
Persistent Homology: Intro
Tao Hou, University of Oregon



1. Intro to persistent homology 
• Build intuitions of persistent homology: what it does, what it produces

2. Formalizing persistent homology
• Introduce its input (filtration) and study an algorithm for computation

3. Different ways for building filtrations
• Vietoris-Rips filtration, sub-levelset filtration
• Cubical complexes (for images)

4. Interpretation and stability of persistence diagram

Outline for studying persistent homology
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• We know now that, given a topological space (e.g., a simplicial complex), we 
can use homology (e.g., Betti number or homology basis) to infer the shape of 
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• We know now that, given a topological space (e.g., a simplicial complex), we 
can use homology (e.g., Betti number or homology basis) to infer the shape of 
the data in different dimensions

• Ex: There is a 0-dimensional hole of the following complex because of the 
gap between the two connected components

Homology inference



• We know now that, given a topological space (e.g., a simplicial complex), we 
can use homology (e.g., Betti number or homology basis) to infer the shape of 
the data in different dimensions

• Ex: The homology basis for the 1-cycles in the below simplicial complex 
contains the single red 1-cycle. 
• So that we can use the red cycle to represent the 1-dimensional 

“homological features” of the space

Homology inference

Image source: Yan et al. Persistence 
Landscape based Topological Data Analysis 
for Personalized Arrhythmia Classification 



• We know now that, given a topological space (e.g., a simplicial complex), we 
can use homology (e.g., Betti number or homology basis) to infer the shape of 
the data in different dimensions

• Ex: The 1-dimensional homological features of a torus can be characterized 
by two cycles: 
• 𝑎 (longitude) and 𝑏 (meridian)

Homology inference



• Homology theory was invented by Poincaré about 100 years ago
• So far, the inference of the shape of topological spaces using 

homology theory seems perfect
• But is there any problem?
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• Homology theory was invented by Poincaré about 100 years ago
• So far, the inference of the shape of topological spaces using 

homology theory seems perfect
• But is there any problem?
• We shall look at at least two problems with it

Homology inference



• Homology inference relies on given a simplicial complex as input

Homology inference: Problem 1
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• Homology inference relies on given a simplicial complex as input
• Simplicial complex is “highly structured” data, while in practice 

we don’t have the luxury of always having data rich structure
• Typically, data come in as “unstructured” (e.g., point clouds)

Homology inference: Problem 1

• For the right point cloud (which is 
unstructured), everyone could see that it 
consists of two rings (1-cycles)

• But we have to construct a simplicial 
complex from the point cloud first to infer 
this information

Image source: https://medium.com/@deltorobarba/quantum-topological-data-
analysis-the-most-powerful-quantum-machine-learning-algorithm-part-1-c6d055f2a4de



• There are mature methods on reconstruction from point clouds. 
• In 2D:

Homology inference: Problem 1

Image source: https://www.youtube.com/watch?v=JExKRTSI0Po
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• There are mature methods on reconstruction from point clouds. 
• In 3D:

Homology inference: Problem 1

Image source: https://elmoatazbill.users.greyc.fr/point_cloud/index.html



• There are mature methods on reconstruction from point clouds. 
• In 3D:

Homology inference: Problem 1

Image source: https://elmoatazbill.users.greyc.fr/point_cloud/index.html



• There are mature methods on reconstruction from point clouds. 
• But there still are problems:

1. The reconstructions process can be costly
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• There are mature methods on reconstruction from point clouds. 
• But there still are problems:

1. The reconstructions process can be costly
2. There are probably more information in the original 

unstructured data than is reconstructed
3. Reconstruction from point clouds which are not nicely 

shaped is very hard if at all possible

Homology inference: Problem 1

Image source: https://prototechsolutions.com/cad-notes/lasso-selection-tool/



• In the following space, there are seven 1-dimensional holes (i.e., 
homology basis contains seven non-trivial 1-cycles)

Homology inference: Problem 2

Image source: https://kids.frontiersin.org/articles/10.3389/frym.2021.551557



• In the following space, there are seven 1-dimensional holes (i.e., 
homology basis contains seven non-trivial 1-cycles)

• We all could see that the three circled ones are more “significant 
features”, while the remaining ones could be well due to some 
“artifacts” or “noise”
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• In the following space, there are seven 1-dimensional holes (i.e., 
homology basis contains seven non-trivial 1-cycles)

• We all could see that the three circled ones are more “significant 
features”, while the remaining ones could be well due to some 
“artifacts” or “noise”

Homology inference: Problem 2

Image source: https://kids.frontiersin.org/articles/10.3389/frym.2021.551557

• i.e., with some “perturbation” on the data, 
the four small holes could simply 
disappear

• But using homology basis we could not 
differentiate the “more significant holes” 
from the “less significant ones”



• Similarly, in the following space, there are three 1-dimensional 
holes, but there is clearly a “more significant” one and two “less 
significant” ones which also be some artifacts

• Again, using just homology basis we could not differentiate them

Homology inference: Problem 2

Image source: Gunnar Carlsson, Topology and Data



Solution: Persistent homology



• Solving problem 1:

• For the point cloud, persistent homology produces a “topological signature” 
called persistence diagram

• In the diagram, the blue dots represents the two rings, thus correctly 
inferring the topological structure of the point cloud

Solution: Persistent homology

Image source: https://medium.com/@deltorobarba/quantum-topological-data-
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• Solving problem 2:

• For the above shape, its persistence diagram provides a measure of the 
“size” (i.e., “significance”) of the 1-dimensional holes so that we can 
differentiate the three more significant ones from the remaining

Solution: Persistent homology

Image source: https://kids.frontiersin.org/articles/10.3389/frym.2021.551557



• The input to persistent homology is a growing topological space

Persistent homology, more formally

Image source: https://medium.com/@deltorobarba/quantum-topological-data-
analysis-the-most-powerful-quantum-machine-learning-algorithm-part-1-c6d055f2a4de
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• The input to persistent homology is a growing topological space
• Given this, it produces a persistence diagram, which is a robust (i.e., stable) 

“topological signature” that captures the multi-scale topological features 
(aka. holes) of the data in arbitrary dimensions

Persistent homology, more formally

Image source: https://medium.com/@deltorobarba/quantum-topological-data-
analysis-the-most-powerful-quantum-machine-learning-algorithm-part-1-c6d055f2a4de
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Idea:
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Idea:
• The growing space can be more formally defined as follows: 

• We let a value 𝛼 ranges, say, from 0 to ∞ 

• Let each value 𝛼 corresponds to a topological space so that
• The topological space grows as 𝛼 increases from 0 to ∞ 

Persistent homology, more formally
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Idea:
• The growing space can be more formally defined as follows: 

• We let a value 𝛼 ranges, say, from 0 to ∞ 

• Let each value 𝛼 corresponds to a topological space so that
• The topological space grows as 𝛼 increases from 0 to ∞ 

• Then, as 𝛼 increase, we track the changes of the homology features of the 
corresponding spaces

Persistent homology, more formally

Image source: https://medium.com/@deltorobarba/quantum-topological-data-
analysis-the-most-powerful-quantum-machine-learning-algorithm-part-1-c6d055f2a4de

𝛼:
𝛼1 𝛼2 𝛼3 𝛼4



Examples:
• https://gjkoplik.github.io/pers-hom-examples/0d_pers_2d_data_widget.html
• https://gjkoplik.github.io/pers-hom-examples/1d_pers_2d_data_widget.html

Persistent homology, more formally

Image source: https://medium.com/@deltorobarba/quantum-topological-data-
analysis-the-most-powerful-quantum-machine-learning-algorithm-part-1-c6d055f2a4de

𝛼:
𝛼1 𝛼2 𝛼3 𝛼4

https://gjkoplik.github.io/pers-hom-examples/0d_pers_2d_data_widget.html
https://gjkoplik.github.io/pers-hom-examples/1d_pers_2d_data_widget.html


• Definition: A persistence diagram (PD) is a set of points on the 2D plane 
above the diagonal such that:
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• Definition: A persistence diagram (PD) is a set of points on the 2D plane 
above the diagonal such that:
• Each point in the PD represents the birth and death a homological feature 

(aka. cycle / hole) of the data in a certain dimension.
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• Definition: A persistence diagram (PD) is a set of points on the 2D plane 
above the diagonal such that:
• Each point in the PD represents the birth and death a homological feature 

(aka. cycle / hole) of the data in a certain dimension.
• A point (𝑏, 𝑑): 

• 𝑏 indicates birth value (the 𝛼 value in which the feature is born) 
• 𝑑 indicates death value (the 𝛼 value in which the feature is dies) 
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• Definition: A persistence diagram (PD) is a set of points on the 2D plane 
above the diagonal such that:
• Each point in the PD represents the birth and death a homological feature 

(aka. cycle / hole) of the data in a certain dimension.
• A point (𝑏, 𝑑): 

• 𝑏 indicates birth value (the 𝛼 value in which the feature is born) 
• 𝑑 indicates death value (the 𝛼 value in which the feature is dies) 
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• Definition: A persistence diagram (PD) is a set of points on the 2D plane 
above the diagonal such that:
• Each point in the PD represents the birth and death a homological feature 

(aka. cycle / hole) of the data in a certain dimension.
• A point (𝑏, 𝑑): 

• 𝑏 indicates birth value (the 𝛼 value in which the feature is born) 
• 𝑑 indicates death value (the 𝛼 value in which the feature is dies) 

Image source: https://medium.com/@deltorobarba/quantum-topological-data-
analysis-the-most-powerful-quantum-machine-learning-algorithm-part-1-c6d055f2a4de

𝛼:
𝛼1 𝛼2 𝛼3 𝛼4Feature 

gets born
Feature 

dies

𝑏 𝑑

(𝑏, 𝑑)

Persistent homology, more formally



• Notice that homology features / holes are in different dimensions
• The PD where points corresponding to 𝑑-dimensional holes is also called the 

𝑑-dimensional / 𝑑-th PD which is typically denoted as 𝑃𝐷𝑑

• And of course, we could also have the PD in all dimensions (this id the PD by 
default)

Image source: https://medium.com/@deltorobarba/quantum-topological-data-
analysis-the-most-powerful-quantum-machine-learning-algorithm-part-1-c6d055f2a4de

𝛼:
𝛼1 𝛼2 𝛼3 𝛼4
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• Persistent homology is proposed roughly around 2000 (or earlier) by several 
works

• The following is by no means a comprehensive list of works:
• Edelsbrunner, Letscher and Zomorodian, 2002. Topological persistence 

and simplification.
• Zomorodian, A. and Carlsson, G., 2004, June. Computing persistent 

homology.
• Carlsson, G., 2009. Topology and data.
• Ghrist, R., 2008. Barcodes: the persistent topology of data.
• Singh, G., Mémoli, F. and Carlsson, G.E., 2007. Topological methods for 

the analysis of high dimensional data sets and 3d object recognition.

Persistent homology: History



• We try to infer the homology for the following point cloud data

Motivation: Homology inference from points clous

Image source: Bobrowski 
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null-distribution for 
topological data analysis.
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• We try to infer the homology for the following point cloud data
• For this, we need to build a meaningful topological space 
• Our strategy is to connect the dots by increasing their size, as before 

Motivation: Homology inference from points clous
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• We try to infer the homology for the following point cloud data
• For this, we need to build a meaningful topological space 
• Our strategy is to connect the dots by increasing their size, as before 
• Notice that there are different choices of the size

Motivation: Homology inference from points clous

Image source: Bobrowski 
O, Skraba P. A universal 
null-distribution for 
topological data analysis.



• Technically, a point does not have “size”, so what we are actually doing 
here  is that we put a 2-dimensional ball around each point, where all 
such balls have the same radius.

Motivation: Homology inference from points clous

Image source: Bobrowski 
O, Skraba P. A universal 
null-distribution for 
topological data analysis.



• Technically, a point does not have “size”, so what we are actually doing 
here  is that we put a 2-dimensional ball around each point, where all 
such balls have the same radius.

• For each different radius, the homology can be vastly different, with different 
cycles in the homology basis corresponding to the different radii
• We focus on the 1-cycles (1-dimensional holes) in the example
• For each radius, the colored cycles form the homology basis

Motivation: Homology inference from points clous

Image source: Bobrowski 
O, Skraba P. A universal 
null-distribution for 
topological data analysis.



• Question: What is a correct radius to infer the shape of the point cloud?
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• Question: What is a correct radius to infer the shape of the point cloud?
• Answer: It’s really hard to know, and there probably is no such “correct” 

radius

Motivation: Homology inference from points clous

Image source: Bobrowski 
O, Skraba P. A universal 
null-distribution for 
topological data analysis.



• Solution: Consider all radius, and track the changes of the 1-cycles in the 
homology basis as we increase the radius

Motivation: Homology inference from points clous

Image source: Bobrowski 
O, Skraba P. A universal 
null-distribution for 
topological data analysis.



• Solution: Consider all radius, and track the changes of the 1-cycles in the 
homology basis as we increase the radius

• As the radius increases, different cycles in the basis could appear (getting 
born) or becomes trivial (dies).

Motivation: Homology inference from points clous

Image source: Bobrowski 
O, Skraba P. A universal 
null-distribution for 
topological data analysis.



• Solution: Consider all radius, and track the changes of the 1-cycles in the 
homology basis as we increase the radius

• As the radius increases, different cycles in the basis could appear (getting 
born) or becomes trivial (dies).

• We pair the births and deaths, which are the points in the PD

Motivation: Homology inference from points clous

Image source: Bobrowski 
O, Skraba P. A universal 
null-distribution for 
topological data analysis.



• 𝛼0: nothing happens.

Image: Bobrowski, Skraba. A universal null-distribution for topological data analysis
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• 𝛼1: purple cycle born
• 𝛼2: purple cycle dies

⇒ (𝛼1, 𝛼2)

• 𝛼3: red cycle born



• 𝛼0: nothing happens.
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𝛼2 𝛼4

• 𝛼1: purple cycle born
• 𝛼2: purple cycle dies

⇒ (𝛼1, 𝛼2)

• 𝛼3: red cycle born
• 𝛼4: blue cycle born



• 𝛼0: nothing happens.

Image: Bobrowski, Skraba. A universal null-distribution for topological data analysis

𝛼0

𝛼1 𝛼3 𝛼5

𝛼2 𝛼4

• 𝛼1: purple cycle born
• 𝛼2: purple cycle dies

⇒ (𝛼1, 𝛼2)

• 𝛼3: red cycle born
• 𝛼4: blue cycle born

• 𝛼5: green cycle born



• 𝛼0: nothing happens.
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𝛼2 𝛼4 𝛼6

• 𝛼1: purple cycle born
• 𝛼2: purple cycle dies

⇒ (𝛼1, 𝛼2)

• 𝛼3: red cycle born
• 𝛼4: blue cycle born

• 𝛼5: green cycle born

• 𝛼6: red cycle dies



• 𝛼0: nothing happens.
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𝛼0

𝛼1 𝛼3 𝛼5

𝛼2 𝛼4 𝛼6

• 𝛼1: purple cycle born
• 𝛼2: purple cycle dies

⇒ (𝛼1, 𝛼2)

• 𝛼3: red cycle born
• 𝛼4: blue cycle born

• 𝛼5: green cycle born

• 𝛼6: red cycle dies ⇒ (𝛼3, 𝛼6)



• 𝛼0: nothing happens.
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𝛼0

𝛼1 𝛼3 𝛼5 𝛼7

𝛼2 𝛼4 𝛼6

• 𝛼1: purple cycle born
• 𝛼2: purple cycle dies

⇒ (𝛼1, 𝛼2)

• 𝛼3: red cycle born
• 𝛼4: blue cycle born

• 𝛼5: green cycle born

• 𝛼6: red cycle dies

• 𝛼7: blue cycle dies
⇒ (𝛼3, 𝛼6)



• 𝛼0: nothing happens.
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𝛼0

𝛼1 𝛼3 𝛼5 𝛼7

𝛼2 𝛼4 𝛼6

• 𝛼1: purple cycle born
• 𝛼2: purple cycle dies

⇒ (𝛼1, 𝛼2)

• 𝛼3: red cycle born
• 𝛼4: blue cycle born

• 𝛼5: green cycle born

• 𝛼6: red cycle dies

• 𝛼7: blue cycle dies
⇒ (𝛼3, 𝛼6)

⇒ (𝛼4, 𝛼7)



• 𝛼0: nothing happens.

Image: Bobrowski, Skraba. A universal null-distribution for topological data analysis

𝛼0

𝛼1 𝛼3 𝛼5 𝛼7

𝛼2 𝛼4 𝛼6 𝛼8

• 𝛼1: purple cycle born
• 𝛼2: purple cycle dies

⇒ (𝛼1, 𝛼2)

• 𝛼3: red cycle born
• 𝛼4: blue cycle born

• 𝛼5: green cycle born

• 𝛼6: red cycle dies

• 𝛼7: blue cycle dies
⇒ (𝛼3, 𝛼6)

• 𝛼8: green cycle dies

⇒ (𝛼4, 𝛼7)



• 𝛼0: nothing happens.

Image: Bobrowski, Skraba. A universal null-distribution for topological data analysis

𝛼0

𝛼1 𝛼3 𝛼5 𝛼7

𝛼2 𝛼4 𝛼6 𝛼8

• 𝛼1: purple cycle born
• 𝛼2: purple cycle dies

⇒ (𝛼1, 𝛼2)

• 𝛼3: red cycle born
• 𝛼4: blue cycle born

• 𝛼5: green cycle born

• 𝛼6: red cycle dies

• 𝛼7: blue cycle dies
⇒ (𝛼3, 𝛼6)

• 𝛼8: green cycle dies

⇒ (𝛼4, 𝛼7)

⇒ (𝛼5, 𝛼8)
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• So we have a 1-dimensional PD on the left with the four points corresponding to 
the different cycles born and died in the growing spaces with different 𝛼 value, 
matching the colors 
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Image: Bobrowski, Skraba. A universal null-distribution for topological data analysis

𝛼0

𝛼1 𝛼3 𝛼5 𝛼7

𝛼2 𝛼4 𝛼6 𝛼8

• Furthermore, we have that distances of the points to diagonal indicate the 
difference of birth and death (how long a cycle persist), which in turn indicate the 
significance of the feature



• Given a growing topological space, produce a set of points on the 2D 
plane (above the diagonal) called persistence diagram (PD) such that:
• each point in the PD represents a homological feature (aka. cycle / hole) 

of the data in a certain dimension.

Persistent homology: Brief Summary

Image: Bobrowski, Skraba. A universal null-distribution for topological data analysis



• A webpage for visualizing 1–dim PD: https://gjkoplik.github.io/pers-hom-
examples/1d_pers_2d_data_widget.html

Online resources

https://gjkoplik.github.io/pers-hom-examples/1d_pers_2d_data_widget.html
https://gjkoplik.github.io/pers-hom-examples/1d_pers_2d_data_widget.html


Image source: Makarenko et al. Topological data analysis and diagnostics of compressible MHD turbulence 

• For another example of persistent homology, 
we look at the left curve 𝑦 = 𝑓(𝑥)

• Again, we consider a growing space
• Each space in the growing sequence is part 

of the curve below a certain horizontal line
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• For another example of persistent homology, 
we look at the left curve 𝑦 = 𝑓(𝑥)

• Again, we consider a growing space
• Each space in the growing sequence is part 

of the curve below a certain horizontal line
• Left is an example for horizontal line 𝑦 = 2.5
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• For another example of persistent homology, 
we look at the left curve 𝑦 = 𝑓(𝑥)

• Again, we consider a growing space
• Each space in the growing sequence is part 

of the curve below a certain horizontal line
• Left is an example for horizontal line 𝑦 = 2.5

• As the space grows, we track the changes of 
0-dimensional homology 
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• For another example of persistent homology, 
we look at the left curve 𝑦 = 𝑓(𝑥)

• Again, we consider a growing space
• Each space in the growing sequence is part 

of the curve below a certain horizontal line
• Left is an example for horizontal line 𝑦 = 2.5

• As the space grows, we track the changes of 
0-dimensional homology 

• i.e., we track the changes of the connected 
components and the gaps in between



Image source: Makarenko et al. Topological data analysis and diagnostics of compressible MHD turbulence 

• For another example of persistent homology, 
we look at the left curve 𝑦 = 𝑓(𝑥)

• Again, we consider a growing space
• Each space in the growing sequence is part 

of the curve below a certain horizontal line
• Left is an example for horizontal line 𝑦 = 2.5

• As the space grows, we track the changes of 
0-dimensional homology 

• i.e., we track the changes of the connected 
components and the gaps in between

• On the left, there are three connected 
components with two gaps in between



Image source: Makarenko et al. Topological data analysis and diagnostics of compressible MHD turbulence 

𝑦 = 0.5

• We have that there is a single connected 
component (red) below the line 𝑦 = 0.5
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𝑦 = 0.5

• We have that there is a single connected 
component (red) below the line 𝑦 = 0.5

• In general, suppose that 𝑓(𝑥) approaches -∞ 
as 𝑥 approaches 0, we have that there is a 
single connected component below the line 
𝑦 = 𝛼 for any 𝛼 ≤ 0.5
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𝑦 = 0.5

• We have that there is a single connected 
component (red) below the line 𝑦 = 0.5

• In general, suppose that 𝑓(𝑥) approaches -∞ 
as 𝑥 approaches 0, we have that there is a 
single connected component below the line 
𝑦 = 𝛼 for any 𝛼 ≤ 0.5

• So we can assume the red connected 
component is born at the value -∞
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𝑦 = 0.5

• We have that there is a single connected 
component (red) below the line 𝑦 = 0.5

• In general, suppose that 𝑓(𝑥) approaches -∞ 
as 𝑥 approaches 0, we have that there is a 
single connected component below the line 
𝑦 = 𝛼 for any 𝛼 ≤ 0.5

• So we can assume the red connected 
component is born at the value -∞

• Red: born at -∞
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𝑦 = 1.0

• Red: born at -∞

• Red component continues
• A new purple component is born
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𝑦 = 1.0

• Red: born at -∞

• Red component continues
• A new purple component is born

• Purple: born at 1.0



Image source: Makarenko et al. Topological data analysis and diagnostics of compressible MHD turbulence 

𝑦 = 1.5

• Red: born at -∞

• Red and purple components continue

• Purple: born at 1.0
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𝑦 = 2.0

• Red: born at -∞

• Red and purple components continue
• A new blue component is born

• Purple: born at 1.0
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𝑦 = 2.0

• Red: born at -∞

• Red and purple components continue
• A new blue component is born

• Purple: born at 1.0 • Blue: born at 2.0



Image source: Makarenko et al. Topological data analysis and diagnostics of compressible MHD turbulence 

𝑦 = 2.5

• Red: born at -∞

• Three components continue

• Purple: born at 1.0 • Blue: born at 2.0
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𝑦 = 3.0

• Red: born at -∞

• The purple and blue components merge into 
one (gaps between them disappear)

• Purple: born at 1.0 • Blue: born at 2.0



Image source: Makarenko et al. Topological data analysis and diagnostics of compressible MHD turbulence 

𝑦 = 3.0

• Red: born at -∞

• The purple and blue components merge into 
one (gaps between them disappear)

• The means that a 0-dimensional homology 
hole disappears (dies)

• Purple: born at 1.0 • Blue: born at 2.0
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𝑦 = 3.0

• Red: born at -∞

• The purple and blue components merge into 
one (gaps between them disappear)

• The means that a 0-dimensional homology 
hole disappears (dies)

• The gap between purple and blue 
components appears because of birth of the 
blue component

• Purple: born at 1.0 • Blue: born at 2.0
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𝑦 = 3.0

• Red: born at -∞

• The purple and blue components merge into 
one (gaps between them disappear)

• The means that a 0-dimensional homology 
hole disappears (dies)

• The gap between purple and blue 
components appears because of birth of the 
blue component

• So we consider the gap to be born when the 
blue component is born, i.e., at 2.0

• Purple: born at 1.0 • Blue: born at 2.0
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𝑦 = 3.0

• Red: born at -∞

• The purple and blue components merge into 
one (gaps between them disappear)

• The means that a 0-dimensional homology 
hole disappears (dies)

• The gap between purple and blue 
components appears because of birth of the 
blue component

• So we consider the gap to be born when the 
blue component is born, i.e., at 2.0

• So we have a 0-dimensional hole born at 2.0 
and dies at 3.0 

• Purple: born at 1.0 • Blue: born at 2.0
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𝑦 = 3.0

• Red: born at -∞

• The purple and blue components merge into 
one (gaps between them disappear)

• The means that a 0-dimensional homology 
hole disappears (dies)

• The gap between purple and blue 
components appears because of birth of the 
blue component

• So we consider the gap to be born when the 
blue component is born, i.e., at 2.0

• So we have a 0-dimensional hole born at 2.0 
and dies at 3.0 

• Purple: born at 1.0 • Blue: born at 2.0• PD: (2.0, 3.0) 
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𝑦 = 3.0

• Red: born at -∞ • Purple: born at 1.0 • PD: (2.0, 3.0) 

• For the merged component, we keep the one 
born earlier (purple), and kill the one born 
later (blue)
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𝑦 = 3.0

• Red: born at -∞ • Purple: born at 1.0 • PD: (2.0, 3.0) 

• For the merged component, we keep the one 
born earlier (purple), and kill the one born 
later (blue)

• So we have a larger purple component born 
at 1.0



Image source: Makarenko et al. Topological data analysis and diagnostics of compressible MHD turbulence 

𝑦 = 3.5

• Red: born at -∞ • Purple: born at 1.0 • PD: (2.0, 3.0) 

• Two components continue
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𝑦 = 4.0

• Red: born at -∞ • Purple: born at 1.0 • PD: (2.0, 3.0) 

• The red and purple components merge into 
one (gaps between them disappear)
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𝑦 = 4.0

• Red: born at -∞ • Purple: born at 1.0 • PD: (2.0, 3.0) 

• The red and purple components merge into 
one (gaps between them disappear)

• A 0-dimensional homology hole disappears 
(dies)
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𝑦 = 4.0

• Red: born at -∞ • Purple: born at 1.0 • PD: (2.0, 3.0) 

• The red and purple components merge into 
one (gaps between them disappear)

• A 0-dimensional homology hole disappears 
(dies)

• The gap between red and purple components 
appears because of birth of the purple 
component
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𝑦 = 4.0

• Red: born at -∞ • Purple: born at 1.0 • PD: (2.0, 3.0) 

• The red and purple components merge into 
one (gaps between them disappear)

• A 0-dimensional homology hole disappears 
(dies)

• The gap between red and purple components 
appears because of birth of the purple 
component

• So the gap is born at 1.0
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𝑦 = 4.0

• Red: born at -∞ • Purple: born at 1.0 • PD: (2.0, 3.0) 

• The red and purple components merge into 
one (gaps between them disappear)

• A 0-dimensional homology hole disappears 
(dies)

• The gap between red and purple components 
appears because of birth of the purple 
component

• So the gap is born at 1.0

• So we have a 0-dimensional hole born at 1.0 
and dies at 4.0 
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𝑦 = 4.0

• Red: born at -∞ • Purple: born at 1.0 • PD: (2.0, 3.0) 

• The red and purple components merge into 
one (gaps between them disappear)

• A 0-dimensional homology hole disappears 
(dies)

• The gap between red and purple components 
appears because of birth of the purple 
component

• So the gap is born at 1.0

• So we have a 0-dimensional hole born at 1.0 
and dies at 4.0 

• PD: (1.0, 4.0) 



Image source: Makarenko et al. Topological data analysis and diagnostics of compressible MHD turbulence 

𝑦 = 4.0

• Red: born at -∞ • PD: (2.0, 3.0) • PD: (1.0, 4.0) 

• For the merged component, we keep the one 
born earlier (red), and kill the one born later 
(purple)
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𝑦 = 4.0

• Red: born at -∞ • PD: (2.0, 3.0) • PD: (1.0, 4.0) 

• For the merged component, we keep the one 
born earlier (red), and kill the one born later 
(purple)

• So we have a single red component born at    
-∞



Image source: Makarenko et al. Topological data analysis and diagnostics of compressible MHD turbulence 

𝛼 arbitrary large

• Red: born at -∞ • PD: (2.0, 3.0) • PD: (1.0, 4.0) 

• As the value for the line keeps on increasing 
to +∞, the single red component will keep on 
persisting

• So we have the red component born at -∞ 
and dies at +∞
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𝛼 arbitrary large

• Red: born at -∞ • PD: (2.0, 3.0) • PD: (1.0, 4.0) 

• As the value for the line keeps on increasing 
to +∞, the single red component will keep on 
persisting

• So we have the red component born at -∞ 
and dies at +∞

• PD: (−∞, +∞) 
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Summary:
• We have three points in the 0-dimension PD
• Each point is tracking the birth and death of a 

connect component (or gap in between)

• PD: (2.0, 3.0) • PD: (1.0, 4.0) • PD: (−∞, +∞) 
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Summary:
• We have three points in the 0-dimension PD
• Each point is tracking the birth and death of a 

connect component (or gap in between)
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Image source: Makarenko et al. Topological data analysis and diagnostics of compressible MHD turbulence 

Summary:
• We have three points in the 0-dimension PD
• Each point is tracking the birth and death of a 

connect component (or gap in between)

• PD: (2.0, 3.0) • PD: (1.0, 4.0) • PD: (−∞, +∞) 



• A webpage for visualizing 0–th PD: https://gjkoplik.github.io/pers-hom-
examples/0d_pers_2d_data_widget.html

Online resources

https://gjkoplik.github.io/pers-hom-examples/0d_pers_2d_data_widget.html
https://gjkoplik.github.io/pers-hom-examples/0d_pers_2d_data_widget.html


A similar but more involved example

Image source: Makarenko et al. Topological data analysis and diagnostics of compressible MHD turbulence 



A similar but more involved example

Image source: Makarenko et al. Topological data analysis and diagnostics of compressible MHD turbulence 



Persistent homology on 2D function

Image source: Makarenko et al. Topological data analysis and diagnostics of compressible MHD turbulence 

• Let’s visualize another example on a 2D function
 𝑓: ℝ2 → ℝ 



Persistent homology on 2D function

Image source: Makarenko et al. Topological data analysis and diagnostics of compressible MHD turbulence 

• Let’s visualize another example on a 2D function
 𝑓: ℝ2 → ℝ 

• Right is an example where the value is indicated by 
color (red for high and blue for low)



Persistent homology on 2D function

Image source: Makarenko et al. Topological data analysis and diagnostics of compressible MHD turbulence 

• Let’s visualize another example on a 2D function
 𝑓: ℝ2 → ℝ 

• Right is an example where the value is indicated by 
color (red for high and blue for low)

• You can also treat the value on each point of ℝ2 as 
a “height”, and plot the function like the bottom 
one



Persistent homology on 2D function

Image source: Makarenko et al. Topological data analysis and diagnostics of compressible MHD turbulence 

• Let’s visualize another example on a 2D function
 𝑓: ℝ2 → ℝ 

• Right is an example where the value is indicated by 
color (red for high and blue for low)

• You can also treat the value on each point of ℝ2 as 
a “height”, and plot the function like the bottom 
one

• Similar to the previous 1D function, as we increase 
the value 𝛼, we consider the part (subset) of the 
domain ℝ2 whose values are below 𝛼



Persistent homology on 2D function

Image source: Makarenko et al. Topological data analysis and diagnostics of compressible MHD turbulence 

• Similar to the previous 1D function, as we 
increase the value 𝛼, we consider the part 
(subset) of the domain ℝ2 whose values are 
below 𝛼



Persistent homology on 2D function

Image source: Makarenko et al. Topological data analysis and diagnostics of compressible MHD turbulence 

• Similar to the previous 1D function, as we 
increase the value 𝛼, we consider the part 
(subset) of the domain ℝ2 whose values are 
below 𝛼



Persistent homology on 2D function

Image source: Makarenko et al. Topological data analysis and diagnostics of compressible MHD turbulence 

• Similar to the previous 1D function, as we 
increase the value 𝛼, we consider the part 
(subset) of the domain ℝ2 whose values are 
below 𝛼



Persistent homology on 2D function

Image source: Makarenko et al. Topological data analysis and diagnostics of compressible MHD turbulence 

• Similar to the previous 1D function, as we 
increase the value 𝛼, we consider the part 
(subset) of the domain ℝ2 whose values are 
below 𝛼



Persistent homology on 2D function

Image source: Makarenko et al. Topological data analysis and diagnostics of compressible MHD turbulence 

• Similar to the previous 1D function, as we 
increase the value 𝛼, we consider the part 
(subset) of the domain ℝ2 whose values are 
below 𝛼



Persistent homology on 2D function

Image source: Makarenko et al. Topological data analysis and diagnostics of compressible MHD turbulence 

• Similar to the previous 1D function, as we 
increase the value 𝛼, we consider the part 
(subset) of the domain ℝ2 whose values are 
below 𝛼



Persistent homology on 2D function

Image source: Makarenko et al. Topological data analysis and diagnostics of compressible MHD turbulence 

• Similar to the previous 1D function, as we 
increase the value 𝛼, we consider the part 
(subset) of the domain ℝ2 whose values are 
below 𝛼

• Now let’s track the birth and death of 0D/1D 
holes



Persistent homology on 2D function

Image source: Makarenko et al. Topological data analysis and diagnostics of compressible MHD turbulence 

• Four connected components are born at 
different values

• (Will not display the birth of each component 
though)



Persistent homology on 2D function

Image source: Makarenko et al. Topological data analysis and diagnostics of compressible MHD turbulence 

• C1 and C4 merged into the same connected 
component, thus the gap between them is filled



Persistent homology on 2D function

Image source: Makarenko et al. Topological data analysis and diagnostics of compressible MHD turbulence 

• C1 and C4 merged into the same connected 
component, thus the gap between them is filled

• Since C1 is born earlier, we keep C1 and kill C4 
(the rule adopted by persistent homology)



Persistent homology on 2D function

Image source: Makarenko et al. Topological data analysis and diagnostics of compressible MHD turbulence 

• C1 and C4 merged into the same connected 
component, thus the gap between them is filled

• Since C1 is born earlier, we keep C1 and kill C4 
(the rule adopted by persistent homology)

• We then add a point (𝑏, 𝑑) to the 0-d PD where 𝑏 
is the value in which C4 is born and 𝑑 is current 
values where C4 dies (merges with other)



Persistent homology on 2D function

Image source: Makarenko et al. Topological data analysis and diagnostics of compressible MHD turbulence 

• As the value keep increasing, C1, C2 and C3 
merged into the same connected component, 
producing two additional points in 0-d PD



Persistent homology on 2D function

Image source: Makarenko et al. Topological data analysis and diagnostics of compressible MHD turbulence 

• As the value keep increasing, C1, C2 and C3 
merged into the same connected component, 
producing two additional points in 0-d PD

• Three additional components C5, C6 and C7 are 
born



Persistent homology on 2D function

Image source: Makarenko et al. Topological data analysis and diagnostics of compressible MHD turbulence 

• As the value keep increasing, C1, C2 and C3 
merged into the same connected component, 
producing two additional points in 0-d PD

• Three additional components C5, C6 and C7 are 
born

• Also, a 1-dimensional hole H1 is born



Persistent homology on 2D function

Image source: Makarenko et al. Topological data analysis and diagnostics of compressible MHD turbulence 

• H1 dies, producing a point in the 1-d PD



Persistent homology on 2D function

Image source: Makarenko et al. Topological data analysis and diagnostics of compressible MHD turbulence 

• H1 dies, producing a point in the 1-d PD
• A 1-dimensional hole H2 is born



Persistent homology on 2D function

Image source: Makarenko et al. Topological data analysis and diagnostics of compressible MHD turbulence 

• A 1-dimensional hole H3 is born



Persistent homology on 2D function

Image source: Makarenko et al. Topological data analysis and diagnostics of compressible MHD turbulence 

• H2 and H3 die, producing two additional points in 
the 1-d PD



Persistent homology on 3D function
• We can also extend the prev. idea and define persistence on 3D function: 

𝑓: ℝ3 → ℝ 
• Similarly, as we increase the value 𝛼, we consider the part (subset) of the 

domain ℝ3 (or a cube) whose values are below 𝛼

Adler, Robert J., Omer Bobrowski, Matthew S. Borman, 

Eliran Subag, and Shmuel Weinberger. "Persistent 
homology for random fields and complexes."



Persistence diagrams for differentiating point clouds

Image source: Wang et al. Stability for Inference with Persistent Homology Rank Functions



Persistence diagrams for differentiating point clouds

Image source: Wang et al. Stability for Inference with Persistent Homology Rank Functions

Corresponding to 
meridian and 
longitude



Persistence diagrams for differentiating point clouds

Image source: Wang et al. Stability for Inference with Persistent Homology Rank Functions

Corresponds to the 
“crust” of the bunny 
which is a 2D hole



Persistence diagrams for differentiating point clouds

Image source: Wang et al. Stability for Inference with Persistent Homology Rank Functions

This is a solid ball 
which has no 
interesting holes



Recall:
• Definition: A persistence diagram (PD) is a set of points on the 2D plane 

above the diagonal such that for each point (𝑏, 𝑑): 
• 𝑏 indicates birth value (the 𝛼 value in which the feature is born) 
• 𝑑 indicates death value (the 𝛼 value in which the feature is dies) 

Persistence barcode



Recall:
• Definition: A persistence diagram (PD) is a set of points on the 2D plane 

above the diagonal such that for each point (𝑏, 𝑑): 
• 𝑏 indicates birth value (the 𝛼 value in which the feature is born) 
• 𝑑 indicates death value (the 𝛼 value in which the feature is dies) 

• Definition: If we draw each point (𝑏, 𝑑) as a (left-closed, right open) interval 
[𝑏, 𝑑) on the real line, then what we get is a persistence barcode (so it’s just 
persistence diagram interpreted differently)
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Recall:
• Definition: A persistence diagram (PD) is a set of points on the 2D plane 

above the diagonal such that for each point (𝑏, 𝑑): 
• 𝑏 indicates birth value (the 𝛼 value in which the feature is born) 
• 𝑑 indicates death value (the 𝛼 value in which the feature is dies) 

• Definition: If we draw each point (𝑏, 𝑑) as a (left-closed, right open) interval 
[𝑏, 𝑑) on the real line, then what we get is a persistence barcode (so it’s just 
persistence diagram interpreted differently)

• Sometimes drawing points in PD as interval is a very helpful for visualizing the 
change of homological features in your data

Persistence barcode



Recall:
• Definition: A persistence diagram (PD) is a set of points on the 2D plane 

above the diagonal such that for each point (𝑏, 𝑑): 
• 𝑏 indicates birth value (the 𝛼 value in which the feature is born) 
• 𝑑 indicates death value (the 𝛼 value in which the feature is dies) 

• Definition: If we draw each point (𝑏, 𝑑) as a (left-closed, right open) interval 
[𝑏, 𝑑) on the real line, then what we get is a persistence barcode (so it’s just 
persistence diagram interpreted differently)

• Sometimes drawing points in PD as interval is a very helpful for visualizing the 
change of homological features in your data

• Notice that we sometimes use the terms “persistence diagram” and 
“persistence barcode” interchangeable, i.e., we may call a point in a PD also 
an interval.

Persistence barcode



• Corresponding barcode:

Example
𝛼0 𝛼2 𝛼4 𝛼6 𝛼8

𝛼1 𝛼3 𝛼5 𝛼7



• Corresponding barcode:

Example
𝛼0 𝛼2 𝛼4 𝛼6 𝛼8

𝛼1 𝛼3 𝛼5 𝛼7

𝛼1 𝛼3𝛼2 𝛼6 𝛼7𝛼4 𝛼5 𝛼8



Another example
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