Computing Zigzag Persistence on Graphs in
Near-Linear Time

Tamal K. Dey and Tao Hou

Department of Computer Science
Purdue University

SoCG 2021 ovudeny

e‘ T s\
Ssenta’

Background: standard persistence

Standard filtration:
F Ko —= Ki == Kpo1 — Ky
4
Induced module:
Ho(F) : Hp(Ko) = Hp(Ky) — -+ = Hp(Kin—1) = Hp(Kin)
\

Interval decomposition:
Hp(F) = @aeA Z1bor o]
\

p-th persistence barcode:

Pers,(F) = {[ba, du] | @ € A}

Background: zigzag persistence

Zigzag filtration:
F Ky Ko oK1 Kn
4
Induced module:
HolF) < Ho(Ko) s Hp(Ky) 5 - - €3 Ho(Kmo1) s H(Kir)
\

Interval decomposition:
Hp(F) = @aEA Z1borce]
\

p-th persistence barcode:

Pers,(F) = {[ba, du] | @ € A}

Example of Zigzag Filtration (of Graphs)

b Pk

Application: dynamic networks, etc.

Complexities of persistence computing

* Graphs
Standard m?, m* ma(m)
Zigzag m3, m¥ ?

m: length of filtration
w < 2.373: matrix multiplication exponent
a(m): inverse Ackermann function

O(m*) algorithm: Milosavljevi¢, Morozov, and Skraba.
Zigzag persistent homology in matrix multiplication time. 2011.

Computation: Zigzag vs. Standard

Standard

[ELZ2000]

integer YOUNGEST (simplex o7)
A = {0 € Ok41(07) | o positive} ;
loop

i = max(A);
if Ti] is unoccupied then
store j and A in T[i]; exit
endif;
A=A+A*
forever;
returni.

Zigzag

[CdSM2009]

Case f:: We compute the representation of the boundary

of simplex o in terms of the cycles Z, and then reduce
the result among the boundaries, obtaining: 9o = Ziv =
Zi(Bsu+'). There are two possibilities:

Birth: If ' = 0, then do is already a boundary, and
addition of o creates a new cycle, for example, Ciu—o.
‘We append this cycle to the matrix Z;, and we append
i+ 1 to both the birth vector b; and the index vector
idx; to get by, and idx;.1, respectively.

Death: If v’ # 0, then let j be the row of the lowest non-
zero clement in vector v'. We output a pair (bs[j],).
‘We append vector v’ to the matrix B;, and the corre-
sponding chain (Ciu — o) to the matrix C; to obtain
matrices B+ and Ciy1, respectively.

Case gi: There are once again two possibilities:

Birth: There is no cycle in matrix Z; that contains sim-
plex 0. Let j be the index of the first column in C; that
contains o, let I be the index of the row of the lowest
non-zero element in B;[j

1. Prepend D;Ci[j] to Z: to get Z/. Prepend i + 1 to

the birth vector b; to get bys1.

2. Let ¢ = Ci[j][o] be the coefficient of o in the chain
Cilj). Let r, be the row of o in matrix C;. We
prepend the row —r/c to the matrix B: to get Bl.

. Subtract (x[k]/c) - Cij] from every column Ci[k]

to get

Submu:t (B’[k][l]/B [7]{1)) - B.[j) from every other

Bi[k].

w

-

5. Drop row [and column j from B to get Bi11, drop
column I from Z/, and drop column j from C; to
get Cisr.

6. Reduce Zi1 initially set to Z;:

1: while 3k < j s.t. low Ziz1[j] = low Zis1[k] do
2 s =low Zisaljl, 5 = Zia[ills)/Zisa [K][s)

3 Zinlf]l = Zinlj] - s - Zini[K]

4: In Bis1, add row j multiplied by s] to row k

‘We set the index idxi+1 of the prepended cycle to be

1, and increase the index of every other column by 1.

Figure 5 illustrates the changes made in this case.
Death: Let Z;[j] be the first cycle that contains simplex

. Output (bi[5],4).

1. Change basis to remove o from matrix Z::

1: for i mcreasmg k>jst. o€ Zlkl do
2 Leto) = Z:UC][O]/Z-U][U]

Zisa[k] = Zifk] - oF -
In B;, add row k rnultlplled by ¥ to row j
if low Zija[k] > low Zi[K] then

=k

o

. Subum cycle (Cilk][o]/Z:lj]lo]) - Zilj] from every
chain Ci[k].
Drop Zi41[j], the corresponding entry in vectors b;
and idx;, Tow j from Bi, row o from C; and Z: (as
well as row and column of o from D).

b

We increase the index of every column by 1,
idx, (1) = idx,(1) + 1.

Contributions

Input:
F:O=0Gy <2 G <& ... 27 G,
G:U;n:oGi

m: length of filtration, n: size of G

@ Dimension-0: O(mlog?® n + mlog m); works for any complex

@ Dimension-1: O(mlog* n)

@ Alexander duality: dimension-(p — 1) for RP-embedded
complexes in O(mlog? n+ mlog m + nlog n) time

Contributions

o Dimension-0: O(mlog® n + mlog m)

Standard Zigzag
e Only need to kill the older one e Connected components can split
when two connected components into smaller ones because of edge
merge deletion

e Connected components can
disappear because of vertex
deletion

o Need to pair the merge and
disappearing of the components
with the split and entering of
components

Contributions

@ Dimension-1: O(mlog” n)

Standard

o Every newly created 1-cycles:

infinite bars; no pairing

Zigzag

o Edge deletion kills 1-cycles

e Need to properly pair the
creation and destruction of
1-cycles

Algorithm for O-dimension: Barcode graph

Input F:
Gy Gy Gy e Gs Ge Gz Gs Gy Gio Gu
le 1e 1 1 1 1 1 o4 | le 4| 1e 4 o4 4
2e 2[2[o3 2[—13 2[o3 2] 312 3| 20——3 | 2e——3 2v—[3
Barcode graph Gg(F):
Level: 1 2 3 4 5 6 8 9 10 11
—

—

Algorithm for O-dimension: Barcode graph

Input F:
Gy e Gy Gy Gs Gs A7 Gy Gy G Gn
le 1e 1 1 1 1 4| 1e 4| 1e 4 o4 4
2e 2[2[3 2[—13 2[3 [312 3| 20——3 | 2——3 2v—[3
Barcode graph Gg(F):
Level: 1 2 3 4 5 6 7 8 9 10 11
—

—

Building barcode forest T;

Based on [Agarwal, Edelsbrunner, Harer, Wang 2006]
Build T;,; from T; under four cases:

o Entrance

e Split

e Departure

o Merge

Update T;;; and output the persistence intervals

1 T, 1 2 T3 1 2 3 ;3 1 2 3 5 1 2 3 4 5
. —
. :> MR e

Ty 1 2 3 4 5 6 7 8 9 Ty, 1 2 3 4 5 6 7 8 9

s 1 2 3 4 5 6
el P s T

——a

_

Ty 1 2 3 45 6 7 8 910 Ty 1 2 3 45 6 7 8 910

=

P

o o o

Updating barcode forest T;

o Merge (in the same tree)

T, 1 2 3 456 7 89 Ty, 1 23 456 7 8 9
é:} et
——s

—

Merge (in different trees)

Ty 1 2 3 45 6 7 8 9 1011
=

—.—e

T, 1 2 3 45 6 7 8 9 1011

@ Departure

Tp 1 2 3 45 6 7 8 910 To 1 2 3 4 5 6 7 8 9 10

>

D — —o—o—o

- Glue paths to their nearest
common ancestor
- j: level of NCR
i current level
- Output: [j+1,i-1]

- j: level of the higher root
- Glue paths to their level-j
ancestors

- Output: [j,i-1]

- Delete the path to its nearest
splitting ancestor
- j: level of nearest splitting
ancestor

i: current level
- Output: [j+1,i-1]

Data structures

o Keep track of connectivity of graphs

e Fully-dynamic connectivity [Holm, De Lichtenberg, Thorup 2001]:
O(log? n)

@ Barcode forest

e Mergeable trees [Georgiadis, Kaplan, Shafrir, Tarjan, Werneck 2011]:
O(log m)

Thus the complexity O(mlog® n + mlog m)

Correctness proof

Definition (Representatives; see also [Maria&Oudot 2014])

o M: VW PRI ew—mjﬁ Vn: module induced by a simplex-wise filtration

@ [b,d] C [1, m]: an interval
Representatives for [b, d]: a sequence {a; € V;|i € [b,d]} s.t.
@ Classes are connected: Vi € [b,d — 1], a; — i1 or o = @vjy1 by 9;
@ Birth end condition:
Yp_1: Vp—1 — Vp: ap is not in im(zpb_l)
Yp—1: Vb_1 < Vi: ap the non-zero element in ker(tp_1)
© Death end condition: symmetric to previous

Correctness proof

Definition (Representatives; see also [Maria&Oudot 2014])

o M: VW PRI ew—mjﬁ Vn: module induced by a simplex-wise filtration

@ [b,d] C [1, m]: an interval
Representatives for [b, d]: a sequence {a; € V;|i € [b,d]} s.t.
@ Classes are connected: Vi € [b,d — 1], a; — i1 or o = @vjy1 by 9;
@ Birth end condition:
Yp_1: Vp_1 — Vi apis not in im(z/)b_l)
Yp—1: Vb_1 < Vi: ap the non-zero element in ker(tp_1)
© Death end condition: symmetric to previous

M: Vo B v v By By,

[Oé1<—*042>—>013]’—>0

Correctness proof

Proposition

Each interval produced by the algorithm admits a sequence of
representatives.

Interval: [11,13]

Correctness proof

Proposition
e M: module induced from a simplex-wise zigzag filtration
o m:P(M)— N(M): a bijection
If: Vb e P(M), [b, m(b)] has a sequence of representatives
Then: Pers(M) = {[b,n(b)] | b € P(M)}

* P(M), positive indices: all starts of intervals
* N(M), negative indices: all ends of intervals

by b2 dy b3 dy ds

[b1,d4], [be, d2], [bs, d3] have representatives

(3
Pers(M) = {[b1, d1], [ba, da], [b3, da]}

Correctness proof

Theorem
The algorithm computes the 0-th barcode for a given zigzag filtration.J

Algorithm for 1-dimension

Algorithm for 1-dimension: pairing

U;: unpaired positive indices

UO =g
fori:=0,..., m—1:
if G 2 Gj+1 provides positive index i + 1:
Uiy =UU{i+ 1}
else if G; «2— Gj+1 provides negative index i:
pair i with a j, € U; based on the Pairing Principle
output interval [j, i]
Uipr ==Ui \ {ji}
else:
Uirr == U;
for each j € U,,:
output interval [j, m]

Pairing Principle

Pairing Principle

For each iteration providing negative index i, let J; consist of every
J€U; s.t. A I-cycle z:

@ z C Gy forevery k € [, i]
@ z contains both o;_; and o

Then, J; # @ and we pair i with the smallest index j, in J;.

N b

GG G7 Gg

=
B

Gs

%Q Us = {2,6,8}
Js={2,6,8}

Interval: [2, 8]

Implementing Pairing Principle

@ Reduce the pairing to finding the maximum weight of edges
on a path in a minimum spanning forest (details in paper)

@ Use Dynamic MSF data structure [Holm, De Lichtenberg,
Thorup 2001] to achieve the complexity

Thank You

b Pk

