Computing Zigzag Persistence on Graphs in Near-Linear Time

Tamal K. Dey and Tao Hou

Department of Computer Science Purdue University

SoCG 2021

Background: standard persistence

Standard filtration:

$$\mathcal{F}: K_0 \hookrightarrow K_1 \hookrightarrow \cdots \hookrightarrow K_{m-1} \hookrightarrow K_m$$

$$\Downarrow$$

Induced module:

Interval decomposition:

$$\mathsf{H}_p(\mathcal{F}) = igoplus_{lpha \in \mathcal{A}} \mathcal{I}^{[b_lpha, d_lpha]}$$
 \Downarrow

p-th persistence barcode:

$$\mathsf{Pers}_p(\mathcal{F}) = \{ [b_\alpha, d_\alpha] \mid \alpha \in \mathcal{A} \}$$

Background: zigzag persistence

$$\mathcal{F}: \mathcal{K}_0 {\longleftrightarrow} \mathcal{K}_1 {\longleftrightarrow} \cdots {\longleftrightarrow} \mathcal{K}_{m-1} {\longleftrightarrow} \mathcal{K}_m$$

Induced module:

$$H_{p}(\mathcal{F}): H_{p}(\mathcal{K}_{0}) \longleftrightarrow H_{p}(\mathcal{K}_{1}) \longleftrightarrow \cdots \longleftrightarrow H_{p}(\mathcal{K}_{m-1}) \longleftrightarrow H_{p}(\mathcal{K}_{m})$$

$$\mathsf{H}_p(\mathcal{F}) = \bigoplus_{lpha \in \mathcal{A}} \mathcal{I}^{[b_lpha,d_lpha]}$$

p-th persistence barcode:

$$\mathsf{Pers}_p(\mathcal{F}) = \{ [b_\alpha, d_\alpha] \mid \alpha \in \mathcal{A} \}$$

Example of Zigzag Filtration (of Graphs)

Application: dynamic networks, etc.

Complexities of persistence computing

	*	Graphs		
Standard	m^3 , m^ω	$m \alpha(m)$		
Zigzag	m^3 , m^ω	?		

 $\begin{array}{c} \textit{m}{:} \ \ \text{length of filtration} \\ \omega < 2.373{:} \ \ \text{matrix multiplication exponent} \\ \alpha(\textit{m}{)}{:} \ \ \text{inverse Ackermann function} \end{array}$

 $O(m^\omega)$ algorithm: Milosavljević, Morozov, and Skraba. Zigzag persistent homology in matrix multiplication time. 2011.

Computation: Zigzag vs. Standard

Standard

Zigzag

[ELZ2000]

[CdSM2009]

```
integer YOUNGEST (simplex \sigma^{j}) \Lambda = \{\sigma \in \partial_{k+1}(\sigma^{j}) \mid \sigma \text{ positive}\}; loop i = \max(\Lambda); if T[i] is unoccupied then store j and \Lambda in T[i]; exit endif; \Lambda = \Lambda + \Lambda^{i} forever; return i.
```

Case f_i : We compute the representation of the boundary of simplex σ in terms of the cycles Z_i , and then reduce the result among the boundaries, obtaining: $\partial \sigma = Z_i v =$ $Z_i(B_i u + v')$. There are two possibilities:

Birth: If v' = 0, then $\partial \sigma$ is already a boundary, and addition of σ creates a new cycle, for example, $C_i u - \sigma$. We append this cycle to the matrix Z_i , and we append i+1 to both the birth vector \mathbf{b}_i and the index vector idx; to get \mathbf{b}_{i+1} and $\mathrm{id}X_{i+1}$, respectively.

Death: If $v' \neq 0$, then let j be the row of the lowest non-zero element in vector v'. We output a pair $(b_1[j], i)$. We append vector v' to the matrix B_i , and the corresponding chain $(C_iu - \sigma)$ to the matrix C_i to obtain matrices B_{i+1} and C_{i+1} , respectively.

Case q_i : There are once again two possibilities:

Birth: There is no cycle in matrix Z_i that contains simplex σ . Let j be the index of the first column in C_i that contains σ , let l be the index of the row of the lowest non-zero element in $B_i[j]$.

- Prepend D_iC_i[j] to Z_i to get Z'_i. Prepend i + 1 to the birth vector b_i to get b_{i+1}.
- Let c = C_i[j][σ] be the coefficient of σ in the chain C_i[j]. Let r_σ be the row of σ in matrix C_i. We prepend the row -r_σ/c to the matrix B_i to get B'_i.
- 3. Subtract $(\mathbf{r}_{\sigma}[k]/c) \cdot C_i[j]$ from every column $C_i[k]$ to get C_i' .
- Subtract (B_i[k][l]/B_i[j][l]) · B_i[j] from every other column B_i[k].

 Drop row l and column j from B'_i to get B_{i+1}, drop column l from Z'_i, and drop column j from C_i to get C_{i+1}.

Reduce Z_{i+1} initially set to Z'_i:

- 1: while $\exists k < j \text{ s.t. low } Z_{i+1}[j] = \text{low } Z_{i+1}[k] \text{ do}$ 2: $s = \text{low } Z_{i+1}[j], s_k^j = Z_{i+1}[j][s]/Z_{i+1}[k][s]$
- Z_{i+1}[j] = Z_{i+1}[j] − s^j_k · Z_{i+1}[k]
 In B_{i+1}, add row j multiplied by s^j to row k
- We set the index idx_{i+1} of the prepended cycle to be 1, and increase the index of every other column by 1.

Figure 5 illustrates the changes made in this case. **Death:** Let $Z_i[j]$ be the first cycle that contains simplex σ . Output $(\mathbf{b}_i[j], i)$.

Change begin to remove a from metalic Z.

- 1. Change basis to remove σ from matrix Z_i :
 - for increasing k > j s.t. σ ∈ Z_i[k] do
 Let σ^k_i = Z_i[k][σ]/Z_i[j][σ]
 - 2: Let $\sigma_j^{\sigma} = Z_i[k][\sigma]/Z_i[j][\sigma]$
 - 3: $Z_{i+1}[k] = Z_i[k] \sigma_j^k \cdot Z_i[j]$
 - In B_i, add row k multiplied by σ^k_j to row j
 if low Z [h] > low Z[h] then
 - if $low Z_{i+1}[k] > low Z_i[k]$ then i = k
- 2. Subtract cycle $(C_i[k][\sigma]/Z_i[j][\sigma]) \cdot Z_i[j]$ from every chain $C_i[k]$.
- Drop Z_{i+1}[j], the corresponding entry in vectors b_i
 and idx_i, row j from B_i, row σ from C_i and Z_i (as
 well as row and column of σ from D_i).

We increase the index of every column by 1, $idx_{i+1}(l) = idx_i(l) + 1$.

Contributions

Input:

$$\mathcal{F}: \varnothing = G_0 \stackrel{\sigma_0}{\longleftrightarrow} G_1 \stackrel{\sigma_1}{\longleftrightarrow} \cdots \stackrel{\sigma_{m-1}}{\longleftrightarrow} G_m$$

$$G = \bigcup_{i=0}^m G_i$$

m: length of filtration, n: size of G

- ① Dimension-0: $O(m \log^2 n + m \log m)$; works for any complex
- 2 Dimension-1: $O(m \log^4 n)$
- **③** Alexander duality: dimension-(p-1) for \mathbb{R}^p -embedded complexes in $O(m \log^2 n + m \log m + n \log n)$ time

Contributions

• Dimension-0: $O(m \log^2 n + m \log m)$

Standard

 Only need to kill the older one when two connected components merge

Zigzag

- Connected components can split into smaller ones because of edge deletion
- Connected components can disappear because of vertex deletion
- Need to pair the merge and disappearing of the components with the split and entering of components

Contributions

• Dimension-1: $O(m \log^4 n)$

Standard

 Every newly created 1-cycles: infinite bars; no pairing

Zigzag

- Edge deletion kills 1-cycles
- Need to properly pair the creation and destruction of 1-cycles

Algorithm for 0-dimension: Barcode graph

Input \mathcal{F} :

G_1	G_2	G_3		G_5	G_6	G_7	G ₈ 1• •4	G_9	G_{10}	G_{11}
	1•	1	1	1_{\uparrow}	1	1• •4	1• •4	1• •4		
	2•	2	2 •3	2 3	2 •3	2 •3	2• •3	2•—•3	2•—•3	23

Barcode graph $\mathbb{G}_{\mathrm{B}}(\mathcal{F})$:

Algorithm for 0-dimension: Barcode graph

Input \mathcal{F} :

G_1	G_2	G_3	G_4	G_5	G_6	G_7	G ₈ 1• •4	G ₉ 1• •4	G_{10}	G_{11}
1•	1•	1	1	1	1	1• •4	1• •4	1• •4	•4	† 4
	2•	2	2 •3	2 3	2 •3	2 •3	2• •3	2•—•3	2•—•3	23

Barcode graph $\mathbb{G}_{\mathrm{B}}(\mathcal{F})$:

Building barcode forest T_i

- Based on [Agarwal, Edelsbrunner, Harer, Wang 2006]
- Build T_{i+1} from T_i under four cases:
 - Entrance
 - Split
 - Departure
 - Merge
- Update T_{i+1} and output the persistence intervals

Updating barcode forest T_i

Merge (in the same tree)

• Merge (in different trees)

Departure

- Glue paths to their nearest common ancestor

j: level of NCRi: current levelOutput: [j+1,i-1]

- j: level of the higher root

- Glue paths to their level-j ancestors

- Output: [j,i-1]

- Delete the path to its nearest splitting ancestorj: level of nearest splitting
- ancestor i: current level
- Output: [j+1,i-1]

Data structures

- Keep track of connectivity of graphs
 - Fully-dynamic connectivity [Holm, De Lichtenberg, Thorup 2001]: $O(\log^2 n)$
- Barcode forest
 - Mergeable trees [Georgiadis, Kaplan, Shafrir, Tarjan, Werneck 2011]:
 O(log m)

Thus the complexity $O(m \log^2 n + m \log m)$

Definition (Representatives; see also [Maria&Oudot 2014])

- $\bullet \ \ \mathcal{M}: V_0 \xleftarrow{\psi_0} \cdots \xleftarrow{\psi_{m-1}} V_m \text{: module induced by a simplex-wise filtration}$
- $[b,d] \subseteq [1,m]$: an interval

Representatives for [b,d]: a sequence $\{\alpha_i \in V_i \mid i \in [b,d]\}$ s.t.

- **①** Classes are connected: $\forall i \in [b, d-1], \alpha_i \mapsto \alpha_{i+1} \text{ or } \alpha_i \leftarrow \alpha_{i+1} \text{ by } \psi_i$
- 2 Birth end condition:

```
\psi_{b-1}: V_{b-1} \to V_b: \alpha_b is not in \operatorname{im}(\psi_{b-1})
```

- $\psi_{b-1}: V_{b-1} \leftarrow V_b$: α_b the non-zero element in $\ker(\psi_{b-1})$
- Opening the previous of the

Definition (Representatives; see also [Maria&Oudot 2014])

- $\bullet \ \mathcal{M} : V_0 \xleftarrow{\psi_0} \cdots \xleftarrow{\psi_{m-1}} V_m \text{: module induced by a simplex-wise filtration}$
- $[b,d] \subseteq [1,m]$: an interval

Representatives for [b,d]: a sequence $\{\alpha_i \in V_i \mid i \in [b,d]\}$ s.t.

- **①** Classes are connected: $\forall i \in [b, d-1], \alpha_i \mapsto \alpha_{i+1} \text{ or } \alpha_i \leftarrow \alpha_{i+1} \text{ by } \psi_i$
- 2 Birth end condition:
 - $\psi_{b-1}: V_{b-1} \to V_b$: α_b is not in $\operatorname{im}(\psi_{b-1})$
 - $\psi_{b-1}: V_{b-1} \leftarrow V_b: \alpha_b$ the non-zero element in $\ker(\psi_{b-1})$
- Opening the previous of the

$$\mathcal{M}: \quad V_0 \xrightarrow{\psi_0} V_1 \xleftarrow{\psi_1} V_2 \xrightarrow{\psi_2} V_3 \xrightarrow{\psi_3} V_4$$
$$[\alpha_1 \longleftrightarrow \alpha_2 \longleftrightarrow \alpha_3] \longleftrightarrow 0$$

Proposition

Each interval produced by the algorithm admits a sequence of representatives.

Interval: [11, 13]

Proposition

- ullet \mathcal{M} : module induced from a simplex-wise zigzag filtration
- $\pi: \mathsf{P}(\mathcal{M}) \to \mathsf{N}(\mathcal{M})$: a bijection

If:
$$\forall b \in P(\mathcal{M}), [b, \pi(b)]$$
 has a sequence of representatives

Then:
$$\mathsf{Pers}(\mathcal{M}) = \{[b, \pi(b)] \mid b \in \mathsf{P}(\mathcal{M})\}\$$

- * $P(\mathcal{M})$, **positive indices**: all starts of intervals
- * $N(\mathcal{M})$, **negative indices**: all ends of intervals

$$[b_1, d_1], [b_2, d_2], [b_3, d_3]$$
 have representatives

$$\mathsf{Pers}(M) = \{[b_1, d_1], [b_2, d_2], [b_3, d_3]\}$$

Theorem

The algorithm computes the 0-th barcode for a given zigzag filtration.

Algorithm for 1-dimension

Algorithm for 1-dimension: pairing

\mathcal{U}_i : unpaired positive indices

```
\mathcal{U}_0 := \varnothing
for i := 0, ..., m-1:
    if G_i \xrightarrow{\sigma_i} G_{i+1} provides positive index i+1:
            \mathcal{U}_{i+1} := \mathcal{U}_i \cup \{i+1\}
    else if G_i \xleftarrow{\sigma_i} G_{i+1} provides negative index i:
             pair i with a j_* \in \mathcal{U}_i based on the Pairing Principle
             output interval [i_*, i]
             \mathcal{U}_{i+1} := \mathcal{U}_i \setminus \{j_*\}
    else:
             \mathcal{U}_{i\perp 1} := \mathcal{U}_i
for each i \in \mathcal{U}_m:
    output interval [i, m]
```

Pairing Principle

Pairing Principle

For each iteration providing negative index i, let J_i consist of every $j \in \mathcal{U}_i$ s.t. \exists 1-cycle z:

- $z \subseteq G_k$ for every $k \in [j, i]$
- z contains both σ_{j-1} and σ_i

Then, $J_i \neq \emptyset$ and we pair i with the smallest index j_* in J_i .

$$\mathcal{U}_8 = \{2, 6, 8\}$$

 $J_8 = \{2, 6, 8\}$
Interval: [2, 8]

Implementing Pairing Principle

- Reduce the pairing to finding the maximum weight of edges on a path in a minimum spanning forest (details in paper)
- Use Dynamic MSF data structure [Holm, De Lichtenberg, Thorup 2001] to achieve the complexity

Thank You

