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1. Intro to persistent homology 
• Build intuitions of persistent homology: what it does, what it produces

2. Formalizing persistent homology
• Introduce its input (filtration) and study an algorithm for computation

3. Different ways for building filtrations
• Vietoris-Rips filtration, sub-levelset filtration
• Cubical complexes (for images)

4. Interpretation and stability of persistence diagram

Outline for studying persistent homology



• Recall the growing space:
• We have a value 𝛼 ranging within an interval, say, from 0 to ∞
• Let each value 𝛼 corresponds to a topological space so that
• The topological space grows as 𝛼 increases from 0 to ∞

“The growing space”

𝛼:
𝛼1 𝛼2 𝛼3 𝛼4



• Recall the growing space:
• We have a value 𝛼 ranging within an interval, say, from 0 to ∞ 

• Let each value 𝛼 corresponds to a topological space so that
• The topological space grows as 𝛼 increases from 0 to ∞ 

• Suppose I ask you to represent such a growing space in the computer, can 
you think of any problems?

“The growing space”
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• Problem 1:
• When 𝛼 ranges within an interval [𝑠, 𝑓], no matter how small the interval 

is, there are always infinitely many values within the interval

“The growing space”
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• Problem 1:
• When 𝛼 ranges within an interval [𝑠, 𝑓], no matter how small the interval 

is, there are always infinitely many values within the interval
• Each 𝛼 value may correspond to a possibly different space
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• Problem 1:
• When 𝛼 ranges within an interval [𝑠, 𝑓], no matter how small the interval 

is, there are always infinitely many values within the interval
• Each 𝛼 value may correspond to a possibly different space
• This means there could be infinitely many spaces that we need to store in 

the computer, which is impossible

“The growing space”

𝛼:
𝛼1 𝛼2 𝛼3 𝛼4



• Solution:
• While there are infinitely many values for 𝛼, our data is still “finite” (e.g., 

the above point cloud contains finitely many points)

“The growing space”
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𝛼1 𝛼2 𝛼3 𝛼4



• Solution:
• While there are infinitely many values for 𝛼, our data is still “finite” (e.g., 

the above point cloud contains finitely many points)
• This means that there are only finitely many values of 𝛼 where the 

topological space “essentially changes”

“The growing space”
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• Solution:
• While there are infinitely many values for 𝛼, our data is still “finite” (e.g., 

the above point cloud contains finitely many points)
• This means that there are only finitely many values of 𝛼 where the 

topological space “essentially changes”
• So we only need to record finitely many spaces in computer

“The growing space”

𝛼:
𝛼1 𝛼2 𝛼3 𝛼4



• Remark
• We will not be very accurate on what the “essential changes” mean here 

(should be clearer later)

“The growing space”

𝛼:
𝛼1 𝛼2 𝛼3 𝛼4



• Remark
• We will not be very accurate on what the “essential changes” mean here 

(should be clearer later)
• BTW, these values where topological space “essentially changes” are 

called critical values
• Critical values are important concepts in “Morse theory”, but we will not 

go very deep on it in this course

“The growing space”
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• Problem 2:

“The growing space”

𝛼:
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• Problem 2:
• Even there are finitely many spaces to record, we still need a way to 

represent each topological space in computer

“The growing space”
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• Problem 2:
• Even there are finitely many spaces to record, we still need a way to 

represent each topological space in computer
• Solution:

“The growing space”

𝛼:
𝛼1 𝛼2 𝛼3 𝛼4



• Problem 2:
• Even there are finitely many spaces to record, we still need a way to 

represent each topological space in computer
• Solution:

• Using simplicial complexes!

“The growing space”

𝛼:
𝛼1 𝛼2 𝛼3 𝛼4



• Hence, the “growing space” in computer is represented by a finite sequence 
of simplicial complexes, called a filtration, which is typically denoted by a 
calligraphic letter ℱ,

ℱ: 𝐾0, 𝐾1, … , 𝐾𝑚

Filtration

𝛼:
𝛼1 𝛼2 𝛼3 𝛼4



Filtration

𝛼:
𝛼1 𝛼2 𝛼3 𝛼4

ℱ:

• Below is an example of a filtration:

𝐾0 𝐾1 𝐾2 𝐾3



Filtration
• Another example:

Image source: Patrick Schnider. Introduction to Topological Data Analysis Lecture Notes FS 2023 
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• Question: In previous definition, a filtration is only a sequence of complexes.
• How do we account for the fact that the spaces (complexes) grow?
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• Question: In previous definition, a filtration is only a sequence of complexes.
• How do we account for the fact that the spaces (complexes) grow?
• Answer: We make sure the complexes “grow” by making sure the previous 

complex is a “subset” (subcomplex) of the next complex.

Filtration



• Question: In previous definition, a filtration is only a sequence of complexes.
• How do we account for the fact that the spaces (complexes) grow?
• Answer: We make sure the complexes “grow” by making sure the previous 

complex is a “subset” (subcomplex) of the next complex.
• Definition: A filtration is a nested sequence of simplicial complexes 

ℱ: 𝐾0 ⊆ 𝐾1 ⊆ ⋯ ⊆ 𝐾𝑚

   such that each 𝐾𝑖  is a subcomplex of 𝐾𝑖+1. 

Filtration



Filtration

⊆ ⊆ ⊆ℱ:

• Example:



Filtration
• Another example:

𝐾0 𝐾1 𝐾2 𝐾3 𝐾4

Image source: Patrick Schnider. Introduction to Topological Data Analysis Lecture Notes FS 2023 
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• Now we want to further interpret a filtration
• For this, we focus on a single inclusion in a filtration

Filtration

⊆

𝐾𝑖 𝐾𝑖+1



• Now we want to further interpret a filtration
• For this, we focus on a single inclusion in a filtration
• Since it’s an inclusion, the difference of the two complexes is that 𝐾𝑖+1 has 

some additional simplices than 𝐾𝑖
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• Now we want to further interpret a filtration
• For this, we focus on a single inclusion in a filtration
• Since it’s an inclusion, the difference of the two complexes is that 𝐾𝑖+1 has 

some additional simplices than 𝐾𝑖
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• Now we want to further interpret a filtration
• For this, we focus on a single inclusion in a filtration
• Since it’s an inclusion, the difference of the two complexes is that 𝐾𝑖+1 has 

some additional simplices than 𝐾𝑖

• So we can consider each inclusion 𝐾𝑖 ⊆ 𝐾𝑖+1 in a filtration

ℱ: 𝐾0 ⊆ 𝐾1 ⊆ ⋯ ⊆ 𝐾𝑚

    as an insertion of a bunch of simplices

Filtration

⊆

𝐾𝑖 𝐾𝑖+1



Filtration
For the example:

• 𝐾0 to 𝐾1: insert vertices 𝑡 and 𝑢 and edge 𝑡𝑢

• 𝐾1 to 𝐾2: insert edge 𝑠𝑡

• 𝐾2 to 𝐾3: insert edge 𝑠𝑢

• 𝐾3 to 𝐾4: insert triangle 𝑠𝑡𝑢

Image source: Patrick Schnider. Introduction to Topological Data Analysis Lecture Notes FS 2023 
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• More regulations: For a filtration

ℱ: 𝐾0 ⊆ 𝐾1 ⊆ ⋯ ⊆ 𝐾𝑚

    we typically let the first complex 𝐾0 be empty, and call the last complex 𝐾𝑚  
the “total complex” (because it contains all simplices) and denote it as 𝐾.  

Filtration



• More regulations: For a filtration

ℱ: 𝐾0 ⊆ 𝐾1 ⊆ ⋯ ⊆ 𝐾𝑚

    we typically let the first complex 𝐾0 be empty, and call the last complex 𝐾𝑚  
the “total complex” (because it contains all simplices) and denote it as 𝐾.  
• ℱ is then called a filtration of 𝐾 (becomes it eventually grows into 𝐾):

ℱ: ∅ = 𝐾0 ⊆ 𝐾1 ⊆ ⋯ ⊆ 𝐾𝑚= 𝐾
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• More regulations: For a filtration

ℱ: 𝐾0 ⊆ 𝐾1 ⊆ ⋯ ⊆ 𝐾𝑚

    we typically let the first complex 𝐾0 be empty, and call the last complex 𝐾𝑚  
the “total complex” (because it contains all simplices) and denote it as 𝐾.  
• ℱ is then called a filtration of 𝐾 (becomes it eventually grows into 𝐾):

ℱ: ∅ = 𝐾0 ⊆ 𝐾1 ⊆ ⋯ ⊆ 𝐾𝑚= 𝐾

• Observation: (1). Any simplex of 𝐾 is added exactly once in ℱ
(2). For any two simplices 𝜎 and 𝜏 in 𝐾 such that 𝜎 is a face of 𝜏, we have 𝜎 
cannot be added later than 𝜏.

Filtration



• More regulations: For a filtration

ℱ: 𝐾0 ⊆ 𝐾1 ⊆ ⋯ ⊆ 𝐾𝑚

    we typically let the first complex 𝐾0 be empty, and call the last complex 𝐾𝑚  
the “total complex” (because it contains all simplices) and denote it as 𝐾.  
• ℱ is then called a filtration of 𝐾 (becomes it eventually grows into 𝐾):

ℱ: ∅ = 𝐾0 ⊆ 𝐾1 ⊆ ⋯ ⊆ 𝐾𝑚= 𝐾

• Observation: (1). Any simplex of 𝐾 is added exactly once in ℱ
(2). For any two simplices 𝜎 and 𝜏 in 𝐾 such that 𝜎 is a face of 𝜏, we have 𝜎 
cannot be added later than 𝜏.

• (1) is easy to see. To see (2), suppose that 𝜎 is added later than 𝜏. Then at a 
certain time, 𝜏 is already added to a complex 𝐾𝑖  but 𝜎 is not in 𝐾𝑖  yet. This 
contradicts the fact that any face of a simplex in the complex is also in the 
complex.

Filtration



• Filtrations are inputs to the persistent homology pipeline that we want to 
formalize

PD for Filtration
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complexes
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• Filtrations are inputs to the persistent homology pipeline that we want to 
formalize

• But still we need to formally define a PD on a filtration of simplicial 
complexes

• Previously, we only saw some examples of PD on a sequence of “growing 
spaces”, which are not exactly a filtration of complexes.

PD for Filtration



• Filtrations are inputs to the persistent homology pipeline that we want to 
formalize

• But still we need to formally define a PD on a filtration of simplicial 
complexes

• Previously, we only saw some examples of PD on a sequence of “growing 
spaces”, which are not exactly a filtration of complexes.

• Moreover, we haven’t really formally defined a PD on a growing space other 
than showing some examples

PD for Filtration



• Eventually, we will show that, PDs can be formally defined on both a “growing 
space” (which is continuous) and a “filtration of complexes” (which is discrete).

PD for Filtration

𝛼:
𝛼1 𝛼2 𝛼3 𝛼4

ℱ: ⊆ ⊆ ⊆



• Eventually, we will show that, PDs can be formally defined on both a “growing 
space” (which is continuous) and a “filtration of complexes” (which is discrete).

• We sometimes call the former one a “continuous” filtration and latter a “discrete” 
filtration (by default, a “filtration” without modifiers is always a discrete one).

PD for Filtration

𝛼:
𝛼1 𝛼2 𝛼3 𝛼4

ℱ: ⊆ ⊆ ⊆

“Continuous” filtration 

“Discrete” filtration 



• However, formally defining PD on a continuous or a discrete filtration needs a 
lot of mathematics (a lot of algebra, category theory, or quiver theory), which 
is beyond the scope of the course.

• So to understand the definition of a PD, we shall see how to compute a PD on 
a discrete filtration.

• Things can get a bit technical from now on, but I want to stress that this 
course is trying to focus on applications. So these technical contents are 
mainly supposed to help build solids skills on applying persistent homology.

PD for Filtration



• For computing persistence diagram, we focus on a special type of filtration.
• Definition: A simplex-wise filtration is a filtration such that each 

consecutive complexes differ by only a single simplex, i.e., in

ℱ: ∅ = 𝐾0 ⊆ 𝐾1 ⊆ ⋯ ⊆ 𝐾𝑚= 𝐾

    for each inclusion 𝐾𝑖−1 ⊆ 𝐾𝑖, we have that 𝐾𝑖  is derived from 𝐾𝑖−1 by inserting 
a single simplex typically denoted 𝜎𝑖.

Simplex-wise Filtration



• For computing persistence diagram, we focus on a special type of filtration.
• Definition: A simplex-wise filtration is a filtration such that each 

consecutive complexes differ by only a single simplex, i.e., in

ℱ: ∅ = 𝐾0 ⊆ 𝐾1 ⊆ ⋯ ⊆ 𝐾𝑚= 𝐾

    for each inclusion 𝐾𝑖−1 ⊆ 𝐾𝑖, we have that 𝐾𝑖  is derived from 𝐾𝑖−1 by inserting 
a single simplex typically denoted 𝜎𝑖.
• Because of the constructions, we can also consider a simplex-wise filtration 

    as a sequence of simplices 𝜎0, 𝜎1, … , 𝜎𝑚−1 inserted one by one following the 
order.
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• For computing persistence diagram, we focus on a special type of filtration.
• Definition: A simplex-wise filtration is a filtration such that each 

consecutive complexes differ by only a single simplex, i.e., in

ℱ: ∅ = 𝐾0 ⊆ 𝐾1 ⊆ ⋯ ⊆ 𝐾𝑚= 𝐾

    for each inclusion 𝐾𝑖−1 ⊆ 𝐾𝑖, we have that 𝐾𝑖  is derived from 𝐾𝑖−1 by inserting 
a single simplex typically denoted 𝜎𝑖.
• Because of the constructions, we can also consider a simplex-wise filtration 

    as a sequence of simplices 𝜎0, 𝜎1, … , 𝜎𝑚−1 inserted one by one following the 
order.
• Fact: Each general filtration (not necessarily simplex-wise) can be made into 

a simplex-wise one by padding additional complexes (or expanding the 
inclusions)

Simplex-wise Filtration



Simplex-wise Filtration
• 𝐾0 to 𝐾1: insert vertices 𝑡 and 𝑢 and edge 𝑡𝑢

• 𝐾1 to 𝐾2: insert edge 𝑠𝑡

• 𝐾2 to 𝐾3: insert edge 𝑠𝑢

• 𝐾3 to 𝐾4: insert triangle 𝑠𝑡𝑢

Image source: Patrick Schnider. Introduction to Topological Data Analysis Lecture Notes FS 2023 
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Simplex-wise Filtration
• 𝐾0 to 𝐾1: insert vertices 𝑡 and 𝑢 and edge 𝑡𝑢

• 𝐾1 to 𝐾2: insert edge 𝑠𝑡

• 𝐾2 to 𝐾3: insert edge 𝑠𝑢

• 𝐾3 to 𝐾4: insert triangle 𝑠𝑡𝑢

• To convert to simplex-wise, only need to add an empty complex at the 
beginning and insert two additional complexes between 𝐾0 to 𝐾1.

Image source: Patrick Schnider. Introduction to Topological Data Analysis Lecture Notes FS 2023 
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Image source: Edelsbrunner, Letscher, and Zomorodian. Topological persistence and simplification.
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Algorithm
• Notice that the input 

filtration ℱ must be 
simplex-wise



• Black: 𝑃𝐷0

• Red: 𝑃𝐷1

• Blue: 𝑃𝐷2
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Image source: Edelsbrunner, Letscher, and Zomorodian. Topological persistence and simplification.

[

[

[

[ [

)

)

)

)



• Notice: instead of drawing each pair of birth / death as a point on 2D plane, we just let each 
pair of birth and death form an interval, indicating the “time” in which a certain homology 
hole persists (will see examples later)
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• Notice: instead of drawing each pair of birth / death as a point on 2D plane, we just let each 
pair of birth and death form an interval, indicating the “time” in which a certain homology 
hole persists (will see examples later)

• The above is also called the persistence barcode
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• Notice: instead of drawing each pair of birth / death as a point on 2D plane, we just let each 
pair of birth and death form an interval, indicating the “time” in which a certain homology 
hole persists (will see examples later)

• The above is also called the persistence barcode

• So persistence barcodes and persistence diagrams are just the same things displayed in 
different ways (we sometimes also use the two terms interchangeably)
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Resulting PD
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• Notice: instead of drawing each pair of birth / death as a point on 2D plane, we just let each 
pair of birth and death form an interval, indicating the “time” in which a certain homology 
hole persists (will see examples later)

• The above is also called the persistence barcode

• So persistence barcodes and persistence diagrams are just the same things displayed in 
different ways (we sometimes also use the two terms interchangeably)

• Also notice: In persistence barcode, we always draw each interval as left-closed, right open 
(there is a technical reason for this but explaining this a little beyond scope)

1      2      3       4     5      6      7      8      9      10   11    12    13    14    15    16    17    18             

Resulting PD

Image source: Edelsbrunner, Letscher, and Zomorodian. Topological persistence and simplification.
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• We also notice that the cycle recorded in the “𝜁 table” indeed captures the 
homology hole born and died with a birth-death interval in the barcode (point 
in the PD)
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Resulting PD
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• We also notice that the cycle recorded in the “𝜁 table” indeed captures the 
homology hole born and died with a birth-death interval in the barcode (point 
in the PD)

• i.e., for an interval [𝑏, 𝑑), 𝜁[𝜎𝑏] represents the homology feature born at the 
index 𝑏 and dying at index 𝑑.
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• We also notice that the cycle recorded in the “𝜁 table” indeed captures the 
homology hole born and died with a birth-death interval in the barcode (point 
in the PD)

• i.e., for an interval [𝑏, 𝑑), 𝜁[𝜎𝑏] represents the homology feature born at the 
index 𝑏 and dying at index 𝑑.

• This 𝜁[𝜎𝑏] is also called the representative for the interval [𝑏, 𝑑).
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Resulting PD
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Image source: Edelsbrunner, Letscher, and Zomorodian. Topological persistence and simplification.
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Image source: Edelsbrunner, Letscher, and Zomorodian. Topological persistence and simplification.
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Image source: Edelsbrunner, Letscher, and Zomorodian. Topological persistence and simplification.
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[3,10) ∈ 𝑃𝐷0,
      which is the gap
      between 𝑠 and 𝑢. 

• The gap disappears 
when the two points 
become connected
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𝜎𝑖, if the while loop 
ends with 𝑧 = 0, then 
the simplex 𝜎𝑖  is called 
positive

• It means that inserting 
𝜎𝑖  creates a new 
homology hole



Image source: Edelsbrunner, Letscher, and Zomorodian. Topological persistence and simplification.
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• E.g., inserting 𝜎8 =
𝑡𝑤 creates the blue 
1d hole



• If the while loop ends 
with 𝑧 ≠ 0, then the 
simplex 𝜎𝑖  is called 
negative



• If the while loop ends 
with 𝑧 ≠ 0, then the 
simplex 𝜎𝑖  is called 
negative

• It means that inserting 
𝜎𝑖  creates a homology 
hole die (becomes 
trivial)
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• E.g., inserting 
𝜎16 = 𝑠𝑡𝑢 kills the 
blue 1d hole



We have that line 10 in 
the algorithm is always 
pairing

• a positive simplex 𝜎𝑗

with 
• a negative simplex 𝜎𝑖
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The algorithm takes 
𝑂(𝑚3) time:
First of all, summing two 
cycles in line 8 takes 
𝑂(𝑚) time
• You could either 

represent a cycle 𝑧 (a 
set of simplices) as a 
0-1 list where the 𝑖-th 
item is 1 iff 𝜎𝑖  is in 𝑧

• Or represent 𝑧 as a 
sorted list of integers 
such that 𝑖 is in the list 
iff 𝜎𝑖  is in 𝑧

In the worst case, both 
inner and outer loop 
iterates 𝑂(𝑚) time, and 
hence 𝑂(𝑚3) oveall
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• Recall part of the reason we introduce the previous algorithm for computing 
PD is to formally define PD on a discrete filtration

• But the algorithm only takes a simplex-wise filtration as input, so technically 
we only defined PD on a simplex-wise filtration 

• We shall now define PD on a general filtration not necessarily simplex-wise 
• The process is as follows:

1. “Expand” the general filtration ℱ into a simplex-wise one ℱ′

• Aka, for an inclusion in ℱ which inserts 𝑘 number of simplices, we 
convert it into 𝑘 inclusions each inserting a single simplex

2. Compute PD(ℱ′)

3. Convert PD(ℱ′) into PD(ℱ) by “contracting” each interval PD(ℱ′) 
based on the correspondence between 

4. During the contraction, some intervals in PD(ℱ′) may disappear (birth 
and death coincide)

PD for General Filtration



Expand general filtration to simplex wise
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Expand general filtration to simplex wise

𝐾0 𝐾1 𝐾2 𝐾3 𝐾4

Image source: Patrick Schnider. Introduction to Topological Data Analysis Lecture Notes FS 2023 
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𝐾′0 = ∅



• Another interactive example for correspondence between a general filtration 
and its simplex-wise version: https://iuricichf.github.io/ICT/algorithm.html

Expand general filtration to simplex wise

https://iuricichf.github.io/ICT/algorithm.html
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[ )

[

“Contracting” 4,10 ∈ 𝑃𝐷(ℱ′) into one for 𝑃𝐷(ℱ):
• 4,10 ∈ 𝑃𝐷(ℱ′) dies in 𝐾′10, which specifically is when go from 𝐾′9 to 𝐾′10

• In ℱ, the homology feature dies when we go from 𝐾3 to 𝐾4, aka in 𝐾4



PD for General Filtration

[ )

[ )

“Contracting” 4,10 ∈ 𝑃𝐷(ℱ′) into one for 𝑃𝐷(ℱ):
• 4,10 ∈ 𝑃𝐷(ℱ′) dies in 𝐾′10, which specifically is when go from 𝐾′9 to 𝐾′10

• In ℱ, the homology feature dies when we go from 𝐾3 to 𝐾4, aka in 𝐾4

• So the corresponding interval in 𝑃𝐷(ℱ) is [2,4)



PD for General Filtration

[ )

5,8 ∈ 𝑃𝐷(ℱ′) does not correspond to any interval in 𝑃𝐷(ℱ):
• In ℱ, the homology feature is born in 𝐾3 and dies also 𝐾3 (so it’s ephemeral)



Image source: Edelsbrunner, Letscher, and Zomorodian. Topological persistence and simplification.
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Image source: Edelsbrunner, Letscher, and Zomorodian. Topological persistence and simplification.
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𝐾3

𝐾10
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𝐾11

𝐾17

1 2 3 2 5 3

4 5 6 10 11 7
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• For the previous 
simplex-wise 
filtration, we can 
skip some 
complexes and 
renumber them

• Then [8,16) in the 
simplex-wise 
filtration becomes 
[5,10) in the non-
simplex-wise

• But they are 
essential “same” 
interval 
(representatives 
are the same)
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