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Background

Persistence diagram

Birth-death and persistence diagrams (barcodes)

Figure: Courtesy of [Ghrist, 2008]
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Background

Persistence module

• Simplicial filtration (F):

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Kn = K

• Persistence module (PFd ):

0 // Hd(K1) // Hd(K2) // · · · // Hd(Kn)

0 //

OO

1 //

OO

2 //

OO

· · · //

OO

n

OO

PFd : Z+ → Vec
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Background

Interval module decomposition

• Interval module (I [β,δ)):

I [β,δ)(i) =

{
Z2 i ∈ [β, δ)

0 otherwise

• Interval module decomposition

PFd =
⊕
j∈J

I [βj ,δj )

• Persistence diagram

Dgm(PFd ) = {[βj , δj) | j ∈ J}
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Definition

Definition (Persistent d-basis)

An indexed set of d-cycles {cj | j ∈ J} for F s.t.

• PFd =
⊕

j∈J I [βj ,δj )

• For each j ∈ J and βj ≤ k < δj , I [βj ,δj )(k) = {0, [cj ]}.

Definition (Persistent d-cycle)

For [β, δ) ∈ Dgm(PFd ), it is a d-cycle c for [β, δ) s.t.

• δ = +∞ (infinite interval): c is a cycle in Kβ containing σFβ
• δ 6= +∞ (finite interval): c is a cycle in Kβ containing σFβ & c is

not a boundary in Kδ−1 but becomes boundary in Kδ

Theorem

An indexed set of d-cycles {cj | j ∈ J} is a persistent d-basis of F
⇐⇒ cj is a persistent d-cycle for every [βj , δj) ∈ Dgm(PFd )
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Computation

Definition (Minimal persistent d-cycle)

Persistent d-cycle for the interval with the minimal weight

Definition (Minimal persistent d-basis)

• A persistent d-basis {cj | j ∈ J}
• ∀ j ∈ J , cj is a minimal persistent d-cycle for [βj , δj)

Problem (PCYC-FINd)

Given: Simplicial complex K , filtration F , finite interval
[β, δ) ∈ Dgmd(F)
Compute: A minimal persistent d-cycle for the interval

Problem (PCYC-INFd)

Similar to PCYC-FINd , only the interval [β,+∞) becomes an infinite
one
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Computation

Theorem

PCYC-FIN1 is NP-hard (reduce from MAX-2SAT)

Remark

PCYC-INF1 can be computed in polynomial time by finding the
shortest path
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Computation

Algorithm 1: A framework for persistent 1-basis

Maintains a basis Bi for H1(Ki) ∀ i = 0, . . . , n (B0 ← ∅):

- for i = 1, . . . , n:

• σFi is a positive 1-simplex:

- find a 1-cycle ci in Ki containing σFi
- Bi ← Bi−1 ∪ ci

• σFi is a negative 2-simplex:

- find a G ⊆ Z s.t. ∀ g ∈ G , cg ∈ Bi−1 and
∑

g∈G [cg ] = 0 in Ki

- assign
∑

g∈G cg to [g ∗, i) as a persistent cycle (g ∗ = maxG )
- Bi ← Bi−1 r cg∗

• otherwise: Bi ← Bi−1

- at the end, for each cycle cj ∈ Bn, assign cj to [j ,+∞)

Finding G can be done in O(nω) [Dey et al., 2014]
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Computation

Algorithm 2: Meaningful persistent 1-cycles

Modifying Algorithm 1:

• σFi positive: let ci be shortest cycle containing σFi
Constructing ci :

• add σFi to the shortest path between vertices of σFi in Ki−1

• Dijkstra’s algorithm on 1-skeleton of Ki−1
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Computation

Algorithm 2: Meaningful persistent 1-cycles

Algorithm 2 produces meaningful persistent 1-cycles:

• Shortest cycle: Good representation =⇒
Sum of shortest cycles: Good representative for interval

Proposition

In Algorithm 2, when σFi is a negative 2-simplex, if |G | = 1, then∑
g∈G cg is a minimal persistent 1-cycle

Above scenarios are quite common in practice
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Computation

Problem of Algorithm 2:

• Cycles of all intervals (including noises) are computed

• Often, user only cares about some large intervals

We introduce Algorithm 3 ...

Proposition

In Algorithm 1 and 2, when σFi is negative, for any g ∈ G, its
corresponding interval satisfies: βg ≤ g ∗ and δg ≥ i .

Recall that {cg | g ∈ G} ⊆ Bi−1 and
∑

g∈G [cg ] = 0

βg = g δg

βg∗ = g∗ δg∗ = i
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Computation
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Computation

Algorithm 3: Optimization for a single interval

• Compute persistent cycle for an interval [β, δ): Compute shortest
cycles at birth indices whose corresponding intervals contain [β, δ)

• Long input interval:
intervals containing it are a small subset

• Much faster than Algorithm 2:
Less shortest path computations
in practice

• Worst case of both:
O(nω + n2 log n) = O(nω)
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Computation

Algorithm 3: Optimization for a single interval

Input: The input of Algorithm 2 plus an interval [β, δ)
Output: A persistent 1-cycle for [β, δ) output by Algorithm 2

1: G ′ ← ∅
2: for i ← 1, . . . , β do
3: if σFi is positive and (σFi is paired with a σFj s.t j ≥ δ

or σFi never gets paired) then
4: ci ← the shortest cycle containing σFi in Ki

5: G ′ ← G ′ ∪ {i}
6: find a G ⊆ G ′ s.t.

∑
g∈G [cg ] = 0 in Kδ

7: output
∑

g∈G cg as the persistent 1-cycle for [β, δ)
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Computation

Stability of persistent 1-cycles

Instabliliby: Minimal cycles & cycles by our algorithm

c1
c2

(a) Minimal cycles

v

c

ec1 c2

(b) Our cycles

Our algorithm:

• Works well in practice

• Has nice properties
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Application

Persistent 1-cycles for 3D point clouds
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Application

Persistent 1-cycles for 3D point clouds

Snapshot from our software
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Application

Image segmentation and characterization

Sections from Drosophila larva tissues and embryos

Left: Top 20 intervals, Center: Top 350 intervals, Right: Top 200
intervals

Hou (2019) Persistent 1-Cycles Ohio TDA Day@AFRL, Jul 19 17 / 21



Application

Image segmentation and characterization

STARE dataset for hemorrhage detection

Hou (2019) Persistent 1-Cycles Ohio TDA Day@AFRL, Jul 19 18 / 21



Application

Hexagonal structure of crystalline solids

Left: Hexagonal cyclic structure of silicate glass,
Center: 1-cycles, Red dots: Silicon, Grey dots: Oxygen.
Right: Persistent 1-cycles computed for the long range order
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Thank

Thank You
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