ is hyperparameter shared by all φi ’s

The Persistence Image of PD is a 2D function pi : R2 → R:

pi(x) =
∑
i

wiφi (x),

which is nothing but the weighted sum of the Gaussian functions of all the PD points

wi is typically (di − bi)
p

Persistence Images

Consider
PD = {(bi , di) | i = 1, . . . ,N}

For each (bi , di), we have a Gaussian function φi centered at (bi , di)

Notice that the spread σ is hyperparameter shared by all φi ’s

The Persistence Image of PD is a 2D function pi : R2 → R:

pi(x) =
∑
i

wiφi (x),

which is nothing but the weighted sum of the Gaussian functions of all the PD points

wi is typically (di − bi)
p

Example

For the two points in the 1st PD of the previous 8-shaped point cloud:

So it’s just a 2D function indicating the “positions” of the points in a PD

Notice: pi : R2 → R as defined is still a continuous function

As in the previous vectorizations, we still need to discretize it into a 2D image: by doing
some sampling on a 2D grid (which is another hyperparameter)

Example

For the two points in the 1st PD of the previous 8-shaped point cloud:

So it’s just a 2D function indicating the “positions” of the points in a PD

Notice: pi : R2 → R as defined is still a continuous function

As in the previous vectorizations, we still need to discretize it into a 2D image: by doing
some sampling on a 2D grid (which is another hyperparameter)

Example

For the two points in the 1st PD of the previous 8-shaped point cloud:

So it’s just a 2D function indicating the “positions” of the points in a PD

Notice: pi : R2 → R as defined is still a continuous function

As in the previous vectorizations, we still need to discretize it into a 2D image: by doing
some sampling on a 2D grid (which is another hyperparameter)

Question

For the two points in the 1st PD of the previous 8-shaped point cloud:

Why don’t (can’t) we use a 2D image to directly encode a PD (which is in 2D)?

Kernel Methods for Integrating PD into ML framework

Kernel methods used to be a major branch of methods (besides deep neural networks) in
ML which was very successful (e.g., SVM)

Rely on the concept of Reproducing Kernel Hilbert Spaces (RKHS), which draws upon a
“kernel” function K

Using a kernel function K , you data (e.g., PDs) don’t need to be vectorized

What K does is that, given two data items, say two PDs, D1 and D2, the function value
K (D1,D2) measures how “similar” the two PDs are

The persistence weighted Gaussian kernel (PWGK) for PDs:

K (D1,D2) =
∑
x1∈D1

∑
x2∈D2

wx1wx2φ(x1, x2)

where φ(x1, x2) is the Gaussian kernel:

φ(x1, x2) = exp
(
− ‖x1 − x2‖2

2

σ2

)

Kernel Methods for Integrating PD into ML framework

Kernel methods used to be a major branch of methods (besides deep neural networks) in
ML which was very successful (e.g., SVM)

Rely on the concept of Reproducing Kernel Hilbert Spaces (RKHS), which draws upon a
“kernel” function K

Using a kernel function K , you data (e.g., PDs) don’t need to be vectorized

What K does is that, given two data items, say two PDs, D1 and D2, the function value
K (D1,D2) measures how “similar” the two PDs are

The persistence weighted Gaussian kernel (PWGK) for PDs:

K (D1,D2) =
∑
x1∈D1

∑
x2∈D2

wx1wx2φ(x1, x2)

where φ(x1, x2) is the Gaussian kernel:

φ(x1, x2) = exp
(
− ‖x1 − x2‖2

2

σ2

)

Kernel Methods for Integrating PD into ML framework

Kernel methods used to be a major branch of methods (besides deep neural networks) in
ML which was very successful (e.g., SVM)

Rely on the concept of Reproducing Kernel Hilbert Spaces (RKHS), which draws upon a
“kernel” function K

Using a kernel function K , you data (e.g., PDs) don’t need to be vectorized

What K does is that, given two data items, say two PDs, D1 and D2, the function value
K (D1,D2) measures how “similar” the two PDs are

The persistence weighted Gaussian kernel (PWGK) for PDs:

K (D1,D2) =
∑
x1∈D1

∑
x2∈D2

wx1wx2φ(x1, x2)

where φ(x1, x2) is the Gaussian kernel:

φ(x1, x2) = exp
(
− ‖x1 − x2‖2

2

σ2

)

Kernel Methods for Integrating PD into ML framework

Kernel methods used to be a major branch of methods (besides deep neural networks) in
ML which was very successful (e.g., SVM)

Rely on the concept of Reproducing Kernel Hilbert Spaces (RKHS), which draws upon a
“kernel” function K

Using a kernel function K , you data (e.g., PDs) don’t need to be vectorized

What K does is that, given two data items, say two PDs, D1 and D2, the function value
K (D1,D2) measures how “similar” the two PDs are

The persistence weighted Gaussian kernel (PWGK) for PDs:

K (D1,D2) =
∑
x1∈D1

∑
x2∈D2

wx1wx2φ(x1, x2)

where φ(x1, x2) is the Gaussian kernel:

φ(x1, x2) = exp
(
− ‖x1 − x2‖2

2

σ2

)

Kernel Methods for Integrating PD into ML framework

Kernel methods used to be a major branch of methods (besides deep neural networks) in
ML which was very successful (e.g., SVM)

Rely on the concept of Reproducing Kernel Hilbert Spaces (RKHS), which draws upon a
“kernel” function K

Using a kernel function K , you data (e.g., PDs) don’t need to be vectorized

What K does is that, given two data items, say two PDs, D1 and D2, the function value
K (D1,D2) measures how “similar” the two PDs are

The persistence weighted Gaussian kernel (PWGK) for PDs:

K (D1,D2) =
∑
x1∈D1

∑
x2∈D2

wx1wx2φ(x1, x2)

where φ(x1, x2) is the Gaussian kernel:

φ(x1, x2) = exp
(
− ‖x1 − x2‖2

2

σ2

)

Kernel Methods for Integrating PD into ML framework

Kernel methods used to be a major branch of methods (besides deep neural networks) in
ML which was very successful (e.g., SVM)

Rely on the concept of Reproducing Kernel Hilbert Spaces (RKHS), which draws upon a
“kernel” function K

Using a kernel function K , you data (e.g., PDs) don’t need to be vectorized

What K does is that, given two data items, say two PDs, D1 and D2, the function value
K (D1,D2) measures how “similar” the two PDs are

The persistence weighted Gaussian kernel (PWGK) for PDs:

K (D1,D2) =
∑
x1∈D1

∑
x2∈D2

wx1wx2φ(x1, x2)

where φ(x1, x2) is the Gaussian kernel:

φ(x1, x2) = exp
(
− ‖x1 − x2‖2

2

σ2

)

Kernel Methods for Integrating PD into ML framework

“Kernel methods” is indeed a framework for machine learning on non-vectorized data

So, you can design different kernel functions that can be used in the framework which
produces a different learning algorithm

Another commonly used kernel function for PDs is the sliced Wasserstein kernel (SWK),
which we will not cover in this course

Designing kernel functions is non-trivial as you need to map your data into Reproducing
Kernel Hilbert Spaces (RKHS) and prove that your kernel function is an inner product in the
RKHS (which needs a lot of functional analysis :-()

But using existing kernels already designed is not so hard

Although kernel methods can yield better results in some settings, they can be
computationally intensive and impractical for large datasets due to the high computational
costs associated with computing the kernel matrix

In particular, computing kernels takes quadratic time in the number of diagrams, while
vectorizing PDs takes only linear time

Kernel Methods for Integrating PD into ML framework

“Kernel methods” is indeed a framework for machine learning on non-vectorized data

So, you can design different kernel functions that can be used in the framework which
produces a different learning algorithm

Another commonly used kernel function for PDs is the sliced Wasserstein kernel (SWK),
which we will not cover in this course

Designing kernel functions is non-trivial as you need to map your data into Reproducing
Kernel Hilbert Spaces (RKHS) and prove that your kernel function is an inner product in the
RKHS (which needs a lot of functional analysis :-()

But using existing kernels already designed is not so hard

Although kernel methods can yield better results in some settings, they can be
computationally intensive and impractical for large datasets due to the high computational
costs associated with computing the kernel matrix

In particular, computing kernels takes quadratic time in the number of diagrams, while
vectorizing PDs takes only linear time

Kernel Methods for Integrating PD into ML framework

“Kernel methods” is indeed a framework for machine learning on non-vectorized data

So, you can design different kernel functions that can be used in the framework which
produces a different learning algorithm

Another commonly used kernel function for PDs is the sliced Wasserstein kernel (SWK),
which we will not cover in this course

Designing kernel functions is non-trivial as you need to map your data into Reproducing
Kernel Hilbert Spaces (RKHS) and prove that your kernel function is an inner product in the
RKHS (which needs a lot of functional analysis :-()

But using existing kernels already designed is not so hard

Although kernel methods can yield better results in some settings, they can be
computationally intensive and impractical for large datasets due to the high computational
costs associated with computing the kernel matrix

In particular, computing kernels takes quadratic time in the number of diagrams, while
vectorizing PDs takes only linear time

Kernel Methods for Integrating PD into ML framework

“Kernel methods” is indeed a framework for machine learning on non-vectorized data

So, you can design different kernel functions that can be used in the framework which
produces a different learning algorithm

Another commonly used kernel function for PDs is the sliced Wasserstein kernel (SWK),
which we will not cover in this course

Designing kernel functions is non-trivial as you need to map your data into Reproducing
Kernel Hilbert Spaces (RKHS) and prove that your kernel function is an inner product in the
RKHS (which needs a lot of functional analysis :-()

But using existing kernels already designed is not so hard

Although kernel methods can yield better results in some settings, they can be
computationally intensive and impractical for large datasets due to the high computational
costs associated with computing the kernel matrix

In particular, computing kernels takes quadratic time in the number of diagrams, while
vectorizing PDs takes only linear time

Kernel Methods for Integrating PD into ML framework

“Kernel methods” is indeed a framework for machine learning on non-vectorized data

So, you can design different kernel functions that can be used in the framework which
produces a different learning algorithm

Another commonly used kernel function for PDs is the sliced Wasserstein kernel (SWK),
which we will not cover in this course

Designing kernel functions is non-trivial as you need to map your data into Reproducing
Kernel Hilbert Spaces (RKHS) and prove that your kernel function is an inner product in the
RKHS (which needs a lot of functional analysis :-()

But using existing kernels already designed is not so hard

Although kernel methods can yield better results in some settings, they can be
computationally intensive and impractical for large datasets due to the high computational
costs associated with computing the kernel matrix

In particular, computing kernels takes quadratic time in the number of diagrams, while
vectorizing PDs takes only linear time

Stability of vectorizations

In most applications, the stability of vectorization is vital for statistical and inferential tasks

Essentially stability means that a small change in the persistence diagram (PD) should not
lead to a significant change in its vectorization

In particular, if two PDs, D1 and D2, are close, their corresponding vectorizations, ~v(D1)
and ~v(D2), should also be close

This ensures that the vectorization process preserves the structural properties of the data

Therefore, when two persistence diagrams are similar, it implies that the datasets share
similar shape characteristics (due to the stability of PD we learned before)

If these datasets are intuitively expected to belong to the same class, their vectorizations
should likewise remain close

Stability of vectorizations

To measure the stability, we utilize the Wasserstein distance (which is more general)

A vectorization technique ~v is said to be stable if it satisfies:

‖~v(D1), ~v(D2)‖ ≤Wp(D1,D2)

Among the methods described earlier, persistence landscapes, silhouettes, persistence
images, and most kernel methods are stable vectorizations, while Betti functions are
generally unstable

Stability of vectorizations

To measure the stability, we utilize the Wasserstein distance (which is more general)

A vectorization technique ~v is said to be stable if it satisfies:

‖~v(D1), ~v(D2)‖ ≤Wp(D1,D2)

Among the methods described earlier, persistence landscapes, silhouettes, persistence
images, and most kernel methods are stable vectorizations, while Betti functions are
generally unstable

Choice of Vectorization

The choice of vectorization method should align with the characteristics of your data and
the problem at hand

If your data contains a few prominent topological features that are crucial to the task,
Silhouettes with p ≥ 2 or Persistence Images may be the most suitable options

These methods are also effective when dealing with noisy data, allowing you to filter out less
significant features

Conversely, if your data generates a high number of small features, where the task hinges on
their location and density – in other words, when the noise itself carries important
information – Betti curves, Silhouettes with p ≤ 0.5 and kernel methods are likely to yield
strong performance

Lastly, if interpretability is a priority, Betti Curves stands out as the most interpretable
vectorization method

Note that most vectorizations are computationally efficient and require minimal time
compared to the computation of PDs

Choice of Vectorization

The choice of vectorization method should align with the characteristics of your data and
the problem at hand

If your data contains a few prominent topological features that are crucial to the task,
Silhouettes with p ≥ 2 or Persistence Images may be the most suitable options

These methods are also effective when dealing with noisy data, allowing you to filter out less
significant features

Conversely, if your data generates a high number of small features, where the task hinges on
their location and density – in other words, when the noise itself carries important
information – Betti curves, Silhouettes with p ≤ 0.5 and kernel methods are likely to yield
strong performance

Lastly, if interpretability is a priority, Betti Curves stands out as the most interpretable
vectorization method

Note that most vectorizations are computationally efficient and require minimal time
compared to the computation of PDs

Choice of Vectorization

The choice of vectorization method should align with the characteristics of your data and
the problem at hand

If your data contains a few prominent topological features that are crucial to the task,
Silhouettes with p ≥ 2 or Persistence Images may be the most suitable options

These methods are also effective when dealing with noisy data, allowing you to filter out less
significant features

Conversely, if your data generates a high number of small features, where the task hinges on
their location and density – in other words, when the noise itself carries important
information – Betti curves, Silhouettes with p ≤ 0.5 and kernel methods are likely to yield
strong performance

Lastly, if interpretability is a priority, Betti Curves stands out as the most interpretable
vectorization method

Note that most vectorizations are computationally efficient and require minimal time
compared to the computation of PDs

Choice of Vectorization

The choice of vectorization method should align with the characteristics of your data and
the problem at hand

If your data contains a few prominent topological features that are crucial to the task,
Silhouettes with p ≥ 2 or Persistence Images may be the most suitable options

These methods are also effective when dealing with noisy data, allowing you to filter out less
significant features

Conversely, if your data generates a high number of small features, where the task hinges on
their location and density – in other words, when the noise itself carries important
information – Betti curves, Silhouettes with p ≤ 0.5 and kernel methods are likely to yield
strong performance

Lastly, if interpretability is a priority, Betti Curves stands out as the most interpretable
vectorization method

Note that most vectorizations are computationally efficient and require minimal time
compared to the computation of PDs

Choice of Vectorization

The choice of vectorization method should align with the characteristics of your data and
the problem at hand

If your data contains a few prominent topological features that are crucial to the task,
Silhouettes with p ≥ 2 or Persistence Images may be the most suitable options

These methods are also effective when dealing with noisy data, allowing you to filter out less
significant features

Conversely, if your data generates a high number of small features, where the task hinges on
their location and density – in other words, when the noise itself carries important
information – Betti curves, Silhouettes with p ≤ 0.5 and kernel methods are likely to yield
strong performance

Lastly, if interpretability is a priority, Betti Curves stands out as the most interpretable
vectorization method

Note that most vectorizations are computationally efficient and require minimal time
compared to the computation of PDs

Choice of Vectorization

The choice of vectorization method should align with the characteristics of your data and
the problem at hand

If your data contains a few prominent topological features that are crucial to the task,
Silhouettes with p ≥ 2 or Persistence Images may be the most suitable options

These methods are also effective when dealing with noisy data, allowing you to filter out less
significant features

Conversely, if your data generates a high number of small features, where the task hinges on
their location and density – in other words, when the noise itself carries important
information – Betti curves, Silhouettes with p ≤ 0.5 and kernel methods are likely to yield
strong performance

Lastly, if interpretability is a priority, Betti Curves stands out as the most interpretable
vectorization method

Note that most vectorizations are computationally efficient and require minimal time
compared to the computation of PDs

Choice of Hyperparameters

Each vectorization method comes with its own set of hyperparameters that need to be
carefully tuned to maximize performance

Many vectorization methods have tuning parameters that are used to adjust sensitivity to
topological noise

In persistence landscapes, the number of landscapes specifies how many maxima are
included in the representation

A higher number of landscapes provides a richer depiction of topological features but
increases computational complexity

For persistence images, the spread σ controls the width of the Gaussian kernels applied to
each persistence point

A smaller spread results in sharper, more localized features, whereas a larger spread yields
smoother images

The resolution parameter sets the number of pixels in the persistence image, thus
determining the output dimension of the vectorization

Higher resolution captures finer detail but at a higher computational cost

Choice of Hyperparameters

Each vectorization method comes with its own set of hyperparameters that need to be
carefully tuned to maximize performance

Many vectorization methods have tuning parameters that are used to adjust sensitivity to
topological noise

In persistence landscapes, the number of landscapes specifies how many maxima are
included in the representation

A higher number of landscapes provides a richer depiction of topological features but
increases computational complexity

For persistence images, the spread σ controls the width of the Gaussian kernels applied to
each persistence point

A smaller spread results in sharper, more localized features, whereas a larger spread yields
smoother images

The resolution parameter sets the number of pixels in the persistence image, thus
determining the output dimension of the vectorization

Higher resolution captures finer detail but at a higher computational cost

Choice of Hyperparameters

Each vectorization method comes with its own set of hyperparameters that need to be
carefully tuned to maximize performance

Many vectorization methods have tuning parameters that are used to adjust sensitivity to
topological noise

In persistence landscapes, the number of landscapes specifies how many maxima are
included in the representation

A higher number of landscapes provides a richer depiction of topological features but
increases computational complexity

For persistence images, the spread σ controls the width of the Gaussian kernels applied to
each persistence point

A smaller spread results in sharper, more localized features, whereas a larger spread yields
smoother images

The resolution parameter sets the number of pixels in the persistence image, thus
determining the output dimension of the vectorization

Higher resolution captures finer detail but at a higher computational cost

Choice of Hyperparameters

Each vectorization method comes with its own set of hyperparameters that need to be
carefully tuned to maximize performance

Many vectorization methods have tuning parameters that are used to adjust sensitivity to
topological noise

In persistence landscapes, the number of landscapes specifies how many maxima are
included in the representation

A higher number of landscapes provides a richer depiction of topological features but
increases computational complexity

For persistence images, the spread σ controls the width of the Gaussian kernels applied to
each persistence point

A smaller spread results in sharper, more localized features, whereas a larger spread yields
smoother images

The resolution parameter sets the number of pixels in the persistence image, thus
determining the output dimension of the vectorization

Higher resolution captures finer detail but at a higher computational cost

Choice of Hyperparameters

Each vectorization method comes with its own set of hyperparameters that need to be
carefully tuned to maximize performance

Many vectorization methods have tuning parameters that are used to adjust sensitivity to
topological noise

In persistence landscapes, the number of landscapes specifies how many maxima are
included in the representation

A higher number of landscapes provides a richer depiction of topological features but
increases computational complexity

For persistence images, the spread σ controls the width of the Gaussian kernels applied to
each persistence point

A smaller spread results in sharper, more localized features, whereas a larger spread yields
smoother images

The resolution parameter sets the number of pixels in the persistence image, thus
determining the output dimension of the vectorization

Higher resolution captures finer detail but at a higher computational cost

Implementation by Gudhi

https://gudhi.inria.fr/python/latest/representations.html

https://gudhi.inria.fr/python/latest/representations.html

