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1. Intro to persistent homology 
• Build intuitions of persistent homology: what it does, what it produces

2. Formalizing persistent homology
• Introduce its input (filtration) and study an algorithm for computation

3. Different ways for building filtrations
• Vietoris-Rips filtration, sub-levelset filtration
• Cubical complexes (for images)

4. Interpretation and stability of persistence diagram

Outline for studying persistent homology
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finite sequence of simplicial complexes that are also nested

• But we haven’t formally defined PD for a continuous filtration, where we have 
a space varying over 𝛼 ∈ [0, ∞) (technically, there’re infinitely many of them)
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• Simply put: the most powerful tool to infer the shape (holes) of the data by far 
is persistent homology, and persistent homology takes a filtration as input

• Typically, your “raw data” (the data you want to process, e.g., point cloud, 
image, or 3D volume set) does not come directly as a filtration (a growing 
sequence of simplicial complexes)

• So to harness the power of persistence, you have to do this
• So we shall not only formally define PD on input data (which are typically 

continuous at least theoretically), but also learn ways to preprocess the data 
into filtrations to feed into the persistent homology pipeline

Why do we care about building filtrations?



Persistent homology pipeline

Some img from: AATRN; https://quantdare.com/understanding-the-shape-of-data-ii/; 

https://pixabay.com/photos/new-year-background-tree-sunset-736885/; Adler et al. Persistent homology 
for random fields and complexes.; https://builtin.com/artificial-intelligence/transformer-neural-network
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• To formally define the PD for a continuous filtration, the idea is to “emulate” 
the continuous filtration using the discrete one, with no or minimal data loss

• We shall eventually show that continuous filtration is in some sense 
“equivalent” to the discrete one

PD for continuous filtration

𝛼:
𝛼1 𝛼2 𝛼3 𝛼4

ℱ: ⊆ ⊆ ⊆

≅
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• For the time being, let’s focus on the “growing-balls” filtration around a set of 
points (point cloud), as point cloud is a very common type of data in real life.

• Examples: 
• Data that unsupervised learning (a type of machine learning) deals with is 

in some sense point clouds (e.g., finding clusters using k-means)
• Even for supervised learning (another type of more popular? machine 

learning), if you ignore the “labels” for the data, then the data become 
point clouds

• After all, each element in your data is in some sense a “point”

Growing balls for point clouds
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Growing balls for point clouds
• Furthermore, for geometric models (which topological methods are good 

with), e.g., triangular meshes, if you ignore the triangles and edges in the data 
and only focus on the vertices, then this is a point cloud

• Trying to infer the shape of point cloud  is indeed a major motivation for 
topological data analysis



Build discrete filtration for “growing balls”

https://gjkoplik.github.io/pers-hom-examples/0d_pers_2d_data_widget.html
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• Recall that each space in the “growing of balls” filtration is to take a ball of the 
same radius α centering in each point, and then take the union of the α-radius 
balls of all points

• To get the (continuous) filtration, we then let the radius α increase from 0 to 
∞, and let the union of balls grow with it (see: https://gjkoplik.github.io/pers-
hom-examples/0d_pers_2d_data_widget.html)

• Also recall our goal is to use a discrete filtration to “emulate” this continuous 
filtration

• Since a discrete filtration consists of simplicial complexes, what we really 
need to do is to find a way to use a simplicial complex to “emulate” the union 
of balls

• To construct a simplicial complex for the union of balls, we first let the point 
in the point cloud be all the vertices in the simplicial complex

• The remaining task is to build high-dimensional simplices out of the points 
(vertices)
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• Definition: Given a point set 𝑃 and a radius α, the Čech complex of 𝑃 
corresponding to the radius α, denoted ℂα(𝑃), is a simplicial complex whose 
vertices are points in 𝑃 such that:

• A subset of points 𝑝0, 𝑝1, … , 𝑝𝑑  of 𝑃 form a 𝑑-simplex if and only if the 
intersection of all the balls around these points is not empty, i.e.,

𝐵α 𝑝0 ∩ 𝐵α 𝑝1 ∩ ⋯ 𝐵α(𝑝𝑑) ≠ ∅

• To understand this definition, a brute force (inefficient) algorithm for 
computing ℂα(𝑃) out of a point cloud 𝑃: enumerate each subset 𝑝0, 𝑝1, … , 𝑝𝑑  
of 𝑃, and check whether intersection of balls of the points is non-empty

• Of course, in practice, the algorithms that people use to compute Čech 
Complexes are much more efficient ones
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Čech Complex

𝑎

𝑏

𝑐

𝑑

Simplices:
• 𝑎
• 𝑏
• 𝑐
• 𝑑

• 𝑎𝑏
• 𝑐𝑑
• 𝑎𝑑
• 𝑏𝑐
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• 𝑎𝑏𝑐𝑑 with all its faces 
(𝑎𝑏𝑐, 𝑎𝑏𝑑, 𝑎𝑐𝑑, and 
𝑏𝑐𝑑).
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Čech Complex
• In the previous definition, technically, we only defined a set of simplices 

ℂα(𝑃).
• To make it well-defined, we need to show that ℂα(𝑃) is not only a set of 

simplices but also a simplicial complex.
• Doing this involves checking that the faces of each simplex in the set ℂα(𝑃) 

are also in ℂα(𝑃).
• Verification: Take any σ ∈ ℂα(𝑃), we have a face 𝜏 of σ is nothing but a subset 

of σ, i.e.,𝜏 ⊆ σ.
• Since all the α-balls for the points in σ have non-empty intersection, all the α-

balls for the points in 𝜏 also have non-empty intersection (because 𝜏 is a 
subset), so 𝜏 ∈ ℂα(𝑃)

• E.g., if three balls intersect, then any two balls also intersect. So the edges of 
the corresponding triangle are also in the Cech complex.
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• Definition: All the Čech complexes over all radius α as α increases from 0 to 
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so the Čech filtration is a discrete finite filtration
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Čech Filtration
• Nerve Theorem: For any point set 𝑃 and any radius α, the Čech complex 

ℂα(𝑃) has the same homology as ⋃𝑝∈𝑃  𝐵α 𝑝 , which is the union of α-balls 
of all points in P

• The above “equivalence” is called the “homotopy equivalence” in algebraic 
topology, whose definition is beyond the scope
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values corresponding to 𝐾𝑏 , 𝐾𝑏+1, … , 𝐾𝑑−1.
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for the continous filtration of union of balls using the discrete Čech filtration
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• But this seems to good to be true: One problem with building Čech filtration 

is that Čech complexes are very costly to compute
• You need to check the intersection of arbitrary sets of balls and this is 

typically inefficient to do
• We then introduce another type of discrete filtration emulating the “union of 

balls” called the “Vietoris-Rips” filtration
• It approximates Čech filtration (so we have slight data loss now) but it is 

much more efficient to compute
• After all, trade-offs were made everywhere in computer science between 

efficiency and quality
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• A brute force (inefficient) algorithm for computing 𝕍ℝα(𝑃) out of a point 
cloud 𝑃: enumerate each subset 𝑝0, 𝑝1, … , 𝑝𝑑  of 𝑃, and then enumerate each 
pair in the subset to check their α-balls intersect

• Definition: All the Vietoris-Rips complexes over all radius α as α increases 
from 0 to ∞ form the Vietoris-Rips filtration (or Rips filtration for short) of 
the point set 𝑃. We denote the filtration as 𝒱ℛ(P).

• There are again finitely many α where the Rips complexes change, so the Rips 
filtration is a discrete finite filtration
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Filtration 

Vietoris-Rips Filtration



• For the previous point cloud, the Rips filtration is the same as the Čech 
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• Following is an example where the Čech and Rips complexes are different
• But notice that other than the two triangles the remaining simplices in the 

two complexes are the same
• Furthermore, if we increase the radius for Čech complex, the two missing 

two triangles will come into picture ---- in some sense, the sequences of 
Čech and Rips complexes are “interleaved with each other”

Vietoris-Rips Filtration

Čech RipsImage source: Reani, Bobrowski. Cycle Registration in 
Persistent Homology with Applications in Topological Bootstrap
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• As for ℂα(𝑃), we also need to show that 𝕍ℝα(𝑃) is not only a set of simplices 

but also a simplicial complex, which is checking that the faces of each 
simplex in the set 𝕍ℝα(𝑃) are also in 𝕍ℝα(𝑃).

• Verification: Take any σ ∈ 𝕍ℝα 𝑃  and a face 𝜏 of σ (a subset of σ, i.e.,𝜏 ⊆ σ).
• We have any pairs of the α-balls for the points in σ intersect. So any pairs of 

the α-balls for the points in 𝜏 intersect (because 𝜏 is a subset). So 𝜏 ∈ ℂα(𝑃)
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filtration
• Again, define the PD for the continuous filtration ℱ𝑐  by “inducing” from the 

PD of the discrete Rips filtration 𝒱ℛ(𝑃) :
• Each complex in the discrete 𝒱ℛ(𝑃) corresponds to a range of α-values 
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• Then, the corresponding interval of 𝑃𝐷(ℱ𝑐) is the union of all the α-

values corresponding to 𝐾𝑏 , 𝐾𝑏+1, … , 𝐾𝑑−1.
• Notice now there is data loss introduced because 𝒱ℛ(𝑃) is not exactly the 

same as 𝒞(𝑃)
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• Surely, each pair of such balls 𝐵α 𝑝𝑖 , 𝐵α 𝑝𝑗  intersect.

• So the points 𝑝0, 𝑝1, … , 𝑝𝑑  of 𝑃 also form a simplex in 𝕍ℝα(𝑃).
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• Interleaving Theorem of Čech and Rips Filtration: For any point set 𝑃 and 

any radius α,

ℂα(𝑃) ⊆ 𝕍ℝα(𝑃) ⊆ ℂ2α(𝑃)

• Proof: For the second inclusion, consider any points 𝑝0, 𝑝1, … , 𝑝𝑑  of 𝑃 forming 
a simplex in 𝕍ℝα(𝑃)

• Fix a point in the set, 𝑝0, 𝑝1, … , 𝑝𝑑, say, 𝑝0, and consider another arbitrary 
point 𝑝𝑖

• Since their α-balls 𝐵α 𝑝0 , 𝐵α 𝑝𝑖  intersect,
• we have that 𝑝0 is the 2α-ball of 𝑝𝑖, 𝐵2α 𝑝𝑖

• Since 𝑝𝑖  is arbitrary, we have 𝑝0 is in the intersection of 2α-balls for all these 
points, 𝐵2α 𝑝0 , 𝐵2α 𝑝1 , … , 𝐵2α(𝑝𝑑)
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any radius α,

ℂα(𝑃) ⊆ 𝕍ℝα(𝑃) ⊆ ℂ2α(𝑃)

• Proof: For the second inclusion, consider any points 𝑝0, 𝑝1, … , 𝑝𝑑  of 𝑃 forming 
a simplex in 𝕍ℝα(𝑃)

• Fix a point in the set, 𝑝0, 𝑝1, … , 𝑝𝑑, say, 𝑝0, and consider another arbitrary 
point 𝑝𝑖

• Since their α-balls 𝐵α 𝑝0 , 𝐵α 𝑝𝑖  intersect,
• we have that 𝑝0 is the 2α-ball of 𝑝𝑖, 𝐵2α 𝑝𝑖

• Since 𝑝𝑖  is arbitrary, we have 𝑝0 is in the intersection of 2α-balls for all these 
points, 𝐵2α 𝑝0 , 𝐵2α 𝑝1 , … , 𝐵2α(𝑝𝑑)

• So the points 𝑝0, 𝑝1, … , 𝑝𝑑  form a simplex in ℂ2α(𝑃)
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• Claim: Due to the previous interleaving of the two sequences, we have that 
PD 𝒱ℛ(P)  “approximates” PD(𝒞 𝑃 ) well.

• Remark: This “approximation well” thing will be made more formal later.
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• Interleaving Theorem of Čech and Rips Filtration: For any point set 𝑃 and 

any radius α,

ℂα(𝑃) ⊆ 𝕍ℝα(𝑃) ⊆ ℂ2α(𝑃)

• Claim: Due to the previous interleaving of the two sequences, we have that 
PD 𝒱ℛ(P)  “approximates” PD(𝒞 𝑃 ) well.

• Remark: This “approximation well” thing will be made more formal later.
• Another observation: The edges of the two Čech and Vietoris-Rips 

complexes for the same point set 𝑃 over the same radius α are the same.
• Reason: Edges are formed by two points. If you check the definition of Čech 

and Vietoris-Rips (“all balls for a set of points intersect” and “each pair of 
balls for a set of points intersect”), when we only have two point, the two 
criteria become the same.



Vietoris-Rips Filtration: Alternative Definition
• Definition: Given a point set 𝑃 and a distance 𝑟, the Vietoris-Rips complex  of 

𝑃 corresponding to the distance 𝑟, denoted 𝕍ℝ𝑟(𝑃), is a simplicial complex 
whose vertices are points in 𝑃 such that

• A subset of points 𝑝0, 𝑝1, … , 𝑝𝑑  of 𝑃 form a 𝑑-simplex if and only if for each 
pair of points 𝑝𝑖 , 𝑝𝑗  in the subset, their distance is no more than 𝑟, i.e.,

𝑑(𝑝𝑖 , 𝑝𝑗) ≤ 𝑟
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complex by taking 𝑟/2 as radius (if two points 𝑝𝑖 , 𝑝𝑗  have distance no more 
than 𝑟, then their 𝑟/2-balls intersect)
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𝑃 corresponding to the distance 𝑟, denoted 𝕍ℝ𝑟(𝑃), is a simplicial complex 
whose vertices are points in 𝑃 such that

• A subset of points 𝑝0, 𝑝1, … , 𝑝𝑑  of 𝑃 form a 𝑑-simplex if and only if for each 
pair of points 𝑝𝑖 , 𝑝𝑗  in the subset, their distance is no more than 𝑟, i.e.,

𝑑(𝑝𝑖 , 𝑝𝑗) ≤ 𝑟

• The Rips complex in the above definition is the same as the previous Rips 
complex by taking 𝑟/2 as radius (if two points 𝑝𝑖 , 𝑝𝑗  have distance no more 
than 𝑟, then their 𝑟/2-balls intersect)

• The benefit of the above alternative definition is that we can completely 
eliminate balls and define Rips complexes / filtration by only considering the 
pair-wise distances between points
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• E.g., there could be data where we have objects which are not naturally 

coming from a Euclidean space ℝ𝑛, i.e., without positions (like points from a 
triangular mesh). 



Vietoris-Rips Filtration: Alternative Definition
• E.g., there could be data where we have objects which are not naturally 

coming from a Euclidean space ℝ𝑛, i.e., without positions (like points from a 
triangular mesh). 

• They are abstract objects but we have some pair-wise “distances” between 
these objects.



Vietoris-Rips Filtration: Alternative Definition
• In this example, the data points are “regions of the brain”, and we can 

calculate their “similarity” by measuring the correlation of their blood oxygen 
fluctuation over time (a time series data).
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Vietoris-Rips Filtration: Alternative Definition
• In this example, the data points are “regions of the brain”, and we can 

calculate their “similarity” by measuring the correlation of their blood oxygen 
fluctuation over time (a time series data).

• We then measure distances of two brain regions by taking inverse of similarity
• These regions are not really technically having a position (each region is 

represented by a blood oxygen level function over time), but we have 
distances between the regions

Figure courtesy of: Duy Duong-Tran



Vietoris-Rips Filtration: Alternative Definition
• For this data, we still can build Rips filtration on these brain regions

Figure courtesy of: Duy Duong-Tran



Vietoris-Rips Filtration: Computation
• We shall briefly look at some facts concerning computing Rips Filtration. 
• Recall:
• Definition: Given a point set 𝑃 and a distance 𝑟, the Vietoris-Rips complex  

of 𝑃 corresponding to the distance 𝑟, denoted 𝕍ℝ𝑟(𝑃), is a simplicial 
complex whose vertices are points in 𝑃 such that

• A subset of points 𝑝0, 𝑝1, … , 𝑝𝑑  of 𝑃 form a 𝑑-simplex if and only for each 
pair of points 𝑝𝑖 , 𝑝𝑗  in the subset, their distance is no more than 𝑟.
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Vietoris-Rips Filtration: Computation
• We shall briefly look at some facts concerning computing Rips Filtration. 
• Recall:
• Definition: Given a point set 𝑃 and a distance 𝑟, the Vietoris-Rips complex  

of 𝑃 corresponding to the distance 𝑟, denoted 𝕍ℝ𝑟(𝑃), is a simplicial 
complex whose vertices are points in 𝑃 such that

• A subset of points 𝑝0, 𝑝1, … , 𝑝𝑑  of 𝑃 form a 𝑑-simplex if and only for each 
pair of points 𝑝𝑖 , 𝑝𝑗  in the subset, their distance is no more than 𝑟.

• This means that a Rips complex over a certain distance (radius) 𝑟 is 
completely determined by the distances of each pair of points in 𝑃

• Since a pair of points form an edge, this also means that a 𝕍ℝ𝑟(𝑃) can be 
completely determined once we have figured out the edges (1-simplices) for 
𝕍ℝ𝑟(𝑃)
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• So, for a certain 𝑟, to compute 𝕍ℝ𝑟(𝑃), our first thing to do: Enumerate each 

pair of points in 𝑃 and check whether their distance is no more than 𝑟. 
• If this is true, we let the pair form an edge in 𝕍ℝ𝑟(𝑃)

• By doing this, we have all the edges in 𝕍ℝ𝑟(𝑃).
• This can be done in 𝑂(𝑛2) time where 𝑛 is the number of points in 𝑃.
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Vietoris-Rips Filtration: Computation
• So, for a certain 𝑟, to compute 𝕍ℝ𝑟(𝑃), our first thing to do: Enumerate each 

pair of points in 𝑃 and check whether their distance is no more than 𝑟. 
• If this is true, we let the pair form an edge in 𝕍ℝ𝑟(𝑃)

• By doing this, we have all the edges in 𝕍ℝ𝑟(𝑃).
• This can be done in 𝑂(𝑛2) time where 𝑛 is the number of points in 𝑃.
• All the edges in 𝕍ℝ𝑟(𝑃) form a graph denoted as 𝔾𝑟 𝑃 .
• 𝕍ℝ𝑟(𝑃) is then the Clique complex of the graph 𝔾𝑟(𝑃).



Clique
• Definition: A clique of a graph 𝐺 = (𝑉 𝐺 , 𝐸(𝐺)) is a subset 𝑆 of 𝑉 𝐺  such 

that each pair of vertices of 𝑆 form an edge in 𝐺. 
• A clique of 𝐺 is also sometimes termed a complete subgraph of 𝐺.
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Clique
• Definition: A clique of a graph 𝐺 = (𝑉 𝐺 , 𝐸(𝐺)) is a subset 𝑆 of 𝑉 𝐺  such 

that each pair of vertices of 𝑆 form an edge in 𝐺. 
• A clique of 𝐺 is also sometimes termed a complete subgraph of 𝐺.
• E.g, the following graph has three maximal cliques (a clique not contained in 

another clique)

Image source: Santamaría, Therón. Overlapping Clustered Graphs: Co-authorship Networks Visualization



Clique Complex
• Definition: A clique complex 𝐾(𝐺) of a graph 𝐺 is define as: there is a 

simplex 𝜎 in 𝐾(𝐺) if and only if the set of vertices of 𝜎 form a clique in 𝐺.



Clique Complex
• Definition: A clique complex 𝐾(𝐺) of a graph 𝐺 is define as: there is a 

simplex 𝜎 in 𝐾(𝐺) if and only if the set of vertices of 𝜎 form a clique in 𝐺.
• E.g, the clique complex of below graph has three maximal simplices 𝐺1, 𝐺2, 

and 𝐺3 (a simplex not being a face of another simplex) and all their faces

Image source: Santamaría, Therón. Overlapping Clustered Graphs: Co-authorship Networks Visualization



Clique Complex
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Vietoris-Rips Filtration: Computation
• Now, given a value 𝑟, we know how to build 𝕍ℝ𝑟 𝑃 :

1. Build 𝔾𝑟 𝑃

2. Based on 𝔾𝑟 𝑃 , build 𝕍ℝ𝑟(𝑃) by taking the cliques
• The remaining thing to do: 

• Find the values 𝑟 where 𝕍ℝ𝑟(𝑃) changes
• This is equivalent to finding the values 𝑟 where 𝔾𝑟 𝑃  changes
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• We consider all pairs of vertices of 𝑃 (no matter the distance)
𝑒1, 𝑒2, … , 𝑒𝑚; 

    they are all possible edges of 𝔾𝑟 𝑃 .
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certain 𝑟, edges in 𝔾𝑟 𝑃  are those one to the left of 𝑟



Finding the values 𝑟 where 𝔾𝑟 𝑃  changes
• Thoughts:

• Edges of 𝔾𝑟 𝑃  contains those pairs of vertices of 𝑃 whose distance ≤ 𝑟

• We consider all pairs of vertices of 𝑃 (no matter the distance)
𝑒1, 𝑒2, … , 𝑒𝑚; 

    they are all possible edges of 𝔾𝑟 𝑃 .
• Furthermore, we let their distances be sorted:
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Finding the values 𝑟 where 𝔾𝑟 𝑃  changes
• Thoughts:

• Edges of 𝔾𝑟 𝑃  contains those pairs of vertices of 𝑃 whose distance ≤ 𝑟

• We consider all pairs of vertices of 𝑃 (no matter the distance)
𝑒1, 𝑒2, … , 𝑒𝑚; 

    they are all possible edges of 𝔾𝑟 𝑃 .
• Furthermore, we let their distances be sorted:

𝑑(𝑒1) < 𝑑(𝑒2) < ⋯ < 𝑑(𝑒𝑚)

• If we draw these pairs and their distances on the real line, then for a 
certain 𝑟, edges in 𝔾𝑟 𝑃  are those one to the left of 𝑟

• This means that only crossing the values 𝑑(𝑒1) < 𝑑(𝑒2) < ⋯ < 𝑑(𝑒𝑚), 
𝔾𝑟 𝑃  changes

• Finding these values takes 𝑂(𝑛2 log 𝑛) time dominated by the sorting, 
where 𝑛 is the number of points in 𝑃



Another type of filtration
• Delauney complexes / filtrations: growing the balls around points, construct 

a simplex whenever their set of balls intersect (the same as Cech complexes)
• Difference: the part of a ball stops growing when touching another ball. 

Image source: Li & Liang. Knowledge-Based Energy Functions for Computational Studies of Proteins



Delauney complexes / filtrations

Image source: Mishra, Motta. Stability and machine learning applications of persistent homology using the Delaunay-Rips complex

Cech / Rips

Delauney
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Delauney complexes / filtrations
• An advantage of Delauney complexes is that it is always embedded in the 

space containing the point cloud (aka. simplices in the built complexes do 
not intersect with each other)  ---- so having nicer geometric properties

• As a result, Delauney complexes are typically of lower dimensions than Rips / 
Cech complexes, and is of smaller size

• What’s more, Delauney filtrations also have no information loss: a Delauney 
complex is “equivalent” to the union of balls as a Cech complex (so better 
than Rips)

• Disadvantage of Delauney complexes: costly to compute, especially when 
the dimension of the points in the point cloud is high

• The go-to filtration for point cloud is Rips filtration because of (1) its 
computational efficiency and (2) the fact that it still faithfully recover the 
shape of the data (despite data loss)



Other types of complexes
• There are other types of complexes:

• Witness complex
• Graph-induced complex
• Tangential complex
• …

• Will not cover them at least for the time being
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Data as a function
• So far we have covered how to build complexes / filtrations for point cloud
• The remaining part of this section will be devoted to the other major type of 

data: a function
• Why function matters? Well, 2D images, or 3D volume data (aka. 3D images) 

are basically functions (and there are other types of functions occurring 
naturally in practice)

3D volume dataImage

Img source: https://pixabay.com/photos/new-year-background-tree-sunset-
736885/; Adler et al. Persistent homology for random fields and complexes

https://pixabay.com/photos/new-year-background-tree-sunset-736885/
https://pixabay.com/photos/new-year-background-tree-sunset-736885/


Data as a function
• So far we have covered how to build complexes / filtrations for point cloud
• The remaining part of this section will be devoted to the other major type of 

data: a function
• Why function matters? Well, 2D images, or 3D volume data (aka. 3D images) 

are basically functions (and there are other types of functions occurring 
naturally in practice)

• E.g., all pixels in an image form the domain of a function and the color value 
on each pixel is basically the function value on a point of the domain

3D volume dataImage

Img source: https://pixabay.com/photos/new-year-background-tree-sunset-
736885/; Adler et al. Persistent homology for random fields and complexes

https://pixabay.com/photos/new-year-background-tree-sunset-736885/
https://pixabay.com/photos/new-year-background-tree-sunset-736885/
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Setting
• We shall consider a general real-valued function:

𝑓: 𝑋 → ℝ

   where 𝑋 is a certain domain (such as a rectangle, a cube, or even a simplicial 
complex). 
• Why only real-valued function?

• Sometimes this is enough: e.g., for a colored image, we can convert it into 
a gray-scale image (0-255), which is basically a real-valued function

• Even if the range of the function is more than a single real value, say again, 
a colored image, we can take each channel (RGB), this will give you three 
individual real-valued functions. We can analyze each individually using 
persistence
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• For simplicity of illustration, we first show how to construct everything from a 

gray-scale 2d image 
• Doing this for 3d images or arbitrary simplicial complexes can be generalized



Setting
• For simplicity of illustration, we first show how to construct everything from a 

gray-scale 2d image 
• Doing this for 3d images or arbitrary simplicial complexes can be generalized

Image

Img source: https://pixabay.com/photos/new-year-background-tree-sunset-736885/

Filtration𝑓: 𝑋 → ℝ PD

https://pixabay.com/photos/new-year-background-tree-sunset-736885/
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• We visualize the domain 𝑋 of a 2d image as a regular grid, where pixels are 

grid points (below an example of 4x4 image)
• Then a 2d image is basically having a gray-scale value for each grade point
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Image function
• Notice: the below regular grid does not form a simplicial complex (because of 

the square)
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Image function
• Notice: the below regular grid does not form a simplicial complex (because of 

the square)
• So we subdivide the grid to be consisting of triangles, so 𝑋 becomes a 

simplicial complex
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14 13 10 12



Image function
• Another problem: the function values are only given on the vertices (which 

are gray-scale values on the pixels from the given image)
• We need function values on the edges and triangles: for this we take the 

“maximum” value of the vertices that an edge or triangle contains
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Image function
• Another problem: the function values are only given on the vertices (which 
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• We need function values on the edges and triangles: for this we take the 
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Image function
• Another problem: the function values are only given on the vertices (which 

are gray-scale values on the pixels from the given image)
• We need function values on the edges and triangles: for this we take the 

“maximum” value of the vertices that an edge or triangle contains

1091011

12 13 11 10

13121513

14 13 10 1214

15



Image function
• Another problem: the function values are only given on the vertices (which 

are gray-scale values on the pixels from the given image)
• We need function values on the edges and triangles: for this we take the 

“maximum” value of the vertices that an edge or triangle contains
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Filtration for image function
• We build the “sublevelset filtration” for the function 𝑓: 𝑋 → ℝ

• A sublevelset of is the subset of 𝑋 whose function values are less than or 
equal to a value 𝛼, and we denote it as 𝑓−1(−∞, 𝛼]

• We then take all possible functions values (there are finitely many of them) 
and sort them (i.e, start with the lowest value):

𝛼0 < 𝛼1 < ⋯ < 𝛼𝑚

• The sublevelset filtration is then the sublevelsets over the above values:
𝑓−1 −∞, 𝛼0 ⊆ 𝑓−1 −∞, 𝛼1 ⊆ ⋯ ⊆ 𝑓−1(−∞, 𝛼𝑚]

• It should be esay to verify that 𝑓−1 −∞, 𝛼𝑖 ⊆ 𝑓−1 −∞, 𝛼𝑖+1  for any 𝑖



Sublevelset filtration
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Sublevelset filtration
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PD for the sublevelset filtration
• There is a 1-dimensional bar [14,15) in the PD 

𝑓−1 9 𝑓−1 10 𝑓−1 11 𝑓−1 12

𝑓−1 13 𝑓−1 14 𝑓−1 15



PD for the sublevelset filtration

𝑓−1 9 𝑓−1 10 𝑓−1 11 𝑓−1 12

𝑓−1 13 𝑓−1 14 𝑓−1 15

• There is a 0-dimensional bar [10,12) in the PD



3D image
• We view the domain 𝑋 for a 3D image as a 3D grid, and we have a function 

value on each  grid point

Img source: Hamilton&Webb. Room Acoustics Modelling Using GPU-Accelerated Finite Difference and Finite Volume Methods on a Face-Centered Cubic Grid



3D image
• We also need to subdivide the cube into (six) tetrahedra to make the domain 

a simplicial complex

de Crouy-Chanel, Simon. Random Knots in 3-Dimensional 3-Colour Percolation: Numerical Results and Conjectures



3D image
• And then we only need to assign value to each edge, triangle, tetrahedron 

based on the maximum values of their vertices
• The sublevelset filtration can then be defined similarly

Img source: Hamilton&Webb. Room Acoustics Modelling Using GPU-Accelerated Finite Difference and Finite Volume Methods on a Face-Centered Cubic Grid



More about 3D images
• 3D images can be considered as a stacking of several 2D images, and are 

commonly used in medical imaging (e.g., CT-scans, MRI)

Img source:. Chai et al. MRI Restoration Using Edge-Guided Adversarial Learning



More about 3D images
• 3D images can be considered as a stacking of several 2D images, and are 

commonly used in medical imaging (e.g., CT-scans, MRI)
• Analyzing medical images is a hot and important in image processing

Img source: Jackowski, Papademetris, Dobrucki, Staib. Characterizing Vascular Connectivity from microCT Images



Triangular meshes
• Naturally, we could also define sublevelset filtrations on triangular meshes by

assigning function values to the vertices (edges / triangles are then induced)

Img source: Lockerby. Integration over discrete closed surfaces using the Method of Fundamental Solutions



Triangular meshes
• Naturally, we could also define sublevelset filtrations on triangular meshes by

assigning function values to the vertices (edges / triangles are then induced)
• There is a natural way to assign values to the vertices which is to use the

“height function”

Img source: Lockerby. Integration over discrete closed surfaces using the Method of Fundamental Solutions



Triangular meshes
• For each vertex, we project the vertex to a certain direction and get its height 

value

Img source: Lockerby. Integration over discrete closed surfaces using the Method of Fundamental Solutions
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Triangular meshes
• For each vertex, we project the vertex to a certain direction and get its height 

value

Img source: Lockerby. Integration over discrete closed surfaces using the Method of Fundamental Solutions

ℎ



More sublevelset filtrations
• Indeed we have also seen sublevelset filtrations in previous slides
• An interactive example: https://iuricichf.github.io/ICT/filtration.html

https://iuricichf.github.io/ICT/filtration.html


Superlevelset filtration
• There is a counterpart of sublevelset filtration called superlevelset filtration
• A superlevelset of is the subset of 𝑋 whose function values are greater than 

or equal to a value 𝛼, and we denote it as 𝑓−1[𝛼, ∞)

• We then take all possible functions values and descreasingly sort them (i.e, 
start with the height value):

𝛼0 > 𝛼1 > ⋯ > 𝛼𝑚

• The superlevelset filtration is then the superlevelsets over the above values:
𝑓−1[𝛼0, ∞) ⊆ 𝑓−1[𝛼1, ∞) ⊆ ⋯ ⊆ 𝑓−1[𝛼𝑚 , ∞)



Superlevelset filtration
• The superlevelset filtration for the previous height function on torus would be:

Img source: Lockerby. Integration over discrete closed surfaces using the Method of Fundamental Solutions
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Superlevelset filtration
• The superlevelset filtration for the previous height function on torus would be:

ℎ

Img source: Lockerby. Integration over discrete closed surfaces using the Method of Fundamental Solutions



Clarification on PD for different filtrations
• Previously when we define PD by computing it from a discrete filtration:

ℱ: 𝐾0 ⊆ 𝐾1 ⊆ ⋯ ⊆ 𝐾𝑚= 𝐾

   intervals in the PD are “integer intervals” (e.g., 3, 6 = {3, 4, 5}).
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Clarification on PD for different filtrations
• Previously when we define PD by computing it from a discrete filtration:

ℱ: 𝐾0 ⊆ 𝐾1 ⊆ ⋯ ⊆ 𝐾𝑚= 𝐾

   intervals in the PD are “integer intervals” (e.g., 3, 6 = {3, 4, 5}).
• This applies when it is not clear where the discrete filtration is built from
• In practice, filtrations are built from different types of data. Each complex in 

the discrete filtration is associate with a real value (or a bunch of them)
• Intervals in the PD for such a filtration (when we know source data) is then 

continuous intervals of real values (e.g., 3.52, 6.37 )
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Clarification on PD for different filtrations
• For the previous sublevelset filtration for image, we can also number each 

complex in the filtration from 0 to 6
• But we use the pixel values (e.g., 9, 10, …) instead of the integer indices (e.g., 

0, 1, …) for the PD

𝑓−1 9 𝑓−1 10 𝑓−1 11 𝑓−1 12

𝑓−1 13 𝑓−1 14 𝑓−1 15

ℱ: 𝐾0 = 𝐾1 = 𝐾2 = 𝐾3 =

𝐾4 = 𝐾5 = 𝐾6 =



Clarification on PD for different filtrations
• E.g., the below 1d interval is [14,15) rather than [5,6)

𝑓−1 9 𝑓−1 10 𝑓−1 11 𝑓−1 12

𝑓−1 13 𝑓−1 14 𝑓−1 15

ℱ: 𝐾0 = 𝐾1 = 𝐾2 = 𝐾3 =

𝐾4 = 𝐾5 = 𝐾6 =



Clarification on PD for different filtrations
• The below 0d interval is [10,12) rather than [1,3)

𝑓−1 9 𝑓−1 10 𝑓−1 11 𝑓−1 12

𝑓−1 13 𝑓−1 14 𝑓−1 15

ℱ: 𝐾0 = 𝐾1 = 𝐾2 = 𝐾3 =

𝐾4 = 𝐾5 = 𝐾6 =
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	Slide 58: Čech Filtration
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	Slide 112: “Similarity” of Čech and Vietoris-Rips
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	Slide 138: Vietoris-Rips Filtration: Alternative Definition
	Slide 139: Vietoris-Rips Filtration: Alternative Definition
	Slide 140: Vietoris-Rips Filtration: Alternative Definition
	Slide 141: Vietoris-Rips Filtration: Alternative Definition
	Slide 142: Vietoris-Rips Filtration: Alternative Definition
	Slide 143: Vietoris-Rips Filtration: Alternative Definition
	Slide 144: Vietoris-Rips Filtration: Alternative Definition
	Slide 145: Vietoris-Rips Filtration: Alternative Definition
	Slide 146: Vietoris-Rips Filtration: Alternative Definition
	Slide 147: Vietoris-Rips Filtration: Computation
	Slide 148: Vietoris-Rips Filtration: Computation
	Slide 149: Vietoris-Rips Filtration: Computation
	Slide 150: Vietoris-Rips Filtration: Computation
	Slide 151: Vietoris-Rips Filtration: Computation
	Slide 152: Vietoris-Rips Filtration: Computation
	Slide 153: Clique
	Slide 154: Clique
	Slide 155: Clique
	Slide 156: Clique Complex
	Slide 157: Clique Complex
	Slide 158: Clique Complex
	Slide 159: Clique Complex
	Slide 160: Vietoris-Rips Filtration: Computation
	Slide 161: Vietoris-Rips Filtration: Computation
	Slide 162: Vietoris-Rips Filtration: Computation
	Slide 163: Vietoris-Rips Filtration: Computation
	Slide 164: Vietoris-Rips Filtration: Computation
	Slide 165: Vietoris-Rips Filtration: Computation
	Slide 166: Finding the values r where G r P  changes
	Slide 167: Finding the values r where G r P  changes
	Slide 168: Finding the values r where G r P  changes
	Slide 169: Finding the values r where G r P  changes
	Slide 170: Finding the values r where G r P  changes
	Slide 171: Finding the values r where G r P  changes
	Slide 173: Another type of filtration
	Slide 174: Delauney complexes / filtrations
	Slide 175: Delauney complexes / filtrations
	Slide 176: Delauney complexes / filtrations
	Slide 177: Delauney complexes / filtrations
	Slide 178: Delauney complexes / filtrations
	Slide 179: Delauney complexes / filtrations
	Slide 180: Other types of complexes
	Slide 181: Data as a function
	Slide 182: Data as a function
	Slide 183: Data as a function
	Slide 184: Setting
	Slide 185: Setting
	Slide 186: Setting
	Slide 187: Setting
	Slide 188: Setting
	Slide 189: Image function
	Slide 190: Image function
	Slide 191: Image function
	Slide 192: Image function
	Slide 193: Image function
	Slide 194: Image function
	Slide 195: Image function
	Slide 196: Image function
	Slide 197: Image function
	Slide 198: Image function
	Slide 199: Filtration for image function
	Slide 200: Filtration for image function
	Slide 201: Filtration for image function
	Slide 202: Filtration for image function
	Slide 203: Filtration for image function
	Slide 204: Sublevelset filtration
	Slide 205: Sublevelset filtration
	Slide 206: Sublevelset filtration
	Slide 207: Sublevelset filtration
	Slide 208: Sublevelset filtration
	Slide 209: Sublevelset filtration
	Slide 210: Sublevelset filtration
	Slide 211: Sublevelset filtration
	Slide 212: PD for the sublevelset filtration
	Slide 213: PD for the sublevelset filtration
	Slide 214: PD for the sublevelset filtration
	Slide 215: 3D image
	Slide 216: 3D image
	Slide 217: 3D image
	Slide 218: More about 3D images
	Slide 219: More about 3D images
	Slide 220: Triangular meshes
	Slide 221: Triangular meshes
	Slide 222: Triangular meshes
	Slide 223: Triangular meshes
	Slide 224: Triangular meshes
	Slide 225: Triangular meshes
	Slide 226: Triangular meshes
	Slide 227: Triangular meshes
	Slide 228: Triangular meshes
	Slide 229: More sublevelset filtrations
	Slide 230: Superlevelset filtration
	Slide 231: Superlevelset filtration
	Slide 232: Superlevelset filtration
	Slide 233: Superlevelset filtration
	Slide 234: Superlevelset filtration
	Slide 235: Superlevelset filtration
	Slide 236: Clarification on PD for different filtrations
	Slide 237: Clarification on PD for different filtrations
	Slide 238: Clarification on PD for different filtrations
	Slide 239: Clarification on PD for different filtrations
	Slide 240: Clarification on PD for different filtrations
	Slide 241: Clarification on PD for different filtrations
	Slide 242: Clarification on PD for different filtrations
	Slide 243: Clarification on PD for different filtrations
	Slide 244: Clarification on PD for different filtrations

