
Persistent Homology:
Formalization

Tao Hou, University of Oregon

1. Intro to persistent homology
• Build intuitions of persistent homology: what it does, what it produces

2. Formalizing persistent homology
• Introduce its input (filtration) and study an algorithm for computation

3. Different ways for building filtrations
• Vietoris-Rips filtration, sub-levelset filtration
• Cubical complexes (for images)

4. Interpretation and stability of persistence diagram

Outline for studying persistent homology

• Recall the growing space:
• We have a value 𝛼 ranging within an interval, say, from 0 to ∞
• Let each value 𝛼 corresponds to a topological space so that
• The topological space grows as 𝛼 increases from 0 to ∞

“The growing space”

𝛼:
𝛼1 𝛼2 𝛼3 𝛼4

• Recall the growing space:
• We have a value 𝛼 ranging within an interval, say, from 0 to ∞

• Let each value 𝛼 corresponds to a topological space so that
• The topological space grows as 𝛼 increases from 0 to ∞

• Suppose I ask you to represent such a growing space in the computer, can
you think of any problems?

“The growing space”

𝛼:
𝛼1 𝛼2 𝛼3 𝛼4

• Problem 1:
• When 𝛼 ranges within an interval [𝑠, 𝑓], no matter how small the interval

is, there are always infinitely many values within the interval

“The growing space”

𝛼:
𝛼1 𝛼2 𝛼3 𝛼4

• Problem 1:
• When 𝛼 ranges within an interval [𝑠, 𝑓], no matter how small the interval

is, there are always infinitely many values within the interval
• Each 𝛼 value may correspond to a possibly different space

“The growing space”

𝛼:
𝛼1 𝛼2 𝛼3 𝛼4

• Problem 1:
• When 𝛼 ranges within an interval [𝑠, 𝑓], no matter how small the interval

is, there are always infinitely many values within the interval
• Each 𝛼 value may correspond to a possibly different space
• This means there could be infinitely many spaces that we need to store in

the computer, which is impossible

“The growing space”

𝛼:
𝛼1 𝛼2 𝛼3 𝛼4

• Solution:
• While there are infinitely many values for 𝛼, our data is still “finite” (e.g.,

the above point cloud contains finitely many points)

“The growing space”

𝛼:
𝛼1 𝛼2 𝛼3 𝛼4

• Solution:
• While there are infinitely many values for 𝛼, our data is still “finite” (e.g.,

the above point cloud contains finitely many points)
• This means that there are only finitely many values of 𝛼 where the

topological space “essentially changes”

“The growing space”

𝛼:
𝛼1 𝛼2 𝛼3 𝛼4

• Solution:
• While there are infinitely many values for 𝛼, our data is still “finite” (e.g.,

the above point cloud contains finitely many points)
• This means that there are only finitely many values of 𝛼 where the

topological space “essentially changes”
• So we only need to record finitely many spaces in computer

“The growing space”

𝛼:
𝛼1 𝛼2 𝛼3 𝛼4

• Remark
• We will not be very accurate on what the “essential changes” mean here

(should be clearer later)

“The growing space”

𝛼:
𝛼1 𝛼2 𝛼3 𝛼4

• Remark
• We will not be very accurate on what the “essential changes” mean here

(should be clearer later)
• BTW, these values where topological space “essentially changes” are

called critical values
• Critical values are important concepts in “Morse theory”, but we will not

go very deep on it in this course

“The growing space”

𝛼:
𝛼1 𝛼2 𝛼3 𝛼4

• Problem 2:

“The growing space”

𝛼:
𝛼1 𝛼2 𝛼3 𝛼4

• Problem 2:
• Even there are finitely many spaces to record, we still need a way to

represent each topological space in computer

“The growing space”

𝛼:
𝛼1 𝛼2 𝛼3 𝛼4

• Problem 2:
• Even there are finitely many spaces to record, we still need a way to

represent each topological space in computer
• Solution:

“The growing space”

𝛼:
𝛼1 𝛼2 𝛼3 𝛼4

• Problem 2:
• Even there are finitely many spaces to record, we still need a way to

represent each topological space in computer
• Solution:

• Using simplicial complexes!

“The growing space”

𝛼:
𝛼1 𝛼2 𝛼3 𝛼4

• Hence, the “growing space” in computer is represented by a finite sequence
of simplicial complexes, called a filtration, which is typically denoted by a
calligraphic letter ℱ,

ℱ: 𝐾0, 𝐾1, … , 𝐾𝑚

Filtration

𝛼:
𝛼1 𝛼2 𝛼3 𝛼4

Filtration

𝛼:
𝛼1 𝛼2 𝛼3 𝛼4

ℱ:

• Below is an example of a filtration:

𝐾0 𝐾1 𝐾2 𝐾3

Filtration
• Another example:

Image source: Patrick Schnider. Introduction to Topological Data Analysis Lecture Notes FS 2023

𝐾0 𝐾1 𝐾2 𝐾3 𝐾4

⊆ ⊆ ⊆ ⊆
𝑠

𝑡

𝑢𝑠

𝑡

𝑢𝑠

𝑡

𝑢𝑠

𝑡

𝑢𝑠

• Question: In previous definition, a filtration is only a sequence of complexes.
• How do we account for the fact that the spaces (complexes) grow?

Filtration

• Question: In previous definition, a filtration is only a sequence of complexes.
• How do we account for the fact that the spaces (complexes) grow?
• Answer: We make sure the complexes “grow” by making sure the previous

complex is a “subset” (subcomplex) of the next complex.

Filtration

• Question: In previous definition, a filtration is only a sequence of complexes.
• How do we account for the fact that the spaces (complexes) grow?
• Answer: We make sure the complexes “grow” by making sure the previous

complex is a “subset” (subcomplex) of the next complex.
• Definition: A filtration is a nested sequence of simplicial complexes

ℱ: 𝐾0 ⊆ 𝐾1 ⊆ ⋯ ⊆ 𝐾𝑚

 such that each 𝐾𝑖 is a subcomplex of 𝐾𝑖+1.

Filtration

Filtration

⊆ ⊆ ⊆ℱ:

• Example:

Filtration
• Another example:

𝐾0 𝐾1 𝐾2 𝐾3 𝐾4

Image source: Patrick Schnider. Introduction to Topological Data Analysis Lecture Notes FS 2023

⊆ ⊆ ⊆ ⊆
𝑠

𝑡

𝑢𝑠

𝑡

𝑢𝑠

𝑡

𝑢𝑠

𝑡

𝑢𝑠

• Now we want to further interpret a filtration
• For this, we focus on a single inclusion in a filtration

Filtration

⊆

𝐾𝑖 𝐾𝑖+1

• Now we want to further interpret a filtration
• For this, we focus on a single inclusion in a filtration
• Since it’s an inclusion, the difference of the two complexes is that 𝐾𝑖+1 has

some additional simplices than 𝐾𝑖

Filtration

⊆

𝐾𝑖 𝐾𝑖+1

• Now we want to further interpret a filtration
• For this, we focus on a single inclusion in a filtration
• Since it’s an inclusion, the difference of the two complexes is that 𝐾𝑖+1 has

some additional simplices than 𝐾𝑖

Filtration

⊆

𝐾𝑖 𝐾𝑖+1

• Now we want to further interpret a filtration
• For this, we focus on a single inclusion in a filtration
• Since it’s an inclusion, the difference of the two complexes is that 𝐾𝑖+1 has

some additional simplices than 𝐾𝑖

• So we can consider each inclusion 𝐾𝑖 ⊆ 𝐾𝑖+1 in a filtration

ℱ: 𝐾0 ⊆ 𝐾1 ⊆ ⋯ ⊆ 𝐾𝑚

 as an insertion of a bunch of simplices

Filtration

⊆

𝐾𝑖 𝐾𝑖+1

Filtration
For the example:

• 𝐾0 to 𝐾1: insert vertices 𝑡 and 𝑢 and edge 𝑡𝑢

• 𝐾1 to 𝐾2: insert edge 𝑠𝑡

• 𝐾2 to 𝐾3: insert edge 𝑠𝑢

• 𝐾3 to 𝐾4: insert triangle 𝑠𝑡𝑢

Image source: Patrick Schnider. Introduction to Topological Data Analysis Lecture Notes FS 2023

𝐾0 𝐾1 𝐾2 𝐾3 𝐾4

⊆ ⊆ ⊆ ⊆
𝑠

𝑡

𝑢𝑠

𝑡

𝑢𝑠

𝑡

𝑢𝑠

𝑡

𝑢𝑠

• More regulations: For a filtration

ℱ: 𝐾0 ⊆ 𝐾1 ⊆ ⋯ ⊆ 𝐾𝑚

 we typically let the first complex 𝐾0 be empty, and call the last complex 𝐾𝑚
the “total complex” (because it contains all simplices) and denote it as 𝐾.

Filtration

• More regulations: For a filtration

ℱ: 𝐾0 ⊆ 𝐾1 ⊆ ⋯ ⊆ 𝐾𝑚

 we typically let the first complex 𝐾0 be empty, and call the last complex 𝐾𝑚
the “total complex” (because it contains all simplices) and denote it as 𝐾.
• ℱ is then called a filtration of 𝐾 (becomes it eventually grows into 𝐾):

ℱ: ∅ = 𝐾0 ⊆ 𝐾1 ⊆ ⋯ ⊆ 𝐾𝑚= 𝐾

Filtration

• More regulations: For a filtration

ℱ: 𝐾0 ⊆ 𝐾1 ⊆ ⋯ ⊆ 𝐾𝑚

 we typically let the first complex 𝐾0 be empty, and call the last complex 𝐾𝑚
the “total complex” (because it contains all simplices) and denote it as 𝐾.
• ℱ is then called a filtration of 𝐾 (becomes it eventually grows into 𝐾):

ℱ: ∅ = 𝐾0 ⊆ 𝐾1 ⊆ ⋯ ⊆ 𝐾𝑚= 𝐾

• Observation: (1). Any simplex of 𝐾 is added exactly once in ℱ
(2). For any two simplices 𝜎 and 𝜏 in 𝐾 such that 𝜎 is a face of 𝜏, we have 𝜎
cannot be added later than 𝜏.

Filtration

• More regulations: For a filtration

ℱ: 𝐾0 ⊆ 𝐾1 ⊆ ⋯ ⊆ 𝐾𝑚

 we typically let the first complex 𝐾0 be empty, and call the last complex 𝐾𝑚
the “total complex” (because it contains all simplices) and denote it as 𝐾.
• ℱ is then called a filtration of 𝐾 (becomes it eventually grows into 𝐾):

ℱ: ∅ = 𝐾0 ⊆ 𝐾1 ⊆ ⋯ ⊆ 𝐾𝑚= 𝐾

• Observation: (1). Any simplex of 𝐾 is added exactly once in ℱ
(2). For any two simplices 𝜎 and 𝜏 in 𝐾 such that 𝜎 is a face of 𝜏, we have 𝜎
cannot be added later than 𝜏.

• (1) is easy to see. To see (2), suppose that 𝜎 is added later than 𝜏. Then at a
certain time, 𝜏 is already added to a complex 𝐾𝑖 but 𝜎 is not in 𝐾𝑖 yet. This
contradicts the fact that any face of a simplex in the complex is also in the
complex.

Filtration

• Filtrations are inputs to the persistent homology pipeline that we want to
formalize

PD for Filtration

• Filtrations are inputs to the persistent homology pipeline that we want to
formalize

• But still we need to formally define a PD on a filtration of simplicial
complexes

PD for Filtration

• Filtrations are inputs to the persistent homology pipeline that we want to
formalize

• But still we need to formally define a PD on a filtration of simplicial
complexes

• Previously, we only saw some examples of PD on a sequence of “growing
spaces”, which are not exactly a filtration of complexes.

PD for Filtration

• Filtrations are inputs to the persistent homology pipeline that we want to
formalize

• But still we need to formally define a PD on a filtration of simplicial
complexes

• Previously, we only saw some examples of PD on a sequence of “growing
spaces”, which are not exactly a filtration of complexes.

• Moreover, we haven’t really formally defined a PD on a growing space other
than showing some examples

PD for Filtration

• Eventually, we will show that, PDs can be formally defined on both a “growing
space” (which is continuous) and a “filtration of complexes” (which is discrete).

PD for Filtration

𝛼:
𝛼1 𝛼2 𝛼3 𝛼4

ℱ: ⊆ ⊆ ⊆

• Eventually, we will show that, PDs can be formally defined on both a “growing
space” (which is continuous) and a “filtration of complexes” (which is discrete).

• We sometimes call the former one a “continuous” filtration and latter a “discrete”
filtration (by default, a “filtration” without modifiers is always a discrete one).

PD for Filtration

𝛼:
𝛼1 𝛼2 𝛼3 𝛼4

ℱ: ⊆ ⊆ ⊆

“Continuous” filtration

“Discrete” filtration

• However, formally defining PD on a continuous or a discrete filtration needs a
lot of mathematics (a lot of algebra, category theory, or quiver theory), which
is beyond the scope of the course.

• So to understand the definition of a PD, we shall see how to compute a PD on
a discrete filtration.

• Things can get a bit technical from now on, but I want to stress that this
course is trying to focus on applications. So these technical contents are
mainly supposed to help build solids skills on applying persistent homology.

PD for Filtration

• For computing persistence diagram, we focus on a special type of filtration.
• Definition: A simplex-wise filtration is a filtration such that each

consecutive complexes differ by only a single simplex, i.e., in

ℱ: ∅ = 𝐾0 ⊆ 𝐾1 ⊆ ⋯ ⊆ 𝐾𝑚= 𝐾

 for each inclusion 𝐾𝑖−1 ⊆ 𝐾𝑖, we have that 𝐾𝑖 is derived from 𝐾𝑖−1 by inserting
a single simplex typically denoted 𝜎𝑖.

Simplex-wise Filtration

• For computing persistence diagram, we focus on a special type of filtration.
• Definition: A simplex-wise filtration is a filtration such that each

consecutive complexes differ by only a single simplex, i.e., in

ℱ: ∅ = 𝐾0 ⊆ 𝐾1 ⊆ ⋯ ⊆ 𝐾𝑚= 𝐾

 for each inclusion 𝐾𝑖−1 ⊆ 𝐾𝑖, we have that 𝐾𝑖 is derived from 𝐾𝑖−1 by inserting
a single simplex typically denoted 𝜎𝑖.
• Because of the constructions, we can also consider a simplex-wise filtration

 as a sequence of simplices 𝜎0, 𝜎1, … , 𝜎𝑚−1 inserted one by one following the
order.

Simplex-wise Filtration

• For computing persistence diagram, we focus on a special type of filtration.
• Definition: A simplex-wise filtration is a filtration such that each

consecutive complexes differ by only a single simplex, i.e., in

ℱ: ∅ = 𝐾0 ⊆ 𝐾1 ⊆ ⋯ ⊆ 𝐾𝑚= 𝐾

 for each inclusion 𝐾𝑖−1 ⊆ 𝐾𝑖, we have that 𝐾𝑖 is derived from 𝐾𝑖−1 by inserting
a single simplex typically denoted 𝜎𝑖.
• Because of the constructions, we can also consider a simplex-wise filtration

 as a sequence of simplices 𝜎0, 𝜎1, … , 𝜎𝑚−1 inserted one by one following the
order.
• Fact: Each general filtration (not necessarily simplex-wise) can be made into

a simplex-wise one by padding additional complexes (or expanding the
inclusions)

Simplex-wise Filtration

Simplex-wise Filtration
• 𝐾0 to 𝐾1: insert vertices 𝑡 and 𝑢 and edge 𝑡𝑢

• 𝐾1 to 𝐾2: insert edge 𝑠𝑡

• 𝐾2 to 𝐾3: insert edge 𝑠𝑢

• 𝐾3 to 𝐾4: insert triangle 𝑠𝑡𝑢

Image source: Patrick Schnider. Introduction to Topological Data Analysis Lecture Notes FS 2023

𝐾0 𝐾1 𝐾2 𝐾3 𝐾4

⊆ ⊆ ⊆ ⊆
𝑠

𝑡

𝑢𝑠

𝑡

𝑢𝑠

𝑡

𝑢𝑠

𝑡

𝑢𝑠

Simplex-wise Filtration
• 𝐾0 to 𝐾1: insert vertices 𝑡 and 𝑢 and edge 𝑡𝑢

• 𝐾1 to 𝐾2: insert edge 𝑠𝑡

• 𝐾2 to 𝐾3: insert edge 𝑠𝑢

• 𝐾3 to 𝐾4: insert triangle 𝑠𝑡𝑢

• To convert to simplex-wise, only need to add an empty complex at the
beginning and insert two additional complexes between 𝐾0 to 𝐾1.

Image source: Patrick Schnider. Introduction to Topological Data Analysis Lecture Notes FS 2023

𝐾0 𝐾1 𝐾2 𝐾3 𝐾4

⊆ ⊆ ⊆ ⊆
𝑠

𝑡

𝑢𝑠

𝑡

𝑢𝑠

𝑡

𝑢𝑠

𝑡

𝑢𝑠

Image source: Edelsbrunner, Letscher, and Zomorodian. Topological persistence and simplification.

𝐾1

𝐾7

𝐾13

𝐾2

𝐾8

𝐾14

𝐾3

𝐾9

𝐾15

𝐾4

𝐾10

𝐾16

𝐾5

𝐾11

𝐾17

𝐾6

𝐾12

𝐾18

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

Algorithm
• Notice that the input

filtration ℱ must be
simplex-wise

• Black: 𝑃𝐷0

• Red: 𝑃𝐷1

• Blue: 𝑃𝐷2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Resulting PD

Image source: Edelsbrunner, Letscher, and Zomorodian. Topological persistence and simplification.

[

[

[

[[

)

)

)

)

• Notice: instead of drawing each pair of birth / death as a point on 2D plane, we just let each
pair of birth and death form an interval, indicating the “time” in which a certain homology
hole persists (will see examples later)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Resulting PD

Image source: Edelsbrunner, Letscher, and Zomorodian. Topological persistence and simplification.

[

[
[

[[

)

)

)

)

• Notice: instead of drawing each pair of birth / death as a point on 2D plane, we just let each
pair of birth and death form an interval, indicating the “time” in which a certain homology
hole persists (will see examples later)

• The above is also called the persistence barcode

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Resulting PD

Image source: Edelsbrunner, Letscher, and Zomorodian. Topological persistence and simplification.

[

[
[

[[

)

)

)

)

• Notice: instead of drawing each pair of birth / death as a point on 2D plane, we just let each
pair of birth and death form an interval, indicating the “time” in which a certain homology
hole persists (will see examples later)

• The above is also called the persistence barcode

• So persistence barcodes and persistence diagrams are just the same things displayed in
different ways (we sometimes also use the two terms interchangeably)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Resulting PD

Image source: Edelsbrunner, Letscher, and Zomorodian. Topological persistence and simplification.

[

[
[

[[

)

)

)

)

• Notice: instead of drawing each pair of birth / death as a point on 2D plane, we just let each
pair of birth and death form an interval, indicating the “time” in which a certain homology
hole persists (will see examples later)

• The above is also called the persistence barcode

• So persistence barcodes and persistence diagrams are just the same things displayed in
different ways (we sometimes also use the two terms interchangeably)

• Also notice: In persistence barcode, we always draw each interval as left-closed, right open
(there is a technical reason for this but explaining this a little beyond scope)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Resulting PD

Image source: Edelsbrunner, Letscher, and Zomorodian. Topological persistence and simplification.

[

[
[

[[

)

)

)

)

• We also notice that the cycle recorded in the “𝜁 table” indeed captures the
homology hole born and died with a birth-death interval in the barcode (point
in the PD)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Resulting PD

Image source: Edelsbrunner, Letscher, and Zomorodian. Topological persistence and simplification.

[

[
[

[[

)

)

)

)

• We also notice that the cycle recorded in the “𝜁 table” indeed captures the
homology hole born and died with a birth-death interval in the barcode (point
in the PD)

• i.e., for an interval [𝑏, 𝑑), 𝜁[𝜎𝑏] represents the homology feature born at the
index 𝑏 and dying at index 𝑑.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Resulting PD

Image source: Edelsbrunner, Letscher, and Zomorodian. Topological persistence and simplification.

[

[
[

[[

)

)

)

)

• We also notice that the cycle recorded in the “𝜁 table” indeed captures the
homology hole born and died with a birth-death interval in the barcode (point
in the PD)

• i.e., for an interval [𝑏, 𝑑), 𝜁[𝜎𝑏] represents the homology feature born at the
index 𝑏 and dying at index 𝑑.

• This 𝜁[𝜎𝑏] is also called the representative for the interval [𝑏, 𝑑).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Resulting PD

Image source: Edelsbrunner, Letscher, and Zomorodian. Topological persistence and simplification.

[

[
[

[[

)

)

)

)

Image source: Edelsbrunner, Letscher, and Zomorodian. Topological persistence and simplification.

𝐾1

𝐾7

𝐾13

𝐾2

𝐾8

𝐾14

𝐾3

𝐾9

𝐾15

𝐾4

𝐾10

𝐾16

𝐾5

𝐾11

𝐾17

𝐾6

𝐾12

𝐾18

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

1d hole captured by
interval [12,15) ∈ 𝑃𝐷1

Image source: Edelsbrunner, Letscher, and Zomorodian. Topological persistence and simplification.

𝐾1

𝐾7

𝐾13

𝐾2

𝐾8

𝐾14

𝐾3

𝐾9

𝐾15

𝐾4

𝐾10

𝐾16

𝐾5

𝐾11

𝐾17

𝐾6

𝐾12

𝐾18

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

1d hole captured by
interval [8,16) ∈ 𝑃𝐷1

Image source: Edelsbrunner, Letscher, and Zomorodian. Topological persistence and simplification.

𝐾1

𝐾7

𝐾13

𝐾2

𝐾8

𝐾14

𝐾3

𝐾9

𝐾15

𝐾4

𝐾10

𝐾16

𝐾5

𝐾11

𝐾17

𝐾6

𝐾12

𝐾18

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

• 0d hole captured by
interval

[3,10) ∈ 𝑃𝐷0,
 which is the gap
 between 𝑠 and 𝑢.

• The gap disappears
when the two points
become connected

More interpretations of
the algorithm:
• When processing each

𝜎𝑖, if the while loop
ends with 𝑧 = 0, then
the simplex 𝜎𝑖 is called
positive

More interpretations of
the algorithm:
• When processing each

𝜎𝑖, if the while loop
ends with 𝑧 = 0, then
the simplex 𝜎𝑖 is called
positive

• It means that inserting
𝜎𝑖 creates a new
homology hole

Image source: Edelsbrunner, Letscher, and Zomorodian. Topological persistence and simplification.

𝐾1

𝐾7

𝐾13

𝐾2

𝐾8

𝐾14

𝐾3

𝐾9

𝐾15

𝐾4

𝐾10

𝐾16

𝐾5

𝐾11

𝐾17

𝐾6

𝐾12

𝐾18

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

• E.g., inserting 𝜎8 =
𝑡𝑤 creates the blue
1d hole

• If the while loop ends
with 𝑧 ≠ 0, then the
simplex 𝜎𝑖 is called
negative

• If the while loop ends
with 𝑧 ≠ 0, then the
simplex 𝜎𝑖 is called
negative

• It means that inserting
𝜎𝑖 creates a homology
hole die (becomes
trivial)

Image source: Edelsbrunner, Letscher, and Zomorodian. Topological persistence and simplification.

𝐾1

𝐾7

𝐾13

𝐾2

𝐾8

𝐾14

𝐾3

𝐾9

𝐾15

𝐾4

𝐾10

𝐾16

𝐾5

𝐾11

𝐾17

𝐾6

𝐾12

𝐾18

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

• E.g., inserting
𝜎16 = 𝑠𝑡𝑢 kills the
blue 1d hole

We have that line 10 in
the algorithm is always
pairing

• a positive simplex 𝜎𝑗

with
• a negative simplex 𝜎𝑖

The algorithm takes
𝑂(𝑚3) time:

The algorithm takes
𝑂(𝑚3) time:
First of all, summing two
cycles in line 8 takes
𝑂(𝑚) time

The algorithm takes
𝑂(𝑚3) time:
First of all, summing two
cycles in line 8 takes
𝑂(𝑚) time
• You could either

represent a cycle 𝑧 (a
set of simplices) as a
0-1 list where the 𝑖-th
item is 1 iff 𝜎𝑖 is in 𝑧

The algorithm takes
𝑂(𝑚3) time:
First of all, summing two
cycles in line 8 takes
𝑂(𝑚) time
• You could either

represent a cycle 𝑧 (a
set of simplices) as a
0-1 list where the 𝑖-th
item is 1 iff 𝜎𝑖 is in 𝑧

• Or represent 𝑧 as a
sorted list of integers
such that 𝑖 is in the list
iff 𝜎𝑖 is in 𝑧

The algorithm takes
𝑂(𝑚3) time:
First of all, summing two
cycles in line 8 takes
𝑂(𝑚) time
• You could either

represent a cycle 𝑧 (a
set of simplices) as a
0-1 list where the 𝑖-th
item is 1 iff 𝜎𝑖 is in 𝑧

• Or represent 𝑧 as a
sorted list of integers
such that 𝑖 is in the list
iff 𝜎𝑖 is in 𝑧

In the worst case, both
inner and outer loop
iterates 𝑂(𝑚) time, and
hence 𝑂(𝑚3) oveall

• Recall part of the reason we introduce the previous algorithm for computing
PD is to formally define PD on a discrete filtration

PD for General Filtration

• Recall part of the reason we introduce the previous algorithm for computing
PD is to formally define PD on a discrete filtration

• But the algorithm only takes a simplex-wise filtration as input, so technically
we only defined PD on a simplex-wise filtration

PD for General Filtration

• Recall part of the reason we introduce the previous algorithm for computing
PD is to formally define PD on a discrete filtration

• But the algorithm only takes a simplex-wise filtration as input, so technically
we only defined PD on a simplex-wise filtration

• We shall now define PD on a general filtration not necessarily simplex-wise

PD for General Filtration

• Recall part of the reason we introduce the previous algorithm for computing
PD is to formally define PD on a discrete filtration

• But the algorithm only takes a simplex-wise filtration as input, so technically
we only defined PD on a simplex-wise filtration

• We shall now define PD on a general filtration not necessarily simplex-wise
• The process is as follows:

1. “Expand” the general filtration ℱ into a simplex-wise one ℱ′

• Aka, for an inclusion in ℱ which inserts 𝑘 number of simplices, we
convert it into 𝑘 inclusions each inserting a single simplex

PD for General Filtration

• Recall part of the reason we introduce the previous algorithm for computing
PD is to formally define PD on a discrete filtration

• But the algorithm only takes a simplex-wise filtration as input, so technically
we only defined PD on a simplex-wise filtration

• We shall now define PD on a general filtration not necessarily simplex-wise
• The process is as follows:

1. “Expand” the general filtration ℱ into a simplex-wise one ℱ′

• Aka, for an inclusion in ℱ which inserts 𝑘 number of simplices, we
convert it into 𝑘 inclusions each inserting a single simplex

2. Compute PD(ℱ′)

PD for General Filtration

• Recall part of the reason we introduce the previous algorithm for computing
PD is to formally define PD on a discrete filtration

• But the algorithm only takes a simplex-wise filtration as input, so technically
we only defined PD on a simplex-wise filtration

• We shall now define PD on a general filtration not necessarily simplex-wise
• The process is as follows:

1. “Expand” the general filtration ℱ into a simplex-wise one ℱ′

• Aka, for an inclusion in ℱ which inserts 𝑘 number of simplices, we
convert it into 𝑘 inclusions each inserting a single simplex

2. Compute PD(ℱ′)

3. Convert PD(ℱ′) into PD(ℱ) by “contracting” each interval PD(ℱ′)
based on the correspondence between

PD for General Filtration

• Recall part of the reason we introduce the previous algorithm for computing
PD is to formally define PD on a discrete filtration

• But the algorithm only takes a simplex-wise filtration as input, so technically
we only defined PD on a simplex-wise filtration

• We shall now define PD on a general filtration not necessarily simplex-wise
• The process is as follows:

1. “Expand” the general filtration ℱ into a simplex-wise one ℱ′

• Aka, for an inclusion in ℱ which inserts 𝑘 number of simplices, we
convert it into 𝑘 inclusions each inserting a single simplex

2. Compute PD(ℱ′)

3. Convert PD(ℱ′) into PD(ℱ) by “contracting” each interval PD(ℱ′)
based on the correspondence between

4. During the contraction, some intervals in PD(ℱ′) may disappear (birth
and death coincide)

PD for General Filtration

Expand general filtration to simplex wise

𝐾0 𝐾1 𝐾2 𝐾3 𝐾4

Image source: Patrick Schnider. Introduction to Topological Data Analysis Lecture Notes FS 2023

⊆ ⊆ ⊆ ⊆
𝑠

𝑡

𝑢𝑠

𝑡

𝑢𝑠

𝑡

𝑢𝑠

𝑡

𝑢𝑠

Expand general filtration to simplex wise

𝐾0 𝐾1 𝐾2 𝐾3 𝐾4

Image source: Patrick Schnider. Introduction to Topological Data Analysis Lecture Notes FS 2023

⊆ ⊆ ⊆ ⊆
𝑠

𝑡

𝑢𝑠

𝑡

𝑢𝑠

𝑡

𝑢𝑠

𝑡

𝑢𝑠

𝐾′1 𝐾′2 𝐾′3 𝐾′4 𝐾′5

ℱ’:

𝐾′6 𝐾′7
𝐾′0 = ∅

Expand general filtration to simplex wise

𝐾0 𝐾1 𝐾2 𝐾3 𝐾4

Image source: Patrick Schnider. Introduction to Topological Data Analysis Lecture Notes FS 2023

⊆ ⊆ ⊆ ⊆
𝑠

𝑡

𝑢𝑠

𝑡

𝑢𝑠

𝑡

𝑢𝑠

𝑡

𝑢𝑠

𝐾′1 𝐾′2 𝐾′3 𝐾′4 𝐾′5

ℱ’:

𝐾′6 𝐾′7
𝐾′0 = ∅

• Another interactive example for correspondence between a general filtration
and its simplex-wise version: https://iuricichf.github.io/ICT/algorithm.html

Expand general filtration to simplex wise

https://iuricichf.github.io/ICT/algorithm.html

PD for General Filtration

[)

“Contracting” 4,10 ∈ 𝑃𝐷(ℱ′) into one for 𝑃𝐷(ℱ):

PD for General Filtration

[)

“Contracting” 4,10 ∈ 𝑃𝐷(ℱ′) into one for 𝑃𝐷(ℱ):
• 4,10 ∈ 𝑃𝐷(ℱ′) is born in 𝐾′4, which is when go from 𝐾′3 to 𝐾′4 in ℱ′

PD for General Filtration

[)

“Contracting” 4,10 ∈ 𝑃𝐷(ℱ′) into one for 𝑃𝐷(ℱ):
• 4,10 ∈ 𝑃𝐷(ℱ′) is born in 𝐾′4, which is when go from 𝐾′3 to 𝐾′4 in ℱ′

• In ℱ, the homology feature is born when we go from 𝐾1 to 𝐾2, aka in 𝐾2

PD for General Filtration

[)

[

“Contracting” 4,10 ∈ 𝑃𝐷(ℱ′) into one for 𝑃𝐷(ℱ):
• 4,10 ∈ 𝑃𝐷(ℱ′) is born in 𝐾′4, which is when go from 𝐾′3 to 𝐾′4 in ℱ′

• In ℱ, the homology feature is born when we go from 𝐾1 to 𝐾2, aka in 𝐾2

• So the birth of the corresponding interval in 𝑃𝐷(ℱ) is 2

PD for General Filtration

[)

[

“Contracting” 4,10 ∈ 𝑃𝐷(ℱ′) into one for 𝑃𝐷(ℱ):
• 4,10 ∈ 𝑃𝐷(ℱ′) dies in 𝐾′10, which specifically is when go from 𝐾′9 to 𝐾′10

PD for General Filtration

[)

[

“Contracting” 4,10 ∈ 𝑃𝐷(ℱ′) into one for 𝑃𝐷(ℱ):
• 4,10 ∈ 𝑃𝐷(ℱ′) dies in 𝐾′10, which specifically is when go from 𝐾′9 to 𝐾′10

• In ℱ, the homology feature dies when we go from 𝐾3 to 𝐾4, aka in 𝐾4

PD for General Filtration

[)

[)

“Contracting” 4,10 ∈ 𝑃𝐷(ℱ′) into one for 𝑃𝐷(ℱ):
• 4,10 ∈ 𝑃𝐷(ℱ′) dies in 𝐾′10, which specifically is when go from 𝐾′9 to 𝐾′10

• In ℱ, the homology feature dies when we go from 𝐾3 to 𝐾4, aka in 𝐾4

• So the corresponding interval in 𝑃𝐷(ℱ) is [2,4)

PD for General Filtration

[)

5,8 ∈ 𝑃𝐷(ℱ′) does not correspond to any interval in 𝑃𝐷(ℱ):
• In ℱ, the homology feature is born in 𝐾3 and dies also 𝐾3 (so it’s ephemeral)

Image source: Edelsbrunner, Letscher, and Zomorodian. Topological persistence and simplification.

1 2 3 4 5 6

7 8 9 10 11 12

• For the previous
simplex-wise
filtration, we can
skip some
complexes and
renumber them

13 14 15 16 17 18

Image source: Edelsbrunner, Letscher, and Zomorodian. Topological persistence and simplification.

𝐾2

𝐾14

𝐾3

𝐾10

𝐾5

𝐾11

𝐾17

1 2 3 2 5 3

4 5 6 10 11 7

8 14 9 10 17 11

• For the previous
simplex-wise
filtration, we can
skip some
complexes and
renumber them

• Then [8,16) in the
simplex-wise
filtration becomes
[5,10) in the non-
simplex-wise

• But they are
essential “same”
interval
(representatives
are the same)

	Slide 1: Persistent Homology: Formalization
	Slide 2: Outline for studying persistent homology
	Slide 3: “The growing space”
	Slide 4: “The growing space”
	Slide 5: “The growing space”
	Slide 6: “The growing space”
	Slide 7: “The growing space”
	Slide 8: “The growing space”
	Slide 9: “The growing space”
	Slide 10: “The growing space”
	Slide 11: “The growing space”
	Slide 12: “The growing space”
	Slide 13: “The growing space”
	Slide 14: “The growing space”
	Slide 15: “The growing space”
	Slide 16: “The growing space”
	Slide 17: Filtration
	Slide 18: Filtration
	Slide 19: Filtration
	Slide 20: Filtration
	Slide 21: Filtration
	Slide 22: Filtration
	Slide 23: Filtration
	Slide 24: Filtration
	Slide 25: Filtration
	Slide 26: Filtration
	Slide 27: Filtration
	Slide 28: Filtration
	Slide 29: Filtration
	Slide 30: Filtration
	Slide 31: Filtration
	Slide 32: Filtration
	Slide 33: Filtration
	Slide 34: PD for Filtration
	Slide 35: PD for Filtration
	Slide 36: PD for Filtration
	Slide 37: PD for Filtration
	Slide 38: PD for Filtration
	Slide 39: PD for Filtration
	Slide 40: PD for Filtration
	Slide 41: Simplex-wise Filtration
	Slide 42: Simplex-wise Filtration
	Slide 43: Simplex-wise Filtration
	Slide 44: Simplex-wise Filtration
	Slide 45: Simplex-wise Filtration
	Slide 46
	Slide 47: Algorithm
	Slide 48: Resulting PD
	Slide 49: Resulting PD
	Slide 50: Resulting PD
	Slide 51: Resulting PD
	Slide 52: Resulting PD
	Slide 53: Resulting PD
	Slide 54: Resulting PD
	Slide 55: Resulting PD
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71: PD for General Filtration
	Slide 72: PD for General Filtration
	Slide 73: PD for General Filtration
	Slide 74: PD for General Filtration
	Slide 75: PD for General Filtration
	Slide 76: PD for General Filtration
	Slide 77: PD for General Filtration
	Slide 78: Expand general filtration to simplex wise
	Slide 79: Expand general filtration to simplex wise
	Slide 80: Expand general filtration to simplex wise
	Slide 81: Expand general filtration to simplex wise
	Slide 82: PD for General Filtration
	Slide 83: PD for General Filtration
	Slide 84: PD for General Filtration
	Slide 85: PD for General Filtration
	Slide 86: PD for General Filtration
	Slide 87: PD for General Filtration
	Slide 88: PD for General Filtration
	Slide 89: PD for General Filtration
	Slide 90
	Slide 91

