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• Recall that a topological invariant is a type of characteristics for spaces that 
are preserved by topological equivalence (homeomorphism)

• We shall eventually look at the topological invariant called homology, which 
people heavily rely on in TDA

• But before looking at that, let’s first we look at a simpler invariant called Euler 
characteristic

Topological invariant



• Here we consider Polyhedron, which is a 3D object whose building blocks are
• Polygonal faces (2d)
• Edges (1d)
• Vertices (0d)

Euler characteristics

image source: Wikipedia
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7 vertices, 
9 edges, 
2 faces.

We wish to 
count:
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Euler characteristic (simple form): 

   = number of vertices – number of edges + number of 
faces

Or in short-hand,

  = |V| - |E| + |F|
where  V = set of vertices
              E = set of edges
              F = set of faces

Courtesy of Isabel K. Darcy: http://www.math.uiowa.edu/~idarcy/AppliedTopology.html 



= |V| – |E| + |F| 
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= |V| – |E| + |F| 

= 3 – 3 + 1 = 1
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= |V| – |E| + |F| 

= 3 – 3 + 1 = 1 = 6 – 9 + 4 = 1
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= |V| – |E| + |F| 

= 3 – 3 + 1 = 1 = 6 – 9 + 4 = 1

= 7 – 11 + 5 = 1
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= |V| – |E| + |F| 
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= |V| – |E| + |F| 

= 6 – 9  + 4 = 1
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= 7 – 9  + 2 = 0



• Euler characteristics is a topological invariant for topological spaces, 
• meaning that for two topological spaces which are equivalent 

(homeomorphic), their Euler characteristics is the same.

Conclusion



More examples
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Euler 
characteristic

0 circle 

Annulus

Mobius band

Torus = S1 x S1 
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Solid double torus

A graph of 
two cycles:

Double torus = 
boundary of solid      
            double torus
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Euler                2-dimensional orientable 
characteristic     surface without boundary 

2

 0

-2

-4

sphere

S1 x S1 = torus

genus 2 torus

genus 3 torus
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• Graphs: consist of only vertices and edges
• So, Euler characteristic becomes: 𝑉 − 𝐸

Euler characteristics for graphs



• Graphs: consist of only vertices and edges
• So, Euler characteristic becomes: 𝑉 − 𝐸

• We can use Euler characteristic to verify whether a graph is a tree
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• Graphs: consist of only vertices and edges
• So, Euler characteristic becomes: 𝑉 − 𝐸

• We can use Euler characteristic to verify whether a graph is a tree
• Definition: A tree is a connected graph that does not contain a cycle  

Euler characteristics for graphs



• Graphs: consist of only vertices and edges
• So, Euler characteristic becomes: 𝑉 − 𝐸

• We can use Euler characteristic to verify whether a graph is a tree
• Definition: A tree is a connected graph that does not contain a cycle  

• Theorem: The number of edges in a tree is always equal to the number of 
vertices − 1. So the Euler characteristic becomes

                                                 𝑉 − 𝐸 = 𝑉 − 𝑉 − 1 = 1. 

Euler characteristics for graphs



Graphs:  Identifying Trees

Defn: A tree is a connected graph that 
does not contain a cycle  

= 8 – 7 = 1           = 8 – 8 = 0            = 8 – 9 = -1 

Courtesy of Isabel K. Darcy: http://www.math.uiowa.edu/~idarcy/AppliedTopology.html 



• Before moving on to look at the more important invariant, homology
• We need another important definition that will be utilized throughout the 

course
• This solves a fundamental problem we face when we try to process shapes in 

computer: we need a way to represent shapes (topological spaces) that is 
easy for computer to process

• It turns out there have been such an invention in Mathematics already, which 
is called simplicial complex.

Representation of shapes



• A simplicial complex is a generalization of a polyhedron, with building blocks 
called simplices in different dimensions:
• 0-simplex: vertex
• 1-simplex: edge
• 2-simplex: triangle
• 3-simplex: tetrahedron
• …
• d-simplex (generalizations)

Simplicial Complex

Image source: Patrick Schnider. Introduction to Topological Data Analysis Lecture Notes FS 2023 



• The following is a simplicial complex with simplices up to dimension 3:
• 0-simplices (vertices): 18
• 1-simplices (edges): 23
• 2-simplices (triangles): 8
• 3-simplices (tetrahedra): 1

Simplicial Complex

Image source: Wikipedia



• The following is a simplicial complex with simplices up to dimension 3:
• 0-simplices (vertices): 18
• 1-simplices (edges): 23
• 2-simplices (triangles): 8
• 3-simplices (tetrahedra): 1

Simplicial Complex

• Definition: The dimension of a simplicial 
complex is the maximum dimension of its 
simplices

• So the dimension of the left complex is 3
• Note: A simplicial complex is sometimes 

simply called a complex

• A 𝑑-dimensional simplicial complex is 
sometimes simply called a simplicial 𝑑-
complex or 𝑑-complex

Image source: Wikipedia



• A very common type of simplicial complexes used in computer graphics are 
triangular meshes (a 3D object whose surface is made up of glueing small 
triangle patches)

• From a topological point of view, they are nothing but 2-dimensional 
simplicial complexes

Triangular meshes

(figure from favpng.com)



• Another more common type of simplicial complexes in CS are graphs.
• A graph is a tuple 𝐺 = (𝑉, 𝐸), where 𝑉 is the set of 0-simplices and 𝐸 is the 

set of 1-simplices. So it’s a 1-complex.

Graphs

Image source: Sedgewick and Wayne. Algorithms (4th ed)



• For a simplex 𝜎, we notice that there are other simplices on its boundary, 
which are called the faces of 𝜎. 

• If a face 𝜏 of 𝜎 is a 𝑑-dimensional simplex, then we also call it a 𝑑-face of 𝜎.
• A convention is that 𝜎 is always a face of itself.

Faces of a Simplex



• For a simplex 𝜎, we notice that there are other simplices on its boundary, 
which are called the faces of 𝜎. 

• If a face 𝜏 of 𝜎 is a 𝑑-dimensional simplex, then we also call it a 𝑑-face of 𝜎.
• A convention is that 𝜎 is always a face of itself.
• Ex: A vertex has only one face which is itself

Faces of a Simplex



• For a simplex 𝜎, we notice that there are other simplices on its boundary, 
which are called the faces of 𝜎. 

• If a face 𝜏 of 𝜎 is a 𝑑-dimensional simplex, then we also call it a 𝑑-face of 𝜎.
• A convention is that 𝜎 is always a face of itself.
• Ex: An edge 𝑎𝑏 has:

• Two 0-faces: 𝑎 and 𝑏
• One 1-face: 𝑎𝑏

Faces of a Simplex



• For a simplex 𝜎, we notice that there are other simplices on its boundary, 
which are called the faces of 𝜎. 

• If a face 𝜏 of 𝜎 is a 𝑑-dimensional simplex, then we also call it a 𝑑-face of 𝜎.
• A convention is that 𝜎 is always a face of itself.
• Ex: A triangle 𝑎𝑏𝑐 has:

• Three 0-faces: 𝑎, 𝑏, and 𝑐
• Three 1-faces: 𝑎𝑏, 𝑎𝑐, and 𝑏𝑐

• One 2-face: 𝑎𝑏𝑐

Faces of a Simplex



• For a simplex 𝜎, we notice that there are other simplices on its boundary, 
which are called the faces of 𝜎. 

• If a face 𝜏 of 𝜎 is a 𝑑-dimensional simplex, then we also call it a 𝑑-face of 𝜎.
• A convention is that 𝜎 is always a face of itself.
• Ex: A tetrahedron 𝑎𝑏𝑐𝑑 has:

• Four 0-faces: 𝑎, 𝑏, 𝑐, and 𝑑
• Six 1-faces: 𝑎𝑏, 𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑, 𝑐𝑑

• Four 2-faces: 𝑎𝑏𝑐, 𝑎𝑏𝑑, 𝑎𝑐𝑑, 𝑏𝑐𝑑 
• One 3-face: 𝑎𝑏𝑐𝑑

Faces of a Simplex



• Definition: a simplicial complex 𝒦 is a set of simplices such that, if a simplex 
𝜎 is in 𝒦, then all the faces of 𝜎 are also in 𝒦.

Simplicial Complex (Formal Definition)



• Definition: a simplicial complex 𝒦 is a set of simplices such that, if a simplex 
𝜎 is in 𝒦, then all the faces of 𝜎 are also in 𝒦.

Simplicial Complex (Formal Definition)
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• Definition: a simplicial complex 𝒦 is a set of simplices such that, if a simplex 
𝜎 is in 𝒦, then all the faces of 𝜎 are also in 𝒦.

Simplicial Complex (Formal Definition)
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: {abd, ab, bd, ad, bc, cd, af, dd, de, a, b, 
c, d, e, f}



• Definition: a simplicial complex 𝒦 is a set of simplices such that, if a simplex 
𝜎 is in 𝒦, then all the faces of 𝜎 are also in 𝒦.

Simplicial Complex (Formal Definition)

Image source: T.K.Dey and Y.Wang. Computational Topology for Data Analysis 

: {abd, ab, bd, ad, bc, cd, af, dd, de, a, b, 
c, d, e, f}

: {abd, ab, bd, ad, bc, cd, af, dd, de, a, b, 
c, d, e, f}



• Definition: a simplicial complex 𝒦 is a set of simplices such that, if a simplex 
𝜎 is in 𝒦, then all the faces of 𝜎 are also in 𝒦.

• Another example: For a graph (1-complex), each edge must join two vertices 
in the vertex set (a vertex that is a face of an edge must also be in the 
complex)

Simplicial Complex (Formal Definition)

Image source: T.K.Dey and Y.Wang. Computational Topology for Data Analysis 



• Definition: a simplicial complex 𝒦 is a set of simplices such that, if a simplex 
𝜎 is in 𝒦, then all the faces of 𝜎 are also in 𝒦.

• Another example: For a graph (1-complex), each edge must join two vertices 
in the vertex set (a vertex that is a face of an edge must also be in the 
complex)

Simplicial Complex (Formal Definition)

Image source: T.K.Dey and Y.Wang. Computational Topology for Data Analysis 

The condition that faces of any simplex in a complex should also be in the complex is very 
important part in the definition making it mathematically sound



• For denoting a simplicial complex, we typically first assign labels to the 
vertices of the complex.
• In class, the labels could be letters but could also be other things
• In computer programs, the labels are almost always integers 0, ⋯ , 𝑙 − 1.

• Then, each simplex is represented as a set of the vertices on its corner.
• Note: Each 𝑑-simplex 𝜎 is represented by a set of 𝑑 + 1 vertices

• All the faces of 𝜎 are nothing but all subsets of 𝜎, excluding empty set

Some remarks



• For denoting a simplicial complex, we typically first assign labels to the 
vertices of the complex.
• In class, the labels could be letters but could also be other things
• In computer programs, the labels are almost always integers 0, ⋯ , 𝑙 − 1.

• Then, each simplex is represented as a set of the vertices on its corner.
• Note: Each 𝑑-simplex 𝜎 is represented by a set of 𝑑 + 1 vertices

• All the faces of 𝜎 are nothing but all subsets of 𝜎, excluding empty set

• Also note: A 𝑑-simplex is typically represented by a sorted array of 𝑑 +
1 vertices (integers) in computer programs, this makes checking the 
equality of two simplices easier

Some remarks



• Now we continue towards our goal of defining homology
• There are still a few steps before that
• Recall that homology is a “numeric” invariant that computer can handle
• More formally, it’s an “algebraic” invariant.
• So, let’s give a simplicial complex and its simplices an algebraic structure, so 

that we could do algebra on it (just like what we used to do 1+1=2 in primary 
school).

Endowing Algebraic Structures to Complexes



• We first introduce an algebraic notion called chains.
• A chain is a summation (formal sum) of a bunch of simplices of the same 

dimension 𝑑, and we also call it a 𝑑-chain. 

• i.e., it is of the general form: σ𝑖=1
𝑘 𝜎𝑖, where each 𝜎𝑖  is a 𝑑-simplex.

Chains



• We first introduce an algebraic notion called chains.
• A chain is a summation (formal sum) of a bunch of simplices of the same 

dimension 𝑑, and we also call it a 𝑑-chain. 

• i.e., it is of the general form: σ𝑖=1
𝑘 𝜎𝑖, where each 𝜎𝑖  is a 𝑑-simplex.

Chains
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• 0-chain: 𝑎 + 𝑑 + 𝑓

• 1-chain: 𝑎𝑏 + 𝑐𝑑 + 𝑑𝑒

• 2-chain: 𝑎𝑏𝑑



• We first introduce an algebraic notion called chains.
• A chain is a summation (formal sum) of a bunch of simplices of the same 

dimension 𝑑, and we also call it a 𝑑-chain. 

• i.e., it is of the general form: σ𝑖=1
𝑘 𝜎𝑖, where each 𝜎𝑖  is a 𝑑-simplex.

Chains

Image source: T.K.Dey and Y.Wang. Computational Topology for Data Analysis 

• 0-chain: 𝑎 + 𝑑 + 𝑓

• 1-chain: 𝑎𝑏 + 𝑐𝑑 + 𝑑𝑒

• 2-chain: 𝑎𝑏𝑑

• Note: we have a special chain ‘0’ which 
contains no simplices



• The summation of two chains is called the “symmetric difference”, i.e.,
• Keep simplices that occurs in exactly one of the chains
• A simplex occurring in both chains will be cancelled out

Summation of Chains

image source: Wikipedia



• The summation of two chains is called the “symmetric difference”, i.e.,
• Keep simplices that occurs in exactly one of the chains
• A simplex occurring in both chains will be cancelled out

Summation of Chains

Image source: T.K.Dey and Y.Wang. Computational Topology for Data Analysis 

• 𝑎 + 𝑑 + 𝑓 + 𝑎 + 𝑐 + 𝑒 = 𝑐 + 𝑑 + 𝑒 + 𝑓



• The summation of two chains is called the “symmetric difference”, i.e.,
• Keep simplices that occurs in exactly one of the chains
• A simplex occurring in both chains will be cancelled out

Summation of Chains

Image source: T.K.Dey and Y.Wang. Computational Topology for Data Analysis 

• 𝑎 + 𝑑 + 𝑓 + 𝑎 + 𝑐 + 𝑒 = 𝑐 + 𝑑 + 𝑒 + 𝑓

• 𝑎𝑏 + 𝑐𝑑 + 𝑑𝑒 + 𝑏𝑑 + 𝑐𝑑 = 𝑎𝑏 + 𝑏𝑑 + 𝑑𝑒



• Next thing we want to define are boundaries for chains
• But before doing that let’s try to define boundary for a region in general
• For a two-dimensional region, the boundary is just the “border” of the region

Boundaries of Chains

Image source: https://www.geoapify.com/tutorial/getting-administrative-divisions-boundaries/



• Question: what is the boundary for a 1-dimensional line segment?

Boundaries of Chains



• Question: what is the boundary for a 1-dimensional line segment?
• Answer: the two end points (because they are the places where we cannot 

travel any further within the 1-dimensional region)

Boundaries of Chains
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Boundaries of Chains



• Observation: the boundary of a 𝑑-chain 𝑐 is also a chain, which is of one 
dimension lower, so it’s a (𝑑 + 1)-chain. We denote it as 𝜕(𝑐).

Boundaries of Chains



• Since a single simplex is also a chain, we look at the boundary of a simplex:
• The boundary of a vertex is 0 (empty).

Boundary of a Simplex



• Since a single simplex is also a chain, we look at the boundary of a simplex:
• The boundary of a vertex is 0 (empty).
• The boundary of an edge 𝑎𝑏 is its two endian vertices:

𝜕 𝑎𝑏 = 𝑎 + 𝑏

Boundary of a Simplex



• Since a single simplex is also a chain, we look at the boundary of a simplex:
• The boundary of a vertex is 0 (empty).
• The boundary of an edge 𝑎𝑏 is its two endian vertices:

𝜕 𝑎𝑏 = 𝑎 + 𝑏

• The boundary of a triangle 𝑎𝑏𝑐 is the three edges it contains:

𝜕 𝑎𝑏𝑐 = 𝑎𝑏 + 𝑎𝑐 + 𝑏𝑐

Boundary of a Simplex



• Since a single simplex is also a chain, we look at the boundary of a simplex:
• The boundary of a vertex is 0 (empty).
• The boundary of an edge 𝑎𝑏 is its two endian vertices:

𝜕 𝑎𝑏 = 𝑎 + 𝑏

• The boundary of a triangle 𝑎𝑏𝑐 is the three edges it contains:

𝜕 𝑎𝑏𝑐 = 𝑎𝑏 + 𝑎𝑐 + 𝑏𝑐

• The boundary of a tetrahedron 𝑎𝑏𝑐𝑑 is the four triangles it contains:

𝜕 𝑎𝑏𝑐𝑑 = 𝑎𝑏𝑐 + 𝑎𝑏𝑑 + 𝑎𝑐𝑑 + 𝑏𝑐𝑑

Boundary of a Simplex



• Observation: The boundary of a chain equals the summation of the 
boundaries of its simplices, i.e.,

𝜕 𝜎1 + 𝜎2 + ⋯ + 𝜎𝑘 = 𝜕 𝜎1 + 𝜕 𝜎2 + ⋯ + 𝜕 𝜎𝑘

Boundaries of Chains



• Observation: The boundary of a chain equals the summation of the 
boundaries of its simplices, i.e.,

𝜕 𝜎1 + 𝜎2 + ⋯ + 𝜎𝑘 = 𝜕 𝜎1 + 𝜕 𝜎2 + ⋯ + 𝜕 𝜎𝑘

• This helps us very easily calculate boundaries for chains, because the 
boundary of a simplex is immediately available.

Boundaries of Chains



• Observation: The boundary of a chain equals the summation of the 
boundaries of its simplices, i.e.,

𝜕 𝜎1 + 𝜎2 + ⋯ + 𝜎𝑘 = 𝜕 𝜎1 + 𝜕 𝜎2 + ⋯ + 𝜕 𝜎𝑘

• This helps us very easily calculate boundaries for chains, because the 
boundary of a simplex is immediately available.

• Ex:
𝜕 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑑 = 𝑎 + 𝑑

Boundaries of Chains



• Observation: The boundary of a chain equals the summation of the 
boundaries of its simplices, i.e.,

𝜕 𝜎1 + 𝜎2 + ⋯ + 𝜎𝑘 = 𝜕 𝜎1 + 𝜕 𝜎2 + ⋯ + 𝜕 𝜎𝑘

• This helps us very easily calculate boundaries for chains, because the 
boundary of a simplex is immediately available.

• Ex:
𝜕 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑑 = 𝑎 + 𝑑

𝜕 𝑎𝑏𝑐 + 𝑏𝑐𝑑 = 𝑎𝑏 + 𝑎𝑐 + 𝑏𝑑 + 𝑐𝑑

Boundaries of Chains



• What is the boundary of the following 1-chain?

Quick Question

a

b

c

d



• What is the boundary of a circle?

Boundaries of Some Special Chains



• What is the boundary of a circle?

• Answer: 0 (empty)
• Definition: We generalize a circle and define a 𝒅-cycle as a 𝑑-chain whose 

boundary is 0.

Boundaries of Some Special Chains



• Example of a 1-cycle (the same as a cycle on graphs):

Cycles

a

b

c

d



• Example of a 1-cycle (the same as a cycle on graphs):

• Example of a 2-cycle (triangulated sphere):

Cycles

a

b

c

d

Image source: https://eugene-eeo.github.io/blog/sphere-triangles.html 



• Recall that the boundary of a 𝑑-chain 𝑐 is also a chain, which is  a (𝑑 + 1)-
chain, and we denote it as 𝜕(𝑐).

• Since 𝜕(𝑐) is also a chain, what is its boundary?

Fundamental theorem of homology



• Recall that the boundary of a 𝑑-chain 𝑐 is also a chain, which is  a (𝑑 + 1)-
chain, and we denote it as 𝜕(𝑐).

• Since 𝜕(𝑐) is also a chain, what is its boundary?
• Theorem: the boundary of a chain is always a cycle, aka. boundaries have 

empty boundaries, or simply
• For any chain 𝑐, 𝜕 𝜕 𝑐 = 0.

Fundamental theorem of homology



• Recall that the boundary of a 𝑑-chain 𝑐 is also a chain, which is  a (𝑑 + 1)-
chain, and we denote it as 𝜕(𝑐).

• Since 𝜕(𝑐) is also a chain, what is its boundary?
• Theorem: the boundary of a chain is always a cycle, aka. boundaries have 

empty boundaries, or simply
• For any chain 𝑐, 𝜕 𝜕 𝑐 = 0.

• The above theorem is a fundamental fact making homology theory possible
• The proof of it and any further algebraic interpretations of it are beyond the 

scope of this course.

Fundamental theorem of homology



• A simple exercise: calculate the boundary of 𝜕(𝑎𝑏𝑐 + 𝑎𝑐𝑑 + 𝑎𝑑𝑒).

Fundamental theorem of homology

Image source: Patrick Schnider. Introduction to Topological Data Analysis Lecture Notes FS 2023 
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• Terminology: 
• Boundaries: Trivial cycles
• Cycles that are not boundaries: Non-trivial cycles

Classification for the set of all cycles



• Terminology: 
• Boundaries: Trivial cycles
• Cycles that are not boundaries: Non-trivial cycles

• We can classify the set of all chains for a simplicial complex into:

Classification for the set of all cycles

Boundaries Cycles Chains Boudnaries ⊆ Cycles ⊆ Chains



• Terminology: 
• Boundaries: Trivial cycles
• Cycles that are not boundaries: Non-trivial cycles

• We can classify the set of all chains for a simplicial complex into:
• Homology is a theory studying those cycles that are not boundaries for a 

simplicial complex.

Classification for the set of all cycles

Boundaries Cycles Chains Boudnaries ⊆ Cycles ⊆ Chains



• Terminology: 
• Boundaries: Trivial cycles
• Cycles that are not boundaries: Non-trivial cycles

• We can classify the set of all chains for a simplicial complex into:
• Homology is a theory studying those cycles that are not boundaries for a 

simplicial complex.

Classification for the set of all cycles

Non-trivial
Cycles

Boudnaries ⊆ Cycles ⊆ Chains



• Homology is a theory studying those cycles that are not boundaries for a 
simplicial complex.

Homology Studies: Cycles That Are NOT Boundaries

Image source: Patrick Schnider. Introduction to Topological Data Analysis Lecture Notes FS 2023 



• Homology is a theory studying those cycles that are not boundaries for a 
simplicial complex.

Homology Studies: Cycles That Are NOT Boundaries
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• Homology is a theory studying those cycles that are not boundaries for a 
simplicial complex.

Homology Studies: Cycles That Are NOT Boundaries
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• The reason we focus on non-boundary cycles is that:
• We can “squeeze” a boundary cycle into a single point within the 

simplicial complex, so it doesn’t seem to represent an interesting 
“feature” of the data
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• The reason we focus on non-boundary cycles is that:
• We can “squeeze” a boundary cycle into a single point within the 

simplicial complex, so it doesn’t seem to represent an interesting 
“feature” of the data

• On the other hand, a non-boundary cycle typically represents a “hole” in 
the complex, which represents some “essential feature” of the data

Homology Studies: Cycles That Are NOT Boundaries

Image source: Gunnar Carlsson, Topology and Data 

• Ex: For the right simplicial complex, do you think 
the red boundary cycle represent the shape, or 
the large blue non-boundary one?

• Trying to capture the something like the major 
blue cycle to represent the shape of data is an 
aim of TDA and the course!!



• So far we have been showing 1-dimensional non-boundary cycles (aka. 
holes) captured by homology theory, partially because it’s easy to visualize

• But notice that homology can capture holes in any dimension (≥ 0). 
• What about holes in other dimensions?
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• 0-dimensional holes capture “gaps” between different connected 
components:
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• 2-dimensional holes capture “cavity” or “hollowness” inside:

Homology Studies: Cycles That Are NOT Boundaries
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• Okay, now we know that homology studies cycles that are not boundaries
• But we can observe more algebraic structures on the cycles in a simplicial 

complex
• Fact: Each 𝑑-cycle of a simplicial complex is “generated by” a set of non-

trivial 𝑑-cycles called the homology basis.

Homology Basis: Additional Structures on Cycle Space



• Okay, now we know that homology studies cycles that are not boundaries
• But we can observe more algebraic structures on the cycles in a simplicial 

complex
• Fact: Each 𝑑-cycle of a simplicial complex is “generated by” a set of non-

trivial 𝑑-cycles called the homology basis.
• Formally, a 𝑑-cycle 𝑧 being “generated by” cycles in the homology basis 

means that 𝑧 can be written as: 
• A sum of cycles in the basis + a boundary (which is “trivial”).

Homology Basis: Additional Structures on Cycle Space



• Ex: A homology basis for the 1-cycles in the right 
simplicial complex contains the single red 1-
cycle
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• Ex: A homology basis for the 1-cycles in the right 
simplicial complex contains the single red 1-
cycle

• Suppose we have another green 1-cycle
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• Ex: A homology basis for the 1-cycles in the right 
simplicial complex contains the single red 1-
cycle

• Suppose we have another green 1-cycle
• The green 1-cycle equals: 

• red 1-cycle + boundary of shaded 2-chain
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• Ex: A homology basis for the 1-cycles in the right 
simplicial complex contains the single red 1-
cycle

• Suppose we have another green 1-cycle
• The green 1-cycle equals: 

• red 1-cycle + boundary of shaded 2-chain
• In a sense, the red cycle “generates” the green 

cycle because you can continuously stretch the 
red one to the green one
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• Ex: A homology basis for the 1-cycles in 
a torus (the surface of a donut) contains 
two 1-cycles:
• 𝒂 (longitude) and 𝒃 (meridian)
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trivial cycles on a torus: 
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• Ex: A homology basis for the 1-cycles in 
a torus (the surface of a donut) contains 
two 1-cycles:
• 𝒂 (longitude) and 𝒃 (meridian)

• One way to differentiate trivial and non-
trivial cycles on a torus: 
• a non-trivial cycle does not cut the 

torus into two pieces
• while a trivial cycle (such as 𝑐) does

• Example of how 𝑎 and 𝑏 generate cycles 
in torus: the cycle in the lower torus 
equals
• 𝑎 + 𝑏 + a boundary
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• We will briefly explain the full algebraic structures for the cycles and 
boundaries we described so far; see the textbooks for detailed formulation

Full Algebraic Structures on Cycle Space



https://en.wikipedia.org/wiki/Vector_space

• Recall the following picture. 
• We have that all 𝑝-chains for simplicial complex 𝐾 not only form a set, but 

also form a vector space (object studied by linear algebra; see: 
https://en.wikipedia.org/wiki/Vector_space), denoted by 𝐶𝑝(𝐾)
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• Recall the following picture. 
• We have that all 𝑝-chains for simplicial complex 𝐾 not only form a set, but 

also form a vector space (object studied by linear algebra; see: 
https://en.wikipedia.org/wiki/Vector_space), denoted by 𝐶𝑝(𝐾)

• Furthermore, boundaries and cycles are not only subsets but also vector 
subspaces of 𝑍𝑝(𝐾), denoted 𝐵𝑝(𝐾) and 𝑍𝑝(𝐾) respectively.
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• The 𝑝-dimensional homology of a simplicial complex can then be described 
by the following quotient group:

𝐻𝑝 𝐾 = 𝑍𝑝(𝐾)/𝐵𝑝(𝐾)
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• Note: a quotient group is a notion in abstract algebra that is beyond the 
scope of this course.

• But in a nutshell, by letting the boundaries 𝐵𝑝(𝐾) be denominator, we 
are discarding the effect of boundaries among the cycles, so that we 
only focus on the non-trivial cycles.
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• But in a nutshell, by letting the boundaries 𝐵𝑝(𝐾) be denominator, we 
are discarding the effect of boundaries among the cycles, so that we 
only focus on the non-trivial cycles.

• Also notice that 𝐻𝑝 𝐾  is also a vector space. And the homology basis 

we mentioned previously is indeed a basis for the vector space 𝐻𝑝 𝐾 .
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• The 𝑝-dimensional homology of a simplicial complex can then be described 
by the following quotient group:

𝐻𝑝 𝐾 = 𝑍𝑝(𝐾)/𝐵𝑝(𝐾)

• Note: a quotient group is a notion in abstract algebra that is beyond the 
scope of this course.

• But in a nutshell, by letting the boundaries 𝐵𝑝(𝐾) be denominator, we 
are discarding the effect of boundaries among the cycles, so that we 
only focus on the non-trivial cycles.

• Also notice that 𝐻𝑝 𝐾  is also a vector space. And the homology basis 

we mentioned previously is indeed a basis for the vector space 𝐻𝑝 𝐾 .

• See: https://en.wikipedia.org/wiki/Basis_(linear_algebra)

• BTW, the cardinality (number of elements) of the homology basis for the 𝑝-
dimensional cycles is called the 𝒑-th Betti number, denoted 𝛽𝑝.
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• 𝛽1 = 1

Betti number
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• 𝛽1 = 2

Betti number
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