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• Previously, we were able to formally define persistent homology and the 
topological summary it produces, aka. PD or barcode.

• We also looked at several common ways for building filtration out of data that 
are practical in different applications

• Notice that our ultimate goal is to use persistent homology to infer the 
“shape” of data (i.e., homology inference)

• To do this, we need to fully understand the meanings of PD or barcode, from 
different aspects

• Moreover, we shall also see some properties that are critical to showing that 
persistent homology is a “reliable” way for inferring the shape 
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• Consider a point (𝑏, 𝑑) in a PD
• We must have 𝑏 < 𝑑 because something must be born before it can die
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• Consider a point (𝑏, 𝑑) in a PD
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• Consider a point (𝑏, 𝑑) in a PD
• We must have 𝑏 < 𝑑 because something must be born before it can die
• If you look at the intersection of the vertical line passing (𝑏, 𝑑) and and 

diagonal, which is (𝑏, 𝑏)

• (𝑏, 𝑑) must be above (𝑏, 𝑏) because 𝑏 < 𝑑
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• Consider a point (𝑏, 𝑑) in a PD
• We must have 𝑏 < 𝑑 because something must be born before it can die
• If you look at the intersection of the vertical line passing (𝑏, 𝑑) and and 

diagonal, which is (𝑏, 𝑏)

• (𝑏, 𝑑) must be above (𝑏, 𝑏) because 𝑏 < 𝑑

• So (𝑏, 𝑑) is above the diagonal
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𝛼2 𝛼4 𝛼6 𝛼8

• (𝛼1, 𝛼2) ⇒ purple cycle

• (𝛼3, 𝛼6) ⇒ red cycle

• (𝛼4, 𝛼7) ⇒ blue cycle

• (𝛼5, 𝛼8) ⇒ green cycle

Meaning of “length” of a PD interval
• Define length of a PD interval (point), (𝑏, 𝑑), as 𝑑 − 𝑏

• Observe the longer an interval is, the more significant its homology hole is
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• We observe that the length 𝑑 − 𝑏 of a PD point (𝑏, 𝑑) equals 1/ 2 times the 
distance of (𝑏, 𝑑) to the diagonal

• This means that the distance of a point in PD to the diagonal indicates the 
length of the corresponding interval, and hence the significance of the 
homological feature
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the data
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• Now, we are going to address an important problem in topology inference 
using PD: Arguing that PD is a “reliable” topological signature / indicator for 
the data

• For this, we argue that the PD you get is not some arbitrary set of points 
produced: their change w.r.t the data is “reasonable”
• Aka. if the data changes a little, the PD also changes a little
• If the two datasets correspond, then their PD’s also correspond

• The result that we are going to build is formally called the “stability” of 
persistence diagram, and is a corner stone of persistent homology and its 
applications

• For this, we need a way to measure: 
• Difference between the data
• Difference between two PDs

• Mathematically, the tool to measure the difference of two objects is called a 
distance function (or metric)

“Reliability” of PD
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Examples:
• For two numbers 𝑥 and 𝑦 on the real line, 𝑑 𝑥, 𝑦 = |𝑥 − 𝑦|

• For two points from higher-dimensional space, say, two points 
𝒙 = 𝑥1, 𝑥2   and 𝒚 = 𝑦1, 𝑦2  

   from ℝ2, we have:
• 𝐿1-distance (Manhattan distance): 𝑑1 𝒙, 𝒚 = 𝑥1 − 𝑦1 + 𝑥2 − 𝑦2

• 𝐿2-distance (Euclidean distance): 𝑑 𝒙, 𝒚 = (𝑥1 − 𝑦1)2+(𝑥2 − 𝑦2)2

• 𝐿∞-distance: 𝑑∞ 𝒙, 𝒚 = max{ 𝑥1 − 𝑦1 , 𝑥2 − 𝑦2 }
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• Recall we need to measure: 
• Difference between the data
• Difference between two PDs

• What is the data we try to measure here?
• It turns out that “functions” are a quite universal type of data (reason will be 

made clear later)
• Specifically, for measuring the difference of two functions, we assume the 

domain to be the same, aka. we measure two functions of the following form:
• 𝑓: 𝑋 → ℝ

• 𝑔: 𝑋 → ℝ
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• The idea of our distance 𝑑(𝑓, 𝑔) for the two functions 𝑓, 𝑔 is to measure the 
maximum of difference of the function values at each point in the domain 𝑋
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• The idea of our distance 𝑑(𝑓, 𝑔) for the two functions 𝑓, 𝑔 is to measure the 
maximum of difference of the function values at each point in the domain 𝑋

• The distance is also denoted ∥ 𝑓 − 𝑔 ∥∞:

∥ 𝑓 − 𝑔 ∥∞= max𝑥∈𝑋{|𝑓 𝑥 − 𝑔(𝑥)|}
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• Suppose 𝑋 = ℝ for 𝑓 and 𝑔.
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• Suppose 𝑋 = ℝ for 𝑓 and 𝑔.
• The maximum is achieved by the blue line

Distance for functions
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one manner
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• Now we look at how to measure difference between two PDs, 𝐷1 and 𝐷2

• To measure the difference, we try to “match” points in 𝐷1 and 𝐷2 in a one-to-
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• Furthermore, we want the matched points in the two PDs to be as close as 
possible, which indicates that overall the two PDs are “close” to each other
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• Under the matching, the distance of the farthest two points (aka. “maximum” 
distances among the matched pairs) provides the distance for the overall two 
PDs
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• Under the matching, the distance of the farthest two points (aka. “maximum” 
distances among the matched pairs) provides the distance for the overall two 
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• However, 𝐷1 and 𝐷2 may not have the same number of points, making the 
“perfect matching” impossible (aka. suppose we add another point in 𝐷1)
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• We then introduce a “partial matching”:
1. Select the same number of points from 𝐷1 and 𝐷2: let these points 
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• We then introduce a “partial matching”:
1. Select the same number of points from 𝐷1 and 𝐷2: let these points 

“perfectly” match to each other
• And of course, we want each matched points to be close to each other

2. For the remaining points, we let them be “unmatched”, meaning we 
want to “ignore” them
• However, we can only “ignore” then when they are not very 

“important”, aka. being close to the diagonal
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• The distance defined by such a “partial matching” is called the bottleneck 
distance, denoted 𝑑B(𝐷1, 𝐷2).
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• The bottleneck distance between two PDs being small means that there is a 
“close” partial matching such that:
• Each two matched points in the two PDs are close to each other (their 𝐿∞-

distance is small)
• Each unmatched point is “insignificant” (length is small) so we can 

“ignore” them
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• The bottleneck distance between two PDs being small means that there is a 
“close” partial matching such that:
• Each two matched points in the two PDs are close to each other (their 𝐿∞-
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• The following is a “close” partial matching (with small cost) which achieves 
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• The following is a partial matching where the max distance between matched 
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• We also have that the local minimums and maximums that create and 
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• Furthermore, the three points in the PD of red curve are close to diagonal --- 
hence, they are “insignificant” and are typically consider “noise” in TDA
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• Furthermore, the three points in the PD of red curve are close to diagonal --- 
hence, they are “insignificant” and are typically consider “noise” in TDA

• This also corresponds to the fact that the red curve is more noisy than the 
black one

Stability Theorem for Persistent Homology

Figure from: Bendich et al. Topological and statistical behavior classifiers for tracking applications



• So far, we have addressed the stability of PD for functions
• But there is another important type of data which is point cloud ---- a stability 

result for it would also be helpful
• We are going to frame the stability for point clouds in terms of the stability for 

functions
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• Now, given a point set 𝑃 ⊆ ℝ𝑑, we define a function 𝑓𝑃: ℝ𝑑 → ℝ called the 
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• We then have

𝑑 𝑥, 𝑄 ≤ 𝑑 𝑥, 𝑞 ≤ 𝑑 𝑥, 𝑝 + 𝑑 𝑝, 𝑞 ≤ 𝑑 𝑥, 𝑃 + 𝑑𝐻 𝑃, 𝑄

    with the second inequality due to the triangle inequality
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    with the second inequality due to the triangle inequality
• We then have 𝑑 𝑥, 𝑄 − 𝑑 𝑥, 𝑃 ≤ 𝑑𝐻 𝑃, 𝑄
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• Define 𝑃𝐷 ሙ𝐶𝑒𝑐ℎ 𝑃 ≔ 𝑃𝐷(𝒞 𝑃 ) for a point cloud 𝑃 and recall that 𝒞 𝑃  is the 
Čech filtration of 𝑃
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• Define 𝑃𝐷 ሙ𝐶𝑒𝑐ℎ 𝑃 ≔ 𝑃𝐷(𝒞 𝑃 ) for a point cloud 𝑃 and recall that 𝒞 𝑃  is the 
Čech filtration of 𝑃

• Stability Theorem for Point Clouds: One has

𝑑B(𝑃𝐷 ሙ𝐶𝑒𝑐ℎ 𝑃 , 𝑃𝐷 ሙ𝐶𝑒𝑐ℎ 𝑄 ) ≤ 𝑑𝐻 𝑃, 𝑄

• Proof: First of all 

𝑃𝐷 ሙ𝐶𝑒𝑐ℎ 𝑃 = 𝑃𝐷 𝑓𝑃  and 𝑃𝐷 ሙ𝐶𝑒𝑐ℎ 𝑄 = 𝑃𝐷 𝑓𝑄

based on previous corollary
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• Define 𝑃𝐷 ሙ𝐶𝑒𝑐ℎ 𝑃 ≔ 𝑃𝐷(𝒞 𝑃 ) for a point cloud 𝑃 and recall that 𝒞 𝑃  is the 
Čech filtration of 𝑃

• Stability Theorem for Point Clouds: One has

𝑑B(𝑃𝐷 ሙ𝐶𝑒𝑐ℎ 𝑃 , 𝑃𝐷 ሙ𝐶𝑒𝑐ℎ 𝑄 ) ≤ 𝑑𝐻 𝑃, 𝑄

• Proof: First of all 

𝑃𝐷 ሙ𝐶𝑒𝑐ℎ 𝑃 = 𝑃𝐷 𝑓𝑃  and 𝑃𝐷 ሙ𝐶𝑒𝑐ℎ 𝑄 = 𝑃𝐷 𝑓𝑄

based on previous corollary
• We then have

𝑑B(𝑃𝐷 ሙ𝐶𝑒𝑐ℎ 𝑃 , 𝑃𝐷 ሙ𝐶𝑒𝑐ℎ 𝑄 ) = 𝑑B(𝑃𝐷 𝑓𝑃 , 𝑃𝐷(𝑓𝑄)) ≤ ∥ 𝑓𝑃 − 𝑓𝑄 ∥∞≤ 𝑑𝐻 𝑃, 𝑄

where the middle inequality is by previous stability theorem
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• Define 𝑃𝐷𝑅𝑖𝑝𝑠 𝑃 ≔ 𝑃𝐷(ℛ 𝑃 ) for a point cloud 𝑃 and recall that ℛ 𝑃  is the 
Rips filtration of 𝑃

• Stability Theorem for Point Clouds (Vietoris-Rips): One has

𝑑B(𝑃𝐷𝑅𝑖𝑝𝑠 𝑃 , 𝑃𝐷𝑅𝑖𝑝𝑠 𝑄 ) ≤ 𝑑𝐻 𝑃, 𝑄
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• Define 𝑃𝐷𝑅𝑖𝑝𝑠 𝑃 ≔ 𝑃𝐷(ℛ 𝑃 ) for a point cloud 𝑃 and recall that ℛ 𝑃  is the 
Rips filtration of 𝑃

• Stability Theorem for Point Clouds (Vietoris-Rips): One has

𝑑B(𝑃𝐷𝑅𝑖𝑝𝑠 𝑃 , 𝑃𝐷𝑅𝑖𝑝𝑠 𝑄 ) ≤ 𝑑𝐻 𝑃, 𝑄

• Proof of this needs the more advanced notion of “interleaving” stability and is 
beyond scope

Stability for point clouds



Stability for point clouds

Img source: Kusano, Fukumizu, Hiraoka. Kernel Method for 
Persistence Diagrams via Kernel Embedding and Weight Factor



Stability for point clouds

Img source: Kusano, Fukumizu, Hiraoka. Kernel Method for 
Persistence Diagrams via Kernel Embedding and Weight Factor



Stability for point clouds

Figure from: Bastian Rieck: Topological Data Analysis for Machine Learning III: Topological 

Descriptors & How to Use Them (https://www.youtube.com/watch?app=desktop&v=7i1kabhl5IU)



Similarity of Čech and Rips PD



• For a point cloud 𝑃, define 𝑃𝐷 ሙ𝐶𝑒𝑐ℎ

log
𝑃  as the PD derived from 𝑃𝐷 ሙ𝐶𝑒𝑐ℎ 𝑃  by 

taking the logarithm of the birth and death value for each point (with an 
arbitrary but fixed base)

Similarity of Čech and Rips PD
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taking the logarithm of the birth and death value for each point (with an 
arbitrary but fixed base)

• Define 𝑃𝐷𝑅𝑖𝑝𝑠
log

𝑃  similarly

• Theorem: One has
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𝑃 , 𝑃𝐷𝑅𝑖𝑝𝑠

log
𝑃 ) ≤ log 2

Similarity of Čech and Rips PD



• For a point cloud 𝑃, define 𝑃𝐷 ሙ𝐶𝑒𝑐ℎ

log
𝑃  as the PD derived from 𝑃𝐷 ሙ𝐶𝑒𝑐ℎ 𝑃  by 

taking the logarithm of the birth and death value for each point (with an 
arbitrary but fixed base)

• Define 𝑃𝐷𝑅𝑖𝑝𝑠
log

𝑃  similarly

• Theorem: One has

𝑑B(𝑃𝐷 ሙ𝐶𝑒𝑐ℎ

log
𝑃 , 𝑃𝐷𝑅𝑖𝑝𝑠

log
𝑃 ) ≤ log 2

• The theorem follows from the previous “interleaving” between Čech and Rips 
complexes (but details omitted)

ℂα(𝑃) ⊆ 𝕍ℝα(𝑃) ⊆ ℂ2α(𝑃)

Similarity of Čech and Rips PD



• https://github.com/nihell/tutorialathon/blob/master/BottleneckTutorial.ipyn
b

• https://www.youtube.com/watch?v=4WswT9snTjc

Computing bottleneck distance

https://github.com/nihell/tutorialathon/blob/master/BottleneckTutorial.ipynb
https://github.com/nihell/tutorialathon/blob/master/BottleneckTutorial.ipynb
https://www.youtube.com/watch?v=4WswT9snTjc


• A practical use of drawing a PD as a barcode is that barcode provides a way 
to “visualize” the Betti number across the different range (value 𝛼)

A practical use of persistence barcode

Image source: Bobrowski O, Skraba P. A universal null-distribution for topological data analysis.



• A practical use of drawing a PD as a barcode is that barcode provides a way 
to “visualize” the Betti number across the different range (value 𝛼)

• For the previous filtration on a point cloud and its 1d PD

A practical use of persistence barcode

𝛼0 𝛼2 𝛼4 𝛼6 𝛼8

𝛼1 𝛼3 𝛼5 𝛼7

Image source: Bobrowski O, Skraba P. A universal null-distribution for topological data analysis.



• The following is its 1d barcode

𝛼1 𝛼3𝛼2 𝛼6 𝛼7𝛼4 𝛼5 𝛼8

A practical use of persistence barcode



• The following is its 1d barcode
• Observe, if you count the number of intervals (bars) containing a certain 

value, then it gives you the 1st Betti for the complex corresponding to the 
range (value 𝛼) in the filtration
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• The following is its 1d barcode
• Observe, if you count the number of intervals (bars) containing a certain 
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range (value 𝛼) in the filtration
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• More powerfully, if you look at the range of the values where the Betti number 
stays the same, and take the longest range, that would give you the most 
probably inference of the Betti number

𝛼1 𝛼3𝛼2 𝛼6 𝛼7𝛼4 𝛼5 𝛼8
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• More powerfully, if you look at the range of the values where the Betti number 
stays the same, and take the longest range, that would give you the most 
probably inference of the Betti number
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• More powerfully, if you look at the range of the values where the Betti number 
stays the same, and take the longest range, that would give you the most 
probably inference of the Betti number

• So most probably, for the previous point cloud, 𝛽1 = 1 (complying out 
intuitions)

𝛼1 𝛼3𝛼2 𝛼6 𝛼7𝛼4 𝛼5 𝛼8

A practical use of persistence barcode
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• Now we know that taking the intersection of a vertical line with the intervals in 
the barcode gives you the Betti number at the value of the vertical line, what 
about PD? Can we do similar things in PD?

Counting Betti number using PD

Image source: Bobrowski O, Skraba P. A universal null-distribution for topological data analysis.



• It turns out that, the number of intervals intersecting a value 𝛼 as manifested 
on the PD is the number of pointing in the upper-left quadrant of the point 
(𝛼, 𝛼) on the diagonal

Counting Betti number using PD

Image source: Bobrowski O, Skraba P. A universal null-distribution for topological data analysis.



• It turns out that, the number of intervals intersecting a value 𝛼 as manifested 
on the PD is the number of pointing in the upper-left quadrant of the point 
(𝛼, 𝛼) on the diagonal

Counting Betti number using PD

Image source: Bobrowski O, Skraba P. A universal null-distribution for topological data analysis.

(𝛼, 𝛼)



𝛼1 𝛼3𝛼2 𝛼6 𝛼7𝛼4 𝛼5 𝛼8

On barcode

𝛽1 = 1



• 𝛼3 < 𝛼 < 𝛼4

On PD

Image source: Bobrowski O, Skraba P. A universal null-distribution for topological data analysis.

(𝛼, 𝛼)



𝛼1 𝛼3𝛼2 𝛼6 𝛼7𝛼4 𝛼5 𝛼8

On Barcode

𝛽1 = 3



• 𝛼5 < 𝛼 < 𝛼6

On PD

Image source: Bobrowski O, Skraba P. A universal null-distribution for topological data analysis.

(𝛼, 𝛼)



Length “cut-off” for intervals
• A typically belief in TDA is that people often think of features (intervals) with 

long lifespans as robust, important features, whereas a short lifespan may be 
an indication that the feature is less essential and may in fact be due to noise 
in data

• A commonly adopted approach in using PD/barcode for inference is to find a 
“cut-off” for the short intervals (noise) , and focus on the long intervals 
(actual features) only
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Length “cut-off” for intervals
• The interpretation for the length “cut-off” in the PD is that we ignore all points 

which are within a certain distance from the diagonal
• This is equivalent to take the lower-half space of a 45° degree line (parallel to 

disgonal)
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