
Intro. to Gudhi
Tao Hou

Sketch

• Overview

• Installation

• Python API

Gudhi overview

• From official website (https://gudhi.inria.fr/):
• a generic open source C++ library, with a Python interface,
• for Topological Data Analysis (TDA) and Higher Dimensional Geometry

Understanding.
• offers state-of-the-art data structures and algorithms to construct simplicial

complexes and compute persistent homology

• Developed by Inria from France

https://gudhi.inria.fr/
https://gudhi.inria.fr/doc/latest/
https://gudhi.inria.fr/python/latest/
https://gudhi.inria.fr/introduction/

C++ vs. Python

• C++ programs: Fast to execute, hard to develop

• Python programs: Slow in execution, easy to develop

• Gudhi was developed by C++, i.e., all the intensive computations are
in C++; you can also use Gudhi directly from C++

• Provides Python interface
• You can use the Gudhi C++ codes from Python

• Fast to execute, easy to develop

• Pybind11, Cython

Installation

• The official website recommended using Conda
• https://gudhi.inria.fr/python/latest/installation.html

• You can use both GUI and commandline to install packages on Conda

• For installing Conda on linux (especially ubuntu, debian):
• If sudo apt-get doesn’t work (e.g., if you don’t have access to the writing

permission of the root directory)

• Use wget to get the installation script and bash run the script:
• wget https://repo.anaconda.com/archive/Anaconda3-2023.07-2-Linux-x86_64.sh

• bash Anaconda3-2023.07-2-Linux-x86_64.sh

• The link can be retrieved from: https://www.anaconda.com/download/

https://gudhi.inria.fr/python/latest/installation.html
https://repo.anaconda.com/archive/Anaconda3-2023.07-2-Linux-x86_64.sh
https://www.anaconda.com/download/

Gudhi python interface

Documentation

• https://gudhi.inria.fr/python/latest/

https://gudhi.inria.fr/python/latest/

Categories of the API
• Cell complex data structures

• Simplicial complex, Cubical complex

• Filtrations
• Alpha complex, Rips complex, Witness complex, Cover complex (Mapper, Nerve and

Graph Induced Complexes)

• Compute persistent homology

• Persistent barcode processing
• Bottleneck distance, Wasserstein distance, Persistence representations

(vectorizations and kernels for ML)

• Persistence graphical tools
• display persistence barcode, diagram or density

• Others: Point cloud utilities (read from file, subsample, find neighbors),
generating datasets, etc.

Simplicial complex (in math)

• A collection of sets, where each set contains vertices

• A set a is a subset of a set b: a is a face of b and b is a coface of a

SimplexTree

• https://gudhi.inria.fr/python/latest/simplex_tree_user.html

• https://gudhi.inria.fr/python/latest/simplex_tree_ref.html

• Jean-Daniel Boissonnat and Clément Maria. The simplex tree: an
efficient data structure for general simplicial complexes. Algorithmica,
pages 1–22, 2014.

https://gudhi.inria.fr/python/latest/simplex_tree_user.html
https://gudhi.inria.fr/python/latest/simplex_tree_ref.html

SimplexTree

• https://gudhi.inria.fr/python/latest/simplex_tree_user.html

https://gudhi.inria.fr/python/latest/simplex_tree_user.html

Building a SimplexTree

• Build from scratch using insert():
• Declare a SimplexTree object

• Insert a simplex to the complex: automatically add the faces of the simplices

• You can assign a filtration value when you insert a simplex:
• All complexes in Gudhi can be filtered, e.g., an object of SimplexTree can always

represent a filtration for the complex

• More often, we would not build a SimplxTree (or a filtration) from scratch
like above, but would rather build a filtration (i.e., an SimplexTree object)
from a filtration building class (such as RipsComplex)

Simplices in a SimplexTree

• A simplex is represented as a python list of integers:
• A tetrahedron (3-simplex): [5, 9, 10, 17]
• Every simplex returned from SimplexTree, and every simplex feed into SimplexTree

as parameter is a list of integers
• For a bunch of simplices, then it is a list of lists of integers

• Advantage: Claritity, no confusion

• This also makes mapping a simplex to a certain property a little tricky (e.g.,
you build a dual graph for a surface, and want to look up the vertex id
corresponding to a triangle)
• Would have to use a python dictionary (e.g., {‘A’: 1, ‘B’: 2})
• The key for the dictionary is the simplex (the list of ints)
• Have to convert the list into a tuple (tuple(l)) or a string (str(l)) first so that l

can be used as a key for the dict

Simplices in a SimplexTree

• Some more info: in the C++ interface, each simplex has an integer id;
you can manipulate a simplex simply by its id

• You can get its list of vertices by invoking a method

• This can be convenient in certain cases

• The python interface can be a little tricky if you switch from it C++
version at first

Adjacency info. in SimplexTree

• get_simplices()
• Get all the simplices

• get_boundaries()
• Get the boundary simplices for a simplex

• get_cofaces()
• Get all the cofaces of a simplex (the star)

• Get the cofaces in a certain dimension for a simplex

RipsComplex (class for building a Rips
filtration in Gudhi)
• Rips filtration:

• Given a set of points (point cloud) with pair-wise distance for the points, it
returns you a filtration

• The persistence of the filtration gives you an idea of the topology of the
underlying space of the point cloud

• You can create a RipsComplex in two ways in Gudhi:
• By specifying coordinates for the points
• By providing a distance matrix

• What you eventually get from the class is a SimplexTree object
representing the rips filtration (using the create_simplex_tree()
method)

• https://gudhi.inria.fr/python/latest/rips_complex_user.html

https://gudhi.inria.fr/python/latest/rips_complex_user.html

Compute persistence barcode for a
SimplexTree
• persistence():

• Return type: list of pairs (dimension, pair(birth, death))
• (Don’t have time to verify, but) the returned pair is a pair of filtration value

(i.e., a persistence interval), e.g., for Rips filtration, it is the distance where a
homology class is born and the distance where the homology class dies (not
the index of the simplices in the simplex-wise filtration)

• persistence_pairs():
• another form of persistence barcode, where each pair is a pair of simplices

that generates a persistence interval
• however, we don’t really the indices of the simplices in the simplex-wise

filtration (this can be useful but I don’t find a way to do this in the current
python interface of Gudhi)

• note: you can definitely do this in the C++ interface

Compute persistence barcode for a
SimplexTree
• You can also compute the extended persistence by

extended_persistence(), which is equivalent to the level zigzag
persistence (in a sense)

• Cohen-Steiner, David, Herbert Edelsbrunner, and John Harer.
"Extending persistence using Poincaré and Lefschetz
duality." Foundations of Computational Mathematics 9.1 (2009): 79-
103

• Carlsson, Gunnar, Vin De Silva, and Dmitriy Morozov. "Zigzag
persistent homology and real-valued functions." Proceedings of the
twenty-fifth annual symposium on Computational geometry. 2009

Displaying persistence barcode

• https://gudhi.inria.fr/python/latest/persistence_graphical_tools_user.
html

• If you want to explore some more advanced displaying options, you
would have to know more about matplotlib

https://gudhi.inria.fr/python/latest/persistence_graphical_tools_user.html
https://gudhi.inria.fr/python/latest/persistence_graphical_tools_user.html

Useful but shall not go into details

• Persistent barcode processing
• Bottleneck distance

• Wasserstein distance

• Persistence representations (vectorizations and kernels for ML)

• Some other features provided by Gudhi python (see the user manual)

CubicalComplex

• A cell complex consisting of vertices (dim-0), edges (dim-1), squares
(dim-2), cubes (dim-3)

• Very useful for processing images (2-complex) and 3D volume
datasets (3-complex)

• A filtration is built from a function from a regular 2D/3D grid to the
real values

• https://gudhi.inria.fr/python/latest/cubical_complex_user.html

• https://gudhi.inria.fr/python/latest/cubical_complex_ref.html

https://gudhi.inria.fr/python/latest/cubical_complex_user.html
https://gudhi.inria.fr/python/latest/cubical_complex_ref.html

A very important (and tricky) point about
CubicalComplex
• Two ways for constructing it:

• Either specify an array named ‘top_dimensional_cells’ – A multidimensional array of
top dimensional cells filtration values

• or specify an array named ‘vertices’ – A multidimensional array of vertices filtration
values

• The first corresponds to a ‘toplex filtration’: It’s a filtration where you add
the top-dimensional cells, or toplexes (e.g., cubes in 3D) one by one, and
the lower dimensional cells will be added as needed

• The second correspond to the lower star filtration for a PL function: where
you give function values to the vertices, and values on other points are
interpolated

• The persistence of the two ways of interpreting a cubical dataset is not too
different indeed

Compute persistence for CubicalComplex

• Similar to SimplexTree, use persistence()

About the C++ interface of Gudhi

• Much more powerful

• Learning curve is steeper

• Besides the reference manual, you should also thoroughly study the
examples provided

Some other libraries I know (or have used)

• Ripser (https://github.com/Ripser/ripser): good for computing rips
filtrations

• Dionysus (https://mrzv.org/software/dionysus2/): also very versatile (e.g.,
vineyard); provide both C++ and Python interfaces

• Phat (https://github.com/blazs/phat): very fast in computing persistence;
tricky to build

• Homcloud (https://homcloud.dev/index.en.html): Good for computing
representatives for persistence

• FZZ (https://github.com/taohou01/fzz): fast for zigzag persistence; only in
C++; uses phat

• More: https://cat-list.github.io/

https://github.com/Ripser/ripser
https://mrzv.org/software/dionysus2/
https://github.com/blazs/phat
https://homcloud.dev/index.en.html
https://github.com/taohou01/fzz
https://cat-list.github.io/

	Slide 1: Intro. to Gudhi
	Slide 2: Sketch
	Slide 3: Gudhi overview
	Slide 4: C++ vs. Python
	Slide 5: Installation
	Slide 6: Gudhi python interface
	Slide 7: Documentation
	Slide 8: Categories of the API
	Slide 9: Simplicial complex (in math)
	Slide 10: SimplexTree
	Slide 11: SimplexTree
	Slide 12: Building a SimplexTree
	Slide 13: Simplices in a SimplexTree
	Slide 14: Simplices in a SimplexTree
	Slide 15: Adjacency info. in SimplexTree
	Slide 16: RipsComplex (class for building a Rips filtration in Gudhi)
	Slide 17: Compute persistence barcode for a SimplexTree
	Slide 18: Compute persistence barcode for a SimplexTree
	Slide 19: Displaying persistence barcode
	Slide 20: Useful but shall not go into details
	Slide 21: CubicalComplex
	Slide 22: A very important (and tricky) point about CubicalComplex
	Slide 23: Compute persistence for CubicalComplex
	Slide 24: About the C++ interface of Gudhi
	Slide 25: Some other libraries I know (or have used)

