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Abstract Marching Cubes based iso-surface extrac-

tion is widely used for data visualization. However, the

increasing size of volume sets has made extracted iso-

surfaces difficult to manipulate, and applying out-of-

core simplification on them is considerably slow. We

present an on-the-fly simplification algorithm for out-

of-core iso-surfaces generated by Marching Cubes based

extraction. Our algorithm shifts between extraction and

decimation during the processing of volume sets, and

never stores the entire extracted iso-surface in the main

memory. The key of our algorithm is that we exploit

the extraction pattern of Marching Cubes to deter-

mine when the mesh operator can be applied on cer-

tain generated vertices. This enables the decimation to

be applied after any specified number of triangles are

extracted. It also provides a framework for on-the-fly
processing of large iso-surfaces. Our algorithm is more

efficient than cascading out-of-core extraction and sim-

plification, while providing high simplification quality

comparable to in-core algorithms.
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1 Introduction

The visualization of volume data created from many do-

mains has become an important method for observing

data and discovering knowledge behind it. One straight-

forward way to visualize volume data is to explore each

slice, which, however, is difficult for the observer to

grasp a general view of the data. In contrast, one can

usually convert the 3D data into an intermediate for-

mat (i.e., the iso-surface), which enables one or more

phenomena or structures of interest in a dataset to be

rendered independently. Because iso-surfaces are typ-

ically polygonal meshes, the rendering is considerably

fast on modern graphics hardware.

The improvements in resolution and accuracy of data

acquisition devices have led to fast increasing in volume
data size, making the extraction and rendering of iso-

surfaces a big challenge for commodity PCs, especially

when the iso-surfaces fail to fit into main memory. In or-

der to cope with this, iso-surfaces need to be simplified

to reduce the number of triangles for memory storage,

and more importantly for interactive visualization.

In this paper, we present an on-the-fly simplifica-

tion algorithm for iso-surfaces extracted from large vol-

ume sets using a method similar to Marching Cubes

(Lorensen and Cline 1987). Our algorithm interleaves

the extraction and simplification on partially extracted

iso-surfaces and never needs the finest level iso-surface

to be completely kept in the main memory. Using our

algorithm, no separate processes of extraction and sim-

plification are needed, so that the headaches of deref-

erencing or reconstructing the topology of large out-of-

core meshes are eliminated. A simplified iso-surface can

be produced directly from the volume set. The extrac-

tion pattern of Marching Cubes (Lorensen and Cline

1987) is exploited to help the algorithm explicitly de-
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termine when a generated vertex can be manipulated

by the mesh operator. The main contributions of our

approach are:

– An on-the-fly iso-surface simplification algorithm for

large volume sets without needing to store all ex-

tracted faces. It runs fast, consumes little memory,

and yields high simplification quality.

– A general framework for on-the-fly iso-surface pro-

cessing of large volume sets based on the per-cube

vertex modifiability detection. It allows any speci-

fied number of faces to be extracted before the pro-

cessing of iso-surface, and constrains only a small

portion of unmodifiable area to be preserved during

processing.

The remainder of this paper is organized as follows.

Section 2 gives a brief overview of the iso-surface ex-

traction and massive mesh simplification algorithms.

Section 3 gives a general description and some critical

points of our algorithm. Section 4 lists some implemen-

tation details. Section 5 presents the results. Section 6

gives some discussion and Section 7 draws a conclusion.

2 Related Work

2.1 Iso-surface Extraction

A number of methods have been proposed concerning

the extraction of iso-surfaces from volume data. Some

deal with structured cubes and produce evenly tiled iso-

surfaces, while others generate simplified iso-surfaces

from unstructured grids.

The Marching Cubes algorithm (Lorensen and Cline

1987) is the best-known iso-surface extraction algorithm.

It produces triangular faces based on a lookup table

and uses linear interpolation to derive the coordinates.

Though Marching Cubes algorithm produces iso-surfaces

with rather high quality, it has some ambiguity prob-

lems (Newman and Yi 2006). Several approaches (Shirley

and Tuchman 1990; Van Gelder and Wilhelms 1994;

Nielson and Hamann 1991) have been proposed to pro-

duce disambiguous iso-surfaces. Our method is applica-

ble to iso-surfaces produced by MC-like methods that

treat the volume data cube by cube.

Instead of tiling faces evenly on each region, adap-

tive extraction algorithms produce multiresolution grids

for regions of the iso-surface with different degrees of

details, and can reduce the amount of faces inherently.

Dual Contouring (DC) (Ju et al 2002) places vertices

of iso-surface dual to octree cubes, and can reproduce

sharp features. Dual Marching Cubes (DMC) (Schaefer

and Warren 2005) generates polyhedral grids dual to

the original octree cubes, and extracts iso-surfaces from

the dual grids. A simplicial partition method (Man-

son and Schaefer 2010) partitions the octree cubes into

topologically consistent tetrahedra using dual vertex for

each line, face, and cube. It then extracts iso-surfaces

using Marching Tetrahedra (Akio and Koide 1991). Peng

et al (2014) proposed an interactive mesh-importance

specifying method using transfer functions, and intro-

duced a parallel adaptive iso-surface extraction frame-

work using Pyramid Peeling to progressively generate

simplified iso-surface based on mesh importance.

However, most of these adaptive extraction algo-

rithms suffer from spoiled topology of the iso-surface.

Though the simplicial partition method (Manson and

Schaefer 2010) produces manifold and intersection-free

iso-surfaces, the simplification quality of all these adap-

tive extraction algorithms cannot be compared to those

iterative simplification algorithms (Schroeder et al 1992;

Hoppe 1996; Garland and Heckbert 1997). Another draw-

back of adaptive extraction is that it fails to deal with

out-of-core datasets.

2.2 Out-of-core Simplification

The research of mesh simplification began with the in-

core algorithm. However, as meshes, which became larger

and larger, finally exceeded memory capacity, few in-

core algorithms worked. This was when out-of-core sim-

plification became a hot topic of research.

A category of out-of-core approaches cut the mesh

into pieces and simplify them individually, then reassem-

ble the simplified pieces. Some methods (Bernardini
et al 2002; Prince 2000) cut the mesh by partitioning

the triangles and constrain those boundary vertices to

be preserved during the decimation. Another phase of

treatment is needed to decimate the over-tessellation

near the cutting boundary. Brodsky and Pedersen (2003)

proposed a cutting method by partitioning the vertices,

which produces no over-tessellation after stitching.

The out-of-core vertex clustering (Lindstrom 2000)

extends the in-core version (Rossignac and Borrel 1993)

by batch processing the mesh, and improves the repre-

sentative vertex positioning using QEM (Garland and

Heckbert 1997). A memory insensitive version (Lind-

strom and Silva 2001) further extends the out-of-core

vertex clustering using external sort. Though the ver-

tex clustering methods run fast, they produce drastic

simplified meshes.

An external mesh data structure (Cignoni et al 2003)

is proposed to enable the connectivity query of large

meshes. Though simplification using this data struc-

ture produces high-quality simplified meshes, the main-
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tenance of the data structure considerably slows down

the simplification.

The stream simplification algorithm (Wu and Kobbelt

2003) keeps a constant-size buffer for the large mesh,

and decimates only the buffered portion. It continu-

ously reads faces from the mesh file and writes pro-

cessed faces into the output file. It decimates only ver-

tices surrounded by a closed ring of triangles and treats

boundary edges as those that are adjacent to only one

triangle. One drawback of this is that it is unable to dif-

ferentiate the processing boundary (the boundary be-

tween the processed and unprocessed portion) from the

real mesh boundary. It will have to keep the real mesh

boundary in memory until all triangles are processed.

Another drawback is that the detecting method fails on

the non-manifold regions of the mesh.

Isenburg et al (2003) proposed a large mesh pro-

cessing paradigm called processing sequences. Process-

ing sequences are particular interleaved ordering of tri-

angles and vertices, with vertices always preceding the

first triangle that references them. They demonstrated

the use of processing sequences by adapting the stream

simplification (Wu and Kobbelt 2003).

Because some elaborately designed out-of-core sim-

plification algorithms can produce high simplification

quality comparable to in-core algorithms, applying them

after fully generating the whole iso-surface is straight-

forward and acceptable. However, cascading these two

procedures causes too much redundant operations com-

pared to our on-the-fly algorithm, which decimates the

iso-surface immediately after it is partially extracted.

2.3 Tandem Algorithm

The tandem algorithm (Attali et al 2005) extracts and

immediately simplifies the iso-surface as each layer of

cubes are processed. The algorithm delays the collapse

of newly generated triangles using a mesh isotropy crite-

rion to avoid long and skinny triangles, producing bet-

ter triangulation. However, the layer-by-layer approach

places a constraint on the number of faces generated

before decimation, while our algorithm permits an ar-

bitrary face increment.

3 Algorithm Overview

An illustration of the structure of the on-the-fly algo-

rithm is given by Figure 1. Taking the volume data as

input, our algorithm needs the user to specify two pa-

rameters: R and B. R is the decimation rate, which is

the expected ratio between the face count of the sim-

plified iso-surface and the original iso-surface. B is used

to control the balance between time cost and simplifica-

tion quality. Since our algorithm interleaves extraction

and simplification, in each alternation, certain amount

of faces (specified by B) are extracted at first, then sim-

plification is performed. A bigger B value means more

surface elements are dedicated for decimation, which

may lead to a better simplification quality. However,

it also means higher memory consumption and longer

execution time (see section 4.3 and 5 for more test de-

tails). Faces are extracted in a cube-by-cube way. After

extracting faces from one cube, our algorithm converts

the faces into indexed format and makes them ready

for simplification. The extraction-simplification alter-

nation repeats until the whole iso-surface is extracted

and simplified.

3.1 Per-cube Vertex Modifiability Detection

One key part for designing on-the-fly algorithm of iso-

surfaces is to decide when a vertex can be manipulated

by the mesh operators (i.e., modifiable). According to

the “processing sequences” (Isenburg et al 2003), a ver-

tex is considered modifiable when its adjacent faces in

the mesh data file have all been processed. Mesh op-

erators cannot be applied on unmodifiable vertices be-

cause it will be difficult to stitch the subsequently input

faces to the boundary between the processed and unpro-

cessed portions once modified. Another important rea-

son is that triangles around unmodifiable vertices have

not been completely generated; it will be impossible to

evaluate the cost of simplification operators concerning

these vertices.

We found that, based on the extraction pattern of

Marching Cubes, vertices can be claimed modifiable in

a cube-by-cube way. The key lies in the relationship be-

tween the primitives of MC’s cubes (corner, line, face,

cube) and the primitives of the extracted faces (vertex,

edge, triangle). MC marks each corner of the cube with

a boolean sign based on whether the corner’s scalar

value is below or above the iso-value. In a cube con-

taining the iso-surface (having both kinds of vertices),

for each line that exhibits a sign change, an iso-surface’s

vertex is generated along the line; for each face that ex-

hibits a sign change, iso-surface’s edges are generated

on the face. It should be noted that if the scalar value

on a corner of the cube happens to be the iso-value or is

infinitely close, the vertex generated for the iso-surface

would coincide with the corner of the cube. For a vertex

placed on the line but not on the corner, all its adja-

cent triangles lie in the four adjacent cubes of the line.

For a vertex placed right on the corner, all its adjacent

triangles lie in the eight adjacent cubes of the corner.

Figure 2 gives examples of the two scenarios.



4 Tao Hou, Li Chen

Simplify The 

Partial Iso-surface 

No 

Extracted New 

Faces > B? 

Topology 

Reconstruction 
Extract Faces Fetch a Cube Add Face Quadric 

Volume Data 

 

Is There 

Any Cube? 
Yes 

 

Yes 

N

Simplify Finally Data Execution Jump Input Start Processing End Decision 

Vertex Modifiability 

Detection 

Fig. 1: General procedure of our on-the-fly iso-surface simplification algorithm
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Fig. 2: (a) The purple vertex is placed on the line; all

its adjacent triangles lie in the four adjacent cubes of

the line (b) The purple vertex is placed on the corner;

all its adjacent triangles lie in the eight adjacent cubes

of the corner
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Fig. 3: (a) Traversing direction (b) Line and corner

numbering

As illustrated in Figure 3 (a), if we assume that the

algorithm traverses the volume data from left to right

on the x axis, from front to back on the y axis and from

top to bottom on the z axis, the seven adjacent cubes

to the left, front, and top of any currently processing

cube have been traversed. Thus, after a cube is pro-

cessed, lines numbered 4, 7, 8, and corner numbered 4

in Figure 3 (b) have had all their adjacent cubes tra-

versed. This means that for the vertices generated on

these lines and corner, all the triangles adjacent to them

have been generated. Therefore, these vertices become

modifiable. Most of the internal cubes follow this rule.

However, there are cubes that lie on the boundary of

the volume data and more vertices may become mod-

ifiable after the processing of these cubes. These are

cubes that lie on the right boundary, back boundary,

bottom boundary, and combinations of them. Based on

the numbering of Figure 3 (b), Table 1 lists the differ-

ent kinds of cubes and certain primitives of the cubes.

The vertices generated on these primitives are claimed

modifiable after the corresponding cube is extracted.

Table 1: Different kinds of cubes and certain primitives

of the cubes. The vertices generated on these primitives

are claimed modifiable after the corresponding cube is

processed

Cube Modifiable Corner Modifiable Line

Internal 4 4,7,8
Right-bound 4,5 4,5,7,8,9
Back-bound 4,7 4,6,7,8,11

Bottom-bound 0,4 0,3,4,7,8
Right-back 4,5,6,7 4,5,6,7,8,9,10,11

Right-bottom 0,1,4,5 0,1,3,4,5,7,8,9
Back-bottom 0,3,4,7 0,2,3,4,6,7,8,11

The last traversed All All

The per-cube vertex modifiability detection solves

the modifiability detection problem better than similar

approaches (Wu and Kobbelt 2003; Attali et al 2005),

and provides a framework for on-the-fly mesh process-

ing with greater flexibility.
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Fig. 4: One time of the extraction-simplification alter-

nation. The vertices in bold are unmodifiable and the

edges displayed as dashed line are uncontractible. (a)

The intermediate iso-surface after the previous extrac-

tion and decimation (b) Three faces extracted from a

cube is added; two new vertices A and B are introduced;

D and C are claimed modifiable; edges EC, DC, DE,

and DF become contractible (c) More faces are added

to the intermediate iso-surface and the user specified

amount (B) is reached (d) The intermediate iso-surface

is decimated

3.2 Incremental Mesh Simplification

We adopted an incremental simplification similar to the

stream simplification (Wu and Kobbelt 2003). Iterative

edge contraction (Hoppe 1996; Garland and Heckbert
1997) is used for decimation of iso-surface with QEM

(Garland and Heckbert 1997) measuring the contrac-

tion cost. The way to eliminate unmodifiable vertices

from contraction is to keep some edges uncontractible.

An edge is considered uncontractible when at least one

of its vertices is unmodifiable. Figure 4 illustrates the

extraction-simplification alternation.

Because our algorithm produces simplified iso-surfaces

that are used for interactive rendering, we keep the

(simplified) partially extracted iso-surface in core per-

manently and never write faces to the disk. We will call

it the intermediate iso-surface in the following text. Be-

cause the memory consumption is somehow only pro-

portional to the output iso-surface (see Section 4.3),

and the output iso-surfaces mostly have to fit into the

main memory for rendering, this may not limit the

usage. One can also easily adapt our algorithm to a

“completely stream” version, which produces memory-

independent outputs like the stream simplification (Wu

and Kobbelt 2003). A benefit of never writing faces to

disk is that the whole intermediate iso-surface is ca-

pable of being decimated. It increases the amount of

contractible edges.

4 Algorithm Details

4.1 Face Extraction

After extracting faces from one cube, following steps

need to be performed in order to make the newly ex-

tracted region ready for decimation:

– Topology reconstruction: Converts the extracted

triangle soups into indexed format based on the in-

dex hash table and adds newly introduced vertices

into the index hash table;

– Adding Face Quadric: Calculates the quadric ma-

trix (Garland and Heckbert 1997) of each face and

adds the quadric matrix to corresponding vertices’

quadric matrices;

– Vertex modifiability detection: Claims certain

vertices modifiable based on Table 1. For each vertex

claimed modifiable, the corresponding entry in the

index hash table is first deleted, then edges that

become contractible are added to a priority queue

for decimation.

For topology reconstruction, an index hash table is

maintained to map the coordinates of vertices to their

indices.

4.2 Target Size

The principle to derive the target size of decimation is

similar to the stream simplification (Wu and Kobbelt

2003), which is to keep the decimation rate of the inter-

mediate iso-surface equal to R after the decimation. Be-

cause it is explicitly known which area of the iso-surface

is modifiable, only the decimation rate of the modifiable

area is considered. Given the count of totally extracted

faces Fg and the amount of uncontractible faces Fu, be-

fore the decimation of each time, the target face count

Ft is set to (Fg − Fu) ·R + Fu.

We used the method similar to the stream simpli-

fication (Wu and Kobbelt 2003) to avoid the possible

over decimation in the first several times of decimation.

If the given decimation rate R is lower than an initial

decimation rate threshold Ri, our algorithm first enters

an initial phase. In the initial phase, before decimating

the iso-surface, the face extraction process generates

faces until their amount reaches B. The iso-surface is

then decimated to (B−Fu) ·Ri +Fu faces. Because the

amount of the extracted faces increases and the size
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Fig. 5: Intermediate iso-surface size growth before and

after each decimation for bunny dataset with R = 0.1,

B = 50000 and 100000. Decimations are numbered by

the sequence to which they take place. The early deci-

mations without size growing indicate the initial phase

of the simplified intermediate iso-surface stays approx-

imately the same after each decimation, the real dec-

imation rate of the intermediate iso-surface decreases

gradually. The initial phase lasts until the real decima-

tion rate is close to R.

4.3 Memory Efficiency

The maximal main memory consumption is determined

by the maximal size of the intermediate iso-surface kept

in memory, plus the two slices of the volume data loaded

each time. The values of R and B together dictate the

intermediate iso-surface size for a given dataset while R

determines the slope of the size growing and B deter-

mines the amplitude the curve vibrates. Figure 5 illus-

trates the intermediate iso-surface size growth for the

bunny dataset in Table 2 with the same value for R

and different values for B. If we do not count the un-

contractible faces, the upper bound for the face count of

the intermediate iso-surface is RF + B (F denotes the

face count of the fully extracted iso-surface). Because

the unmodifiable vertices approximately come from a

slice of the volume data, the amount of uncontractible

faces has a limit. From Figure 9 of Section 5 we can see

that the uncontractible faces only cover a small portion

of the whole generated iso-surface. Therefore, for most

datasets, they can be ignored.

5 Results

To evaluate the performance and simplification quality

of our on-the-fly algorithm, we implemented a cutting-

based out-of-core mesh simplification algorithm and an

out-of-core indexed-format iso-surface extraction algo-

rithm. The cutting-based out-of-core simplification par-

titions the mesh by vertex similar to (Brodsky and

Table 2: Some small datasets that are tested

name resolution iso v f

bunny 512×512×361 2000 1024433 2048290
head 500×500×476 100.5 2400610 4786342
foot 256×256×256 127.5 294013 586220
teapot 256×256×178 60 254629 509300

Pedersen 2003). The out-of-core extraction utilizes our

framework based on the per-cube vertex modifiability

detection and demonstrates another usage of the frame-

work.

We compared the results of our on-the-fly algorithm

with the cutting-based out-of-core algorithm and the

QSlim (Garland and Heckbert 1997) algorithm on vari-

ous datasets. All tests were run on a commodity portable

notebook with 1.70GHz dual-core Intel i5-3317U CPU,

4GB RAM, and 5400 RPM disk.

We used metro (Cignoni et al 1998) tool to evaluate

the approximation error of the simplified iso-surface.

The measured error in our test was the RMS error of

metro tool normalized by the diagonal of the bounding

box, while sampling the original mesh onto the simpli-

fied mesh.

Because metro tool and QSlim only accept in-core

mesh, we ran tests using the three simplification algo-

rithms on the small datasets shown in Table 2. The

first four rows of Table 3 present the test results on

these datasets with decimation rate 0.2. In these tests,

we set B to 10000 for our on-the-fly simplification. The

measured error in Table 3 demonstrates that the sim-

plification qualities of the three algorithms on small

datasets were quite similar under such moderate deci-

mation rate. Figure 6 shows the similarity of the sim-

plified iso-surfaces for the foot dataset. Note that for

most of the small datasets, the QSlim algorithm spent

approximately the same time with our on-the-fly algo-

rithm. This may be caused by the fact that QSlim al-

gorithm uses regular array as the vertex and face con-

tainer while our algorithm uses hash table. However,

our algorithm is still faster than the cascade of out-of-

core algorithms.

Figure 7 gives the RMS error and wall clock time

of the on-the-fly simplification on bunny dataset with

R = 0.1 and 0.01, using different face increase (B). We

found that when the decimation rate was rather low

(0.1), the value of B made no notable impact on the

simplification quality. However, when the decimation

rate was high (0.01), the impact of B’s value became

great. Based on our test, in order to retrieve a simpli-

fication quality comparable to in-core simplifications,

one usually has to set a B value higher than the simpli-

fied iso-surface size. Using such a B value means that
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Table 3: Test results on different data resets. The out-of-core and QSlim algorithms share the extraction process

and have identical mesh generation time

dataset algorithm v f gentime(s) simptime(s) totaltime(s) error mem

bunny
ours 205046 409658 - - 23.82 0.00501% 171mb

out-of-core 205050 409659
10.82

21.55 32.37 0.00493% 140mb
QSlim 205048 409659 12.75 23.57 0.00492% 636mb

head
ours 482994 957267 - - 51.95 0.0650% 386mb

out-of-core 483757 957266
20.16

52.01 72.17 0.0708% 328mb
QSlim 483752 957268 32.24 52.40 0.0703% 1487mb

foot
ours 59225 117244 - - 8.68 0.0876% 54mb

out-of-core 59340 117244
4.22

6.12 10.34 0.0864% 58mb
QSlim 59319 117245 3.49 7.71 0.0863% 185mb

teapot
ours 50892 101860 - - 9.34 0.00523% 48mb

out-of-core 50890 101859
4.95

5.23 10.18 0.00661% 37mb
QSlim 50892 101861 2.93 7.88 0.00497% 160mb

bunny*
ours 4166 8041 - - 9941.96 - 835mb

out-of-core 4167 8041 8633.76 2559.41 11193.17 - 1762mb

head*
ours 58152 100034 - - 2189.54 - 244mb

out-of-core 58366 100036 1509.30 1050.54 2559.84 - 1495mb

Table 4: Execution time measured by separating the extraction, simplification, and I/O operations.

dataset algorithm gentime(s) simptime(s) iotime(s)

bunny
ours 10.86 13.72 0.02

out-of-core 10.78 13.11 8.65

head
ours 20.32 32.48 0.04

out-of-core 19.92 32.02 20.42

bunny*
ours 8482.63 1789.11 2.87

out-of-core 8112.97 1543.90 849.79

head*
ours 1503.83 719.65 0.37

out-of-core 1453.65 650.79 332.41

the algorithm will never jump out of the initial phase.

When the decimation rate is high, the size of the sim-

plified iso-surface is rather small; such a B value keeps

the memory footprint low.

We used trilinear interpolation to create large out-

of-core datasets from some of our in-core sets. The in-

terpolated out-of-core datasets have the same effects

with normal large datasets on performance evaluation.

We also rendered the iso-surfaces extracted from some

small interpolated datasets and found that these iso-

surfaces had no notable visual difference from the orig-

inal ones. They were mostly quite smooth with denser

triangle tessellation. Therefore, the visual effects of the

iso-surfaces extracted and simplified from these inter-

polated datasets demonstrate the simplification qual-

ity of our algorithm on large datasets. Table 5 shows

the details of these interpolated large sets and the last

two rows of Table 3 give their test results. We set B

to 2000000 for the bunny* dataset and 500000 for the

head* dataset when running our on-the-fly algorithm.

To better illustrate the simplification quality of our al-

gorithm, we used a computer with 64GB memory to

run QSlim on the interpolated datasets. The rendering

result is shown in Figure 8. It should be noted that,

though in-core simplification can be performed on a

computer with such large memory, most regular users

can only afford commodity PCs which are similar to
the one that we perform most of our tests. Our algo-

rithm is targeted to scenarios where the computer has

just regular-size memory.

From the results on these interpolated large datasets,

we can see a significant difference between our algo-

rithm and the cascading of out-of-core extraction and

simplification. In our implementation, the cutting-based

simplification uses a simple spatial division to segment

original mesh into pieces. Larger slices on the axes cre-

ate smaller pieces, which leads to lower memory con-

sumption and less execution time. However, it may also

lead to poorer simplification quality. Hence, choosing

the division of axes is more of a tradeoff between ex-

ecution cost and quality. For the cutting-based algo-

rithm, we allocate the target vertex count of decima-

tion for each piece based on its vertex count of the

original iso-surface. This fast deriving approach may

fail on some large iso-surfaces. On the other hand, our

algorithm utilizes a global priority queue to preserve
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Table 5: Details of the interpolated datasets

name orig res interp res iso v f

bunny* 512×512×361 4089×4089×3961 2000 77703203 155405976
head* 500×500×476 1997×1997×1901 100.4 36128840 72226994

original iso-surface
v: 294013 f: 586220

our algorithm
v: 59225 f: 117244

out-of-core
v: 59340 f: 117244

QSlim
v: 59319 f: 117245

Fig. 6: Rendering results of the iso-surfaces extracted

and simplified from the foot dataset using different al-

gorithms with decimation rate 0.2. Because the decima-

tion rate is rather moderate, the simplification quality
of the three algorithms is similarly high, the rendered

simplified iso-surfaces show little visual difference

the overall decimation distribution over the iso-surface.

As long as B’s value is carefully chosen, the simplified

iso-surfaces produced by our algorithm would have a

more balanced tessellation over regions with different

grades of details. This could be illustrated by Figure

8. For the head* set, since the target vertex count is

not small enough to make poorly simplified iso-surface

occur, both algorithms produce high-quality simplified

iso-surfaces. However, there are still some regions where

the out-of-core algorithm produces unbalanced simpli-

fied triangles while our algorithm preserves the overall

detail distribution. The lowest row of Figure 8 illus-

trates one of these regions. From the figure, we can see

that part of the inner torus of the head* set is over-

simplified by the cutting-based algorithm. The reason
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 W a l l  C l o c k ,  R = 0 . 0 1
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Fig. 7: The RMS error and wall clock time of the on-

the-fly simplification on bunny dataset with R = 0.1

and 0.01 using different face increase (B)

may be that, the piece of mesh segmented by the al-

gorithm containing that region has too few triangles,

which leads to the number of decimated vertices allo-

cated to be small. However, the low target vertex count

does not match the surface complexity (which is, on the

contrary, high). As a result, oversimplified regions are

produced. The root cause for this is the break of global

decimation sequence introduced by the mesh segmenta-

tion. For the bunny* set, because the decimation rate is

high considering the size of the dataset, the difference of

simplification quality of the two algorithms is obvious.

The bunny* iso-surface simplified by the cutting-based

algorithm has quite poor quality, with over decimated

triangles in the central area, while the simplification

quality of our algorithm is still satisfying. Another thing

to mention is that, for both of the two datasets, our

algorithm produces simplified iso-surfaces comparable

to the QSlim algorithm. Though producing better sim-

plification quality, our algorithm consumes much less

memory than the out-of-core algorithm based on Table

3.

To better illustrate the speedup in I/O cost of our

algorithm with respect to the out-of-core algorithm, we

measured separately the extraction, simplification, and

I/O time cost on some datasets for the two algorithms

in Table 4. It should be noted that since these three

kinds of operations are scattered in each iteration of the

two algorithms, in order to conduct the measurement,
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original
v:77703203 f:155405976

QSlim
v:4168 f:8045

our algorithm
v:4166 f:8041

out-of-core
v:4167 f:8041

original
v:36128840 f:72226994

QSlim
v:58160 f:100039

our algorithm
v:58152 f:100034

out-of-core
v:58366 f:100036

details of head* set (our algorithm) details of head* set (out-of-core)

Fig. 8: Rendering results of bunny* and head* iso-surfaces extracted and simplified using our on-the-fly algorithm,

the out-of-core algorithms, and the QSlim algorithm (on a computer with 64GB memory). Our algorithm pro-

cesses the dataset as a whole and produces a more balanced tessellation than the out-of-core simplification which

decimates the mesh pieces separately

we had to query the start and end time at different por-

tions of the source codes in each iteration. This should

have some impacts on the overall execution time. On

the other hand, the measurement method in Table 3

only makes system time calls at some critical points of

execution (like the start and end of a program), so that

the time measured should be treated as a more precise

approximation to the execution time. However, the re-

sults in Table 4 still provide a reliable reference for time

cost spent in different operations. From the table, we

can see that the I/O time cost of our algorithm is much

less than the out-of-core algorithm. Because the major

part of time is consumed by simplification and extrac-

tion, the speedup of our algorithm is quite considerable.

Figure 9 shows the count of uncontractible faces

before each decimation when processing the head and

bunny* dataset using our on-the-fly simplification. Note

that for the two datasets, the maximal ratio with re-

spect to all extracted faces is 0.14%. This also proves

the low-footprint feature of our algorithm.
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Fig. 9: Count of uncontractible faces before each deci-

mation when processing the head and bunny* dataset

using our on-the-fly simplification, with R = 0.2 and

B = 30000 for head, R = 0.00005174 and B = 2000000

for bunny*. Decimations are numbered by the sequence

to which they take place

6 Discussion

One inconvenience of our on-the-fly algorithm imple-

mentation is that, user has to run the whole on-the-fly

extraction and simplification process once some param-

eters for the algorithm are changed, even though the

iso-value stays the same. In contrast, using the cascad-

ing of out-of-core algorithms, if the iso-value of interest

is the same, one can perform the out-of-core extraction

once and has different parameters for the simplification

using the same generated mesh. A solution for this is

to store the iso-surface generated by our extraction and

reconstruction approach, with a special mesh format

interleaving vertices and faces and explicitly claiming

finalization of vertices similar to the streaming meshes

(Isenburg and Lindstrom 2005). A stream simplification

can then be performed utilizing the finalization infor-

mation to determine vertex modifiability.

7 Conclusion

We presented an on-the-fly simplification algorithm for

iso-surfaces extracted from large volume sets. It pro-

cesses the dataset only once, runs fast, and has low

memory footprint. The simplification quality of our al-

gorithm is as good as some high-quality out-of-core sim-

plification algorithm and also comparable to in-core al-

gorithm. We tested the performance of our algorithm

by comparing it with the widely used in-core algorithm

QSlim and an out-of-core simplification algorithm on

various datasets. The key of our algorithm is the per-

cube vertex modifiability detection, which provides a

general solution for the on-the-fly processing of large

iso-surface.
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