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This application is documented in the following papers
• G. Carlsson, T. Ishkhanov, V. de Silva, and A. Zomorodian, On the local 

behavior of spaces of natural images, International Journal of Computer 
Vision, (76), 1, 2008, pp. 1-12. 

• Carlsson, Gunnar. "Topology and data." Bulletin of the American 
Mathematical Society 46.2 (2009): 255-308.
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This paper indeed adopts an “iterative” process, aka they repeat 
the above processes several times to refine their inference



• An image (assuming gray-scale) taken with a digital camera consists of a 
number (0-255) attached to each pixel

• It can be considered as a point in ℝ𝑝, where 𝑝 is the number of pixels (e.g., 
𝑝 = 16 × 16 = 256)
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• Trying to testify the above hypothesis is difficult since it’s hard to have a 
database sampling nearly all possible natural images 

• The task instead looks at small 3 × 3 patches of images, for which we could 
reasonably have a nice sample of all the possibilities

• They began with a database of black and white images taken by: 
• J. H. van Hateren and A. van der Schaaf, Independent component filters of natural 

images compared with simple cells in primary visual cortex 

• The database consisted of images taken around Groningen, Holland, in town 
and in the surrounding countryside

Dataset
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• From images from the previous database, they collect 4 millions of 3 × 3 
patches

Dataset



Given each image from the previous database, they do the following:
1. Extract at random 5000 3×3 patches from the image. Regard each patch as 

a point (vector) in ℝ9
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Given each image from the previous database, they do the following:
1. Extract at random 5000 3×3 patches from the image. Regard each patch as 

a point (vector) in ℝ9

2. For each patch do the following:
a) Compute the logarithm of intensity at each pixel

People often compute logarithms of values when processing data 
because it allows them to transform skewed data into a more normal 
distribution, making it easier to analyze using statistical methods
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Given each image from the previous database, they do the following:
1. Extract at random 5000 3×3 patches from the image. Regard each patch as 

a point (vector) in ℝ9

2. For each patch do the following:
a) Compute the logarithm of intensity at each pixel
b) Subtract the average of all coordinates from each coordinate. This 

produces a new vector (patch) whose average is always 0

Doing the above equates two patches which only differ by the brightness 
aka. if a patch is obtained from another patch by adding a constant value, 
i.e. “turning up the brightness”, then the two patches will be regarded as the 
same
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Data preprocessing

Images of the same scene with different brightness

Image from:https://theailearner.com/2019/01/30/what-is-contrast-in-image-processing/



Given each image from the previous database, they do the following:
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Data preprocessing

Image contrast is the difference in brightness 
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Image from: https://pippin.gimp.org/image-processing/chap_point.html
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Given each image from the previous database, they do the following:
1. Extract at random 5000 3×3 patches from the image. Regard each patch as 

a point (vector) in ℝ9

2. For each patch do the following:
a) Compute the logarithm of intensity at each pixel
b) Subtract the average of all coordinates from each coordinate. This 

produces a new vector (patch) whose average is always 0
c) Compute “D-norm” of the patch, which measure the contrast
d) Keep this patch if its D-norm is among the top 20% of all patches taken 

from the image
e) If kept, normalize the patch by dividing by its D-norm

A “norm” is a generalization of the length of a vector. Divide the vector 
(patch) by its “length” (D-norm) make it of length 1, so the contrast of all 
images is always at the same level
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• At the end of the process, they get 4 millions of 3 × 3 patches of high contrast 
with the same brightness, denoted by 𝑀

• Some further observations:
• The previous “equating brightness” process (making each patch vector 

average to 1) essentially “reduces” the dimension of the patched to 8-
dimensional

• The previous “normalization process” based on the D-norms make the 
patches to reside in a “7-dimensional sphere” 𝑆7 within the 8-
dimensional space

For reference, a “1-dimensional sphere” 𝑆1 within the 2-dimensional space 
is the just the boundary of unit ball (consisting of all points with length 1). 
Reasoning the above in detail is beyond the scope
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• At the end of the process, they get 4 millions of 3 × 3 patches of high contrast 
with the same brightness, denoted by 𝑀

• Some further observations:
• The previous “equating brightness” process (making each patch vector 

average to 1) essentially “reduces” the dimension of the patched to 8-
dimensional

• The previous “normalization process” based on the D-norms make the 
patches to reside in a “7-dimensional sphere” 𝑆7 within the 8-
dimensional space

• They then observe that all patches are scattered throughout the 7-sphere, in 
the sense that no point on the 7-sphere is very far from the each other

Data preprocessing



• 4 millions points is a large number and build filtrations (say, Rips) and 
computing PD for it is too costly

• A sampling of the 4 millions points is then necessary
• A straightforward sampling is just to select points randomly.
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• 4 millions points is a large number and build filtrations (say, Rips) and 
computing PD for it is too costly

• A sampling of the 4 millions points is then necessary
• A straightforward sampling is just to select points randomly.
• But this may not be the most efficient way: a more efficient way is to consider 
density of points:

• Points from dense areas tend to have a lot of similar peers and so we 
should sample less of such points

• Points from sparse areas should have a higher precedence because of its 
scarcity

Data sampling



Data sampling

Image from: https://pberba.github.io/stats/2020/07/08/intro-hdbscan



Data sampling

Image from: https://pberba.github.io/stats/2020/07/08/intro-hdbscan

Low density

High density



• A common density measure of points is to use the “distance to the k-th 
nearest neighbor” denoted 𝛿𝑘(𝑝) for a point 𝑝
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• A common density measure of points is to use the “distance to the k-th 
nearest neighbor” denoted 𝛿𝑘(𝑝) for a point 𝑝

• They then define a subset 𝑀[𝑘, 𝑡] of 𝑀 as:

𝑀 𝑘, 𝑇 = 𝑝 ∈ 𝑀 𝛿𝑘 𝑝  lies in the 𝑇% lowest values among 𝑀}

• They randomly select a certain number of points (called “landmarks”) from a 
certain 𝑀 𝑘, 𝑇

• From the landmark points, they then build the Čech/Rips Filtration and 
compute the persistence barcode for the it

Data sampling



• 1d barcode for 50 landmarks from 𝑀 300,30 :
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• 1d barcode for 50 landmarks from 𝑀 300,30 :

• There are a number of short lines, and one long one

• This suggests that the first Betti number should be estimated to be one, aka. 
there is a single 1-d cycle (hole) across all patches (points)

First attempt



• The barcode is stable, in the sense that it appears repeatedly in different rounds 
of sampling

• The simplest possible explanation for this barcode is that the underlying space 
should be a circle 
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• An explanation for this is that the patches are “variation across a single direction” 
where the direction rotates which form a cycle
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• An explanation for this is that the patches are “variation across a single direction” 
where the direction rotates which form a cycle

First attempt

Right image from: van Hateren and van der Schaaf. 
Independent component filters of natural images 
compared with simple cells in primary visual cortex 



• 1d barcode for 50 landmarks from 𝑀 15,30 :
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• 1d barcode for 50 landmarks from 𝑀 15,30 :

• Notice: 𝛿𝑘(𝑝) for large 𝑘 computes density using points in large neighborhoods 
of 𝑝, and for small 𝑘 uses small neighborhoods 

• So, 𝛿𝑘  for large 𝑘 corresponds to a smoothed out notion of density, and for small 
𝑘 carries more of the detailed structure of the data set 

Second attempt



• 1d barcode for 50 landmarks from 𝑀 15,30 :

• There are a number of short lines, and five long ones, which is stable across 
different samples

• This suggests that the first Betti number should be estimated to be five

Second attempt



• The most probably space for a first Betti number of five is a space of three cycles 
(we will not really touch on why)

• Notice that the primary black cycle touches both the two secondary cycles (red 
and green), but the two red and green cycles do not actually touch each other

Second attempt



An explanation:

• The primary cycle still corresponds to “variation across a single direction” where 
the direction rotates

• The two secondary cycles capture vertical or horizonal variations of patches 
where the variation direction changes horizontally or vertically
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An explanation:

• The primary cycle still corresponds to “variation across a single direction” where 
the direction rotates

• The two secondary cycles capture vertical or horizonal variations of patches 
where the variation direction changes horizontally or vertically
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Explanation for vertical and horizontal variations:

1. Nature has this bias, since for example objects aligned in a vertical direction are 
more stable than those aligned at a 45 degree angle
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Explanation for vertical and horizontal variations:

1. Nature has this bias, since for example objects aligned in a vertical direction are 
more stable than those aligned at a 45 degree angle

2. Another explanation is that this phenomenon is related to the technology of 
the camera, since the rectangular pixel arrays in the camera have the potential 
to bias the patches in favor of the vertical and horizontal directions

Second attempt



• A question to ask as an extension is that where is the three-cycle-with-two-
intersections space lie in?

• Aka. if you fill out the “missing pieces” of the points, what kind of space woud 
you get?

A further quest



• A natural guess is the famous space in topology world called the “Klein bottle”

• It’s a space derived by identifying sides of the following square with

• Horizontal sides identified normally

• Vertical sides identified reversely

A further quest



• Klein bottle can only be visualized in 4D world but we are in 3D

• The following is a 3D presentation which is not perfect (has self intersections)

A further quest

Image from: Wikipedia



• The following is an illustration for how to identify the sides of the square to from 
the bottle (see also: https://plus.maths.org/content/introducing-klein-bottle)

A further quest

Image from: Wikipedia

https://plus.maths.org/content/introducing-klein-bottle


• By the identification of the sides, we notice that the the following black lines 
form a single cycle (the primary one)
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• By the identification of the sides, we notice that the the following black lines form 
a single cycle (the primary one)

• The two red and green lines form two separate cycles

• We also have that black line intersects red and green lines twice while red and 
green do not intersect (which suits our assumption)

A further quest



• The authors then move on to see whether the could actually “construct” the 
Klein bottle by the following fact:

• 0th Betti number: 1

• 1st Betti number: 2

• 2nd Betti number: 1
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• The authors then move on to see whether the could actually “construct” the 
Klein bottle by the following fact:

• 0th Betti number: 1

• 1st Betti number: 2

• 2nd Betti number: 1

• This means that they must construct landmarks whose barcode reflect these Betti 
numbers

• However, after several attempts, they could not do this

• The authors suspects there are certain types of patches of missing which make 
them fail to “construct” the Klein bottle

• After some analysis of the nature of the patches, they find the missing patches.

• After adding them, the barcode of the landmarks finally exhibit the desired 
property

A further quest
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• A question is then: what is the usage of this seemingly wild finding?
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• A question is then: what is the usage of this seemingly wild finding?

• A possible answer is it could be used to compress images

• Each original patch lives in a 9-dimensional space (encodable by 9 numbers), but 
now we find that it lives in a 2-dimensional space (encodable by 2 numbers)

Remark

ℝ9 ℝ2



• The demonstrated case study is a almost “textbook” direct application of 
persistent homology

• The take a dataset (point cloud in this case), do some preprocessing and 
sampling, and then build the filtration and compute PD/barcode

• The whole process contains a lot of back-and-forth, trial-and-error

• They also try to refine their hypothesis or further test their findings based on 
initial findings

Further Remark
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