
A Fast Algorithm for Computing Zigzag

Representatives

SODA 25’

Tamal K. Dey, Purdue University

Tao Hou, University of Oregon

Dmitriy Morozov, Lawrence Berkeley National Laboratory

Persistent homology (non-zigzag version)

• As we add each simplex in the sequence, the homology of the complex changes, with:

• Birth: betti number increased by 1

• Death: betti number decreased by 1

Persistent homology (non-zigzag version)

• As we add each simplex in the sequence, the homology of the complex changes, with:

• Birth: betti number increased by 1

• Death: betti number decreased by 1

• The birth and death points can be canonically paired, resulting in persistence barcode:

Persistent homology: Pipeline

[Gabriel 72]

Zigzag persistence

Zigzag persistence

Zigzag persistence

[Gabriel 72]

Non-zigzag vs. zigzag: Computing
Non-zigzag [ELZ2000] Zigzag [CdSM2009]

Representatives for persistent homology

Recall:

An interval module over [b, d]:

Representatives for persistent homology

Recall:

An interval module over [b, d]:

Definition. Given the decomposition into interval

modules, a representative for an interval [b, d] is a

sequence of cycles which form the interval module

over [b, d]

• aka. homology class of cycle at each index
generates the one-dimensional vector space at

the index

Representatives for persistent homology

Recall:

An interval module over [b, d]:

Remark. Representatives for all of the intervals

form a compatible basis for each homology group in

the persistence module

• aka. not only we have a basis at each homology

group, but also the basic elements at
consecutive groups map to each other by the

induced homomorphism

Definition. Given the decomposition into interval

modules, a representative for an interval [b, d] is a

sequence of cycles which form the interval module

over [b, d]

• aka. homology class of cycle at each index
generates the one-dimensional vector space at

the index

Representatives for persistent homology

Recall:

An interval module over [b, d]:

Definition. A representative for an interval [b, d] in

the non-zigzag persistence is just a cycle z

• born in Kb (aka. in Kb but not in Kb-1) and

• dying entering Kd+1 (aka. not a boundary in Kd

but becomes a boundary in Kd+1)

Definition. Given the decomposition into interval

modules, a representative for an interval [b, d] is a

sequence of cycles which form the interval module

over [b, d]

• aka. homology class of cycle at each index
generates the one-dimensional vector space at

the index

Representatives for non-zigzag: Example

Zigzag representatives
• Representative for non-zigzag contains a single cycle: all inclusion maps are forward

• Not true for zigzag persistence: a representative for zigzag is a sequence of cycles generating an

interval module

Zigzag representatives
• Representative for non-zigzag contains a single cycle: all inclusion maps are forward

• Not true for zigzag persistence: a representative for zigzag is a sequence of cycles generating an

interval module

Zigzag representatives
• Representative for non-zigzag contains a single cycle: all inclusion maps are forward

• Not true for zigzag persistence: a representative for zigzag is a sequence of cycles generating an

interval module

Zigzag representatives: Example

Filtration:

Zigzag representatives: Example

Filtration:

Interval:

Zigzag representatives: Example

Filtration:

Interval:

Representative:

Computing

barcodes

Computing

representatives

𝑂(𝑚𝜔) / 𝑂(𝑚𝑛2) 𝑂(𝑚2𝑛2)
𝑚: length of filtration

𝑛: maximum size of complexes

•

Contributions

Computing

barcodes

Computing

representatives

𝑂(𝑚𝜔) / 𝑂(𝑚𝑛2) 𝑂(𝑚2𝑛2)
𝑚: length of filtration

𝑛: maximum size of complexes

Reason for naive 𝑂(𝑚2𝑛2) complexity (see also [Maria&Outdot2015]):

• During computing the barcode, there are 𝑂(𝑚𝑛) summations of intervals and their

representatives

• Each representative takes 𝑂(𝑚𝑛) space and hence their summation takes 𝑂(𝑚𝑛) time

Contributions

Contributions

⟹𝑂(𝑚2𝑛)

Computing

barcodes

Computing

representatives

𝑂(𝑚𝜔) / 𝑂(𝑚𝑛2) 𝑂(𝑚2𝑛2)
𝑚: length of filtration

𝑛: maximum size of complexes

Contributions

⟹𝑂(𝑚2𝑛)

Reason for the improved 𝑂(𝑚2𝑛) complexity:

• There are still 𝑂(𝑚𝑛) summations of representatives

• BUT each representative takes 𝑂(𝑚) space in our algorithm (instead of 𝑂(𝑚𝑛)) and their

summation takes 𝑂(𝑚) time

Computing

barcodes

Computing

representatives

𝑂(𝑚𝜔) / 𝑂(𝑚𝑛2) 𝑂(𝑚2𝑛2)
𝑚: length of filtration

𝑛: maximum size of complexes

“Naive” 𝑶(𝒎𝟐𝒏𝟐) algorithm

• Based on a direct maintenance of representatives.

• Scan each in the filtration one by one:

• During the process we maintain a set of “active” intervals (those ending with

the current index 𝑖)

• When we encounter a birth, we start a new interval [𝑖 + 1, 𝑖 + 1] and assign it a

new representative

• When we encounter a death, we choose an active interval to kill (which ends

with 𝑖), and possibly assign the killed interval a new (finalized) representative

• We also extend those active intervals which we do not choose to kill from 𝑖 to

𝑖 + 1, whose representatives may change during extension

“Naive” 𝑶(𝒎𝟐𝒏𝟐) algorithm

• Based on a direct maintenance of representatives.

• Scan each in the filtration one by one:

• During the process we maintain a set of “active” intervals (those ending with

the current index 𝑖)

• When we encounter a birth, we start a new interval [𝑖 + 1, 𝑖 + 1] and assign it a

new representative

• When we encounter a death, we choose an active interval to kill (which ends

with 𝑖), and possibly assign the killed interval a new (finalized) representative

• We also extend those active intervals which we do not choose to kill from 𝑖 to

𝑖 + 1, whose representatives may change during extension

• Observation: Other than having a new representative for a new starting interval,

changing representatives for the intervals are done by representative

summations (a critical fact leading to the improvement)

Illustration of representative summation

Wires and bundles

• Key definitions leading to the improvement. With details omitted:

o A wire is a cycle 𝜔𝑖 ∈ 𝑍(𝐾𝑖) with a starting index 𝑖

o A bundle is a set of wires

• A key observation: zigzag representatives in our algorithm can always be

generated from bundles of wires

Wires and bundles

• Key definitions leading to the improvement. With details omitted:

o A wire is a cycle 𝜔𝑖 ∈ 𝑍(𝐾𝑖) with a starting index 𝑖

o A bundle is a set of wires

• A key observation: zigzag representatives in our algorithm can always be

generated from bundles of wires

Representatives as bundles of wires

Representatives as bundles of wires

Representatives as bundles of wires

+

Representatives as bundles of wires

+ =

Representatives as bundles of wires

Representatives as bundles of wires

+

Representatives as bundles of wires

+ =

Bundles and wires for improvement

• Fact [DHM25]: zigzag representatives in our algorithm can always be generated from

bundles of wires

Bundles and wires for improvement

• Fact [DHM25]: zigzag representatives in our algorithm can always be generated from

bundles of wires

• Fact: Different wires start with different indices, so we store each representative as a

bundle which is nothing but a set of 𝑂(𝑚) indices

Bundles and wires for improvement

• Fact [DHM25]: zigzag representatives in our algorithm can always be generated from

bundles of wires

• Fact: Different wires start with different indices, so we store each representative as a

bundle which is nothing but a set of 𝑂(𝑚) indices

• Fact: Summing two representatives boils down to symmetric difference of two bundles

(sets) of indices

Bundles and wires for improvement

• Fact [DHM25]: zigzag representatives in our algorithm can always be generated from

bundles of wires

• Fact: Different wires start with different indices, so we store each representative as a

bundle which is nothing but a set of 𝑂(𝑚) indices

• Fact: Summing two representatives boils down to symmetric difference of two bundles

(sets) of indices

• Summing two representatives now takes 𝑂(𝑚) time ⟹𝑂(𝑚𝑛) summations take 𝑂(𝑚2𝑛)

time

Generating representative from bundle

• Can be done in 𝑂(𝑚𝑛) time:

• Since there are 𝑂(𝑚) intervals, the overall complexity of our algorithm is 𝑂(𝑚2𝑛)

Representative from bundle: Example

Filtration:

Interval:

Representative:

Bundle:

Implementation (and intro. of boundary modules)

Two keys to implement in 𝑂(𝑚2𝑛) time:

1) Maintain two pivoted matrices Z and B whose columns have distinct pivots such

that:

• Columns of Z form a basis for 𝐻 𝐾𝑖

• Columns of B form a basis for 𝐵(𝐾𝑖)

2) We also need to make sure that each column of Z equals the last cycle in the

representative generated by the wire bundle we maintain

Implementation (and intro. of boundary modules)

Two keys to implement in 𝑂(𝑚2𝑛) time:

1) Maintain two pivoted matrices Z and B whose columns have distinct pivots such

that:

• Columns of Z form a basis for 𝐻 𝐾𝑖

• Columns of B form a basis for 𝐵(𝐾𝑖)

2) We also need to make sure that each column of Z equals the last cycle in the

representative generated by the wire bundle we maintain

• But to make sure pivots are distinct, we cannot avoid summations of B to Z,

making point (2) impossible to hold

Implementation (and intro. of boundary modules)

Two keys to implement in 𝑂(𝑚2𝑛) time:

1) Maintain two pivoted matrices Z and B whose columns have distinct pivots such

that:

• Columns of Z form a basis for 𝐻 𝐾𝑖

• Columns of B form a basis for 𝐵(𝐾𝑖)

2) We also need to make sure that each column of Z equals the last cycle in the

representative generated by the wire bundle we maintain

• But to make sure pivots are distinct, we cannot avoid summations of B to Z,

making point (2) impossible to hold

• Unless we make the columns of B also correspond to bundles! (which are

another types of bundles called the boundary bundles)

Boundary module

• Apply the boundary functor 𝐵 (instead of the homology functor 𝐻)

• Connecting homomorphisms 𝜓𝑖
are chain maps

• Can still define interval decomposition, representatives, wire and bundles

Boundary module

• Apply the boundary functor 𝐵 (instead of the homology functor 𝐻)

• Connecting homomorphisms 𝜓𝑖
are chain maps

• Can still define interval decomposition, representatives, wire and bundles

• Let each column of B equal the last cycle in the representative (in boundary moudle)

generated by the wire bundle we maintain

• We can then add columns in B to Z

• So representatives come from a mix of wires from the homology module and the boundary

module

Wires for the interval 𝒷 come

from both the homology and

boundary modules:

• Orange: homology module

• Blue: boundary module

Thank you!

	Slide 1: A Fast Algorithm for Computing Zigzag Representatives
	Slide 3: Persistent homology (non-zigzag version)
	Slide 4: Persistent homology (non-zigzag version)
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56: Thank you!

