A Fast Algorithm for Computing Zigzag **Representatives**

SODA 25'

Tamal K. Dey, Purdue University *Tao Hou, University of Oregon* Dmitriy Morozov, Lawrence Berkeley National Laboratory

Persistent homology (non-zigzag version)

- As we add each simplex in the sequence, the homology of the complex changes, with:
	- Birth: betti number increased by 1
	- Death: betti number decreased by 1

Persistent homology (non-zigzag version)

- As we add each simplex in the sequence, the homology of the complex changes, with:
	- Birth: betti number increased by 1
	- Death: betti number decreased by 1
- The birth and death points can be canonically paired, resulting in persistence barcode:

Persistent homology: Pipeline

 H

Simplex-wise filtration:

$$
\mathcal{F}: K_0 \xrightarrow{\sigma_0} K_1 \xrightarrow{\sigma_1} \cdots \xrightarrow{\sigma_{m-2}} K_{m-1} \xrightarrow{\sigma_{m-1}} K_m
$$
\n
$$
\Downarrow
$$
\n
$$
\downarrow
$$
\n
$$
\downarrow
$$
\n
$$
(\mathcal{F}): H(K_0) \xrightarrow{\psi_0^*} H(K_1) \xrightarrow{\psi_1^*} \cdots \xrightarrow{\psi_{m-2}^*} H(K_{m-1}) \xrightarrow{\psi_{m-1}^*} H(K_m)
$$
\n
$$
\Downarrow
$$
\n

Zigzag **persistence**

Zigzag filtration:

$$
\mathcal{F}: K_0 \xleftrightarrow{\sigma_0} K_1 \xleftrightarrow{\sigma_1} \cdots \xleftrightarrow{\sigma_{m-2}} K_{m-1} \xleftrightarrow{\sigma_{m-1}} K_m
$$

Zigzag **persistence**

Zigzag filtration:

Zigzag **persistence**

Zigzag filtration: $\mathcal{F}: K_0 \xleftarrow{\sigma_0} K_1 \xleftarrow{\sigma_1} \cdots \xleftarrow{\sigma_{m-2}} K_{m-1} \xleftarrow{\sigma_{m-1}} K_m$ ⇓ Induced module: $H(\mathcal{F}): H(K_0) \xleftarrow{\psi_0^*} H(K_1) \xleftarrow{\psi_1^*} \cdots \xleftarrow{\psi_{m-2}^*} H(K_{m-1}) \xleftarrow{\psi_{m-1}^*} H(K_m)$ ⇓ Interval decomposition: [Gabriel 72] $H(\mathcal{F}) = \bigoplus_{\alpha \in A} \mathcal{I}^{[b_{\alpha},d_{\alpha}]}$ ⇓ persistence barcode: $Pers(\mathcal{F}) = \{ [b_{\alpha}, d_{\alpha}] | \alpha \in \mathcal{A} \}$

Non-zigzag vs. zigzag: Computing

Non-zigzag [ELZ2000] 2igzag [CdSM2009]

```
integer YOUNGEST (simplex \sigma^j)
\Lambda = \{ \sigma \in \partial_{k+1}(\sigma^j) \mid \sigma \text{ positive} \}loop
  i = \max(\Lambda):
  if T[i] is unoccupied then
    store j and \Lambda in T[i]; exit
  endif;
  \Lambda = \Lambda + \Lambda^iforever;
return i.
```
Case f_i : We compute the representation of the boundary of simplex σ in terms of the cycles Z_i , and then reduce the result among the boundaries, obtaining: $\partial \sigma = Z_i v =$ $Z_i(B_iu + v')$. There are two possibilities:

Birth: If $v' = 0$, then $\partial \sigma$ is already a boundary, and addition of σ creates a new cycle, for example, $C_i u - \sigma$. We append this cycle to the matrix Z_i , and we append $i+1$ to both the birth vector \mathbf{b}_i and the index vector \mathbf{idx}_i to get \mathbf{b}_{i+1} and \mathbf{idx}_{i+1} , respectively.

Death: If $v' \neq 0$, then let j be the row of the lowest nonzero element in vector v'. We output a pair $(b_i[j], i)$. We append vector v' to the matrix B_i , and the corresponding chain $(C_iu - \sigma)$ to the matrix C_i to obtain matrices B_{i+1} and C_{i+1} , respectively.

Case g_i : There are once again two possibilities:

- **Birth:** There is no cycle in matrix Z_i that contains simplex σ . Let j be the index of the first column in C_i that contains σ , let l be the index of the row of the lowest non-zero element in $B_i[j]$.
	- 1. Prepend $D_iC_i[j]$ to Z_i to get Z'_i . Prepend $i+1$ to the birth vector \mathbf{b}_i to get \mathbf{b}_{i+1} .
	- 2. Let $c = C_i[j][\sigma]$ be the coefficient of σ in the chain $C_i[j]$. Let \mathbf{r}_{σ} be the row of σ in matrix C_i . We prepend the row $-\mathbf{r}_{\sigma}/c$ to the matrix B_i to get B'_i .
	- 3. Subtract $(\mathbf{r}_{\sigma}[k]/c) \cdot C_i[j]$ from every column $C_i[k]$ to get C_i' .
	- 4. Subtract $(B_i'[k][l]/B_i'[j][l]) \cdot B_i'[j]$ from every other column $B_i'[k]$.

- 5. Drop row l and column j from B_i to get B_{i+1} , drop column *l* from Z'_i , and drop column *j* from C_i to get C_{i+1} .
- 6. Reduce Z_{i+1} initially set to Z_i' :
	- 1: while $\exists k < j$ s.t. low $Z_{i+1}[j] = \text{low } Z_{i+1}[k]$ do 2: $s = \text{low } Z_{i+1}[j], s_k^j = Z_{i+1}[j][s]/Z_{i+1}[k][s]$ 3: $Z_{i+1}[j] = Z_{i+1}[j] - s_k^j \cdot Z_{i+1}[k]$ 4: In B_{i+1} , add row j multiplied by s_k^j to row k

We set the index idx_{i+1} of the prepended cycle to be 1, and increase the index of every other column by 1. Figure 5 illustrates the changes made in this case.

Death: Let $Z_i[j]$ be the first cycle that contains simplex σ . Output $(b_i[j], i)$.

- 1. Change basis to remove σ from matrix Z_i :
	- 1: for increasing $k > j$ s.t. $\sigma \in Z_i[k]$ do
	- Let $\sigma_i^k = Z_i[k][\sigma]/Z_i[j][\sigma]$
	- 3: $Z_{i+1}[k] = Z_i[k] \sigma_i^k \cdot Z_i[j]$
	- In B_i , add row k multiplied by σ_i^k to row j
	- if $\text{low } Z_{i+1}[k] > \text{low } Z_i[k]$ then $5:$
	- 6: $i = k$
- 2. Subtract cycle $(C_i[k][\sigma]/Z_i[j][\sigma]) \cdot Z_i[j]$ from every chain $C_i[k]$.
- 3. Drop $Z_{i+1}[j]$, the corresponding entry in vectors \mathbf{b}_i and \mathbf{idx}_i , row j from B_i , row σ from C_i and Z_i (as well as row and column of σ from D_i).

We increase the index of every column by 1, $i dx_{i+1}(l) = i dx_i(l) + 1.$

Recall:

Filtration: $\mathcal{F}: K_0 \xleftarrow{\sigma_0} K_1 \xleftarrow{\sigma_1} \cdots \xleftarrow{\sigma_{m-2}} K_{m-1} \xleftarrow{\sigma_{m-1}} K_m$ ⇓ Induced module: $H(\mathcal{F}): H(K_0) \xleftrightarrow{\psi_0^*} H(K_1) \xleftrightarrow{\psi_1^*} \cdots \xleftrightarrow{\psi_{m-2}^*} H(K_{m-1}) \xleftrightarrow{\psi_{m-1}^*} H(K_m)$ ⇓ Interval decomposition: $H(\mathcal{F}) = \bigoplus_{\alpha \in \mathcal{A}} \mathcal{I}^{[b_{\alpha},d_{\alpha}]}$

An interval module over [*b***,** *d***]:**

 $[b, \quad b+1, \quad \cdots, \quad d]$ $0 \leftrightarrow \cdots \leftrightarrow 0 \leftrightarrow \mathbb{Z}_2 \leftrightarrow \mathbb{Z}_2 \leftrightarrow \cdots \leftrightarrow \mathbb{Z}_2 \leftrightarrow 0 \leftrightarrow \cdots \leftrightarrow 0$

Recall:

Filtration: $\mathcal{F}: K_0 \xleftarrow{\sigma_0} K_1 \xleftarrow{\sigma_1} \cdots \xleftarrow{\sigma_{m-2}} K_{m-1} \xleftarrow{\sigma_{m-1}} K_m$ ⇓ Induced module: $H(\mathcal{F}): H(K_0) \xleftrightarrow{\psi_0^*} H(K_1) \xleftrightarrow{\psi_1^*} \cdots \xleftrightarrow{\psi_{m-2}^*} H(K_{m-1}) \xleftrightarrow{\psi_{m-1}^*} H(K_m)$ ⇓ Interval decomposition: $H(\mathcal{F}) = \bigoplus_{\alpha \in \mathcal{A}} \mathcal{I}^{[b_{\alpha}, d_{\alpha}]}$

An interval module over [*b***,** *d***]:**

$$
\begin{aligned} &&[b, && b+1, && \cdots, && d] \\ 0\leftrightarrow\cdots\leftrightarrow 0\, &\leftrightarrow\,\mathbb{Z}_2\, &\longleftrightarrow\,\mathbb{Z}_2\, &\longleftrightarrow\,\cdots\,\stackrel{=}{\longleftrightarrow}\,\mathbb{Z}_2\, &\leftrightarrow\, 0\, &\leftrightarrow\,\cdots\leftrightarrow 0 \end{aligned}
$$

Definition. Given the decomposition into interval modules, a *representative* for an interval [*b*, *d*] is a sequence of cycles which form the interval module over [*b*, *d*]

• aka. homology class of cycle at each index generates the one-dimensional vector space at the index

Recall:

An interval module over [*b***,** *d***]:**

 $[b, \quad b+1, \quad \cdots, \quad d]$ $0 \leftrightarrow \cdots \leftrightarrow 0 \leftrightarrow \mathbb{Z}_2 \leftrightarrow \mathbb{Z}_2 \leftrightarrow \cdots \leftrightarrow \mathbb{Z}_2 \leftrightarrow 0 \leftrightarrow \cdots \leftrightarrow 0$

Definition. Given the decomposition into interval modules, a *representative* for an interval [*b*, *d*] is a sequence of cycles which form the interval module over [*b*, *d*]

• aka. homology class of cycle at each index generates the one-dimensional vector space at the index

Remark. Representatives for all of the intervals form a *compatible basis* for each homology group in the persistence module

aka. not only we have a basis at each homology group, but also *the basic elements at consecutive groups map to each other* by the induced homomorphism

Recall:

An interval module over [*b***,** *d***]:**

$$
\begin{aligned} [b, \quad & b+1, \quad \cdots, \quad d] \\ 0\to\cdots\to 0\to{\mathbb Z}_2\stackrel{\approx}{\longrightarrow}{\mathbb Z}_2\stackrel{\approx}{\longrightarrow}\cdots\stackrel{\approx}{\to}{\mathbb Z}_2\to 0\to\cdots\to 0 \end{aligned}
$$

Definition. Given the decomposition into interval modules, a *representative* for an interval [*b*, *d*] is a sequence of cycles which form the interval module over [*b*, *d*]

• aka. homology class of cycle at each index generates the one-dimensional vector space at the index

Definition. A representative for an interval [*b*, *d*] in the *non-zigzag* persistence is just a cycle *z*

- born in \mathcal{K}_b (aka. in \mathcal{K}_b but not in \mathcal{K}_{b ₋₁) and
- dying entering \mathcal{K}_{d+1} (aka. not a boundary in \mathcal{K}_{d} but becomes a boundary in *Kd+*¹)

Representatives for non-zigzag: Example

Zigzag representatives

- Representative for non-zigzag contains a single cycle: all inclusion maps are forward
- Not true for zigzag persistence: a representative for zigzag is a sequence of cycles generating an interval module

Zigzag representatives

- Representative for non-zigzag contains a single cycle: all inclusion maps are forward
- Not true for zigzag persistence: a representative for zigzag is a sequence of cycles generating an interval module

Definition. A representative for $[b, d]$ is a sequence of cycles

rep = $\{z_\alpha \in \mathsf{Z}(K_\alpha) \mid \alpha \in [b,d]\}\$

such that for every $b \leq \alpha < d$,

either $[z_{\alpha}] \mapsto [z_{\alpha+1}]$ or $[z_{\alpha+1}] \leftrightarrow [z_{\alpha}]$ by ψ_{α}^* .

Zigzag representatives

- Representative for non-zigzag contains a single cycle: all inclusion maps are forward
- Not true for zigzag persistence: a representative for zigzag is a sequence of cycles generating an interval module

Definition. A representative for $[b, d]$ is a sequence of cycles

rep = $\{z_\alpha \in \mathsf{Z}(K_\alpha) \mid \alpha \in [b,d]\}$

such that for every $b \leq \alpha < d$,

either $[z_{\alpha}] \mapsto [z_{\alpha+1}]$ or $[z_{\alpha+1}] \leftarrow [z_{\alpha}]$ by ψ_{α}^* .

Furthermore:

Birth condition:

- $\psi_{b-1}^* : \mathsf{H}(K_{b-1}) \to \mathsf{H}(K_b)$ is forward: $z_b \in \mathsf{Z}(K_b) \setminus \mathsf{Z}(K_{b-1})$;
- $\psi_{b-1}^* : H(K_{b-1}) \leftarrow H(K_b)$ is backward: $[z_b]$ is the non-zero element in Ker (ψ_{b-1}^*) .

Death condition:

- $\psi_d^*: \mathsf{H}(K_d) \leftarrow \mathsf{H}(K_{d+1})$ is backward: $z_d \in \mathsf{Z}(K_d) \setminus \mathsf{Z}(K_{d+1})$;
- $\psi_d^*: H(K_d) \to H(K_{d+1})$ is forward: $[z_d]$ is the non-zero element in Ker (ψ_d^*) .

Zigzag representatives: Example

Filtration:

Zigzag representatives: Example

Filtration:

Interval:

Zigzag representatives: Example

Filtration:

Interval:

Representative:

 m : length of filtration $n:$ maximum size of complexes

 m : length of filtration $n:$ maximum size of complexes

Reason for naive $O(m^2n^2)$ complexity (see also [Maria&Outdot2015]):

- During computing the barcode, there are $O(mn)$ summations of intervals and their representatives
- Each representative takes $O(mn)$ space and hence their summation takes $O(mn)$ time

 m : length of filtration $n:$ maximum size of complexes

 m : length of filtration $n:$ maximum size of complexes

Reason for the improved $O(m^2n)$ complexity:

- There are still $O(mn)$ summations of representatives
- BUT each representative takes $O(m)$ space in our algorithm (instead of $O(mn)$) and their summation takes $O(m)$ time

"Naive" $O(m^2n^2)$ algorithm

- Based on a direct maintenance of representatives.
- Scan each $K_i \leftrightarrow K_{i+1}$ in the filtration one by one:
	- During the process we maintain a set of "*active*" intervals (those ending with the current index i)
	- When we encounter a birth, we start a new interval $[i + 1, i + 1]$ and assign it a new representative
	- When we encounter a death, we choose an active interval to kill (which ends with i), and possibly assign the killed interval a new (finalized) representative
	- We also *extend* those active intervals which we do not choose to kill from *i* to $i + 1$, whose representatives may change during extension

"Naive" $O(m^2n^2)$ algorithm

- Based on a direct maintenance of representatives.
- Scan each $K_i \leftrightarrow^{ \sigma_i} K_{i+1}$ in the filtration one by one:
	- During the process we maintain a set of "*active*" intervals (those ending with the current index i)
	- When we encounter a birth, we start a new interval $[i + 1, i + 1]$ and assign it a new representative
	- When we encounter a death, we choose an active interval to kill (which ends with i), and possibly assign the killed interval a new (finalized) representative
	- We also *extend* those active intervals which we do not choose to kill from *i* to $i + 1$, whose representatives may change during extension
- **Observation**: Other than having a new representative for a new starting interval, changing representatives for the intervals are done by **representative summations** (**a critical fact leading to the improvement**)

Illustration of representative summation

 (ii)

Wires and bundles

- Key definitions leading to the improvement. With details omitted:
	- \circ A *wire* is a cycle $\omega_i \in Z(K_i)$ with a *starting index i*
	- o A *bundle* is a set of wires
- A key observation: *zigzag representatives in our algorithm can always be generated from bundles of wires*

Wires and bundles

- Key definitions leading to the improvement. With details omitted:
	- \circ A *wire* is a cycle $\omega_i \in Z(K_i)$ with a *starting index i*
	- o A *bundle* is a set of wires
- A key observation: *zigzag representatives in our algorithm can always be generated from bundles of wires*

Definition. A wire is a cycle $\omega_i \in Z(K_i)$ with a starting index $i \in P^H(\mathcal{F}) \cup P^B(\mathcal{F})$ s.t.

(i)
$$
K_{i-1} \hookrightarrow K_i
$$
 is forward and $\omega_i \in Z(K_i) \setminus Z(K_{i-1})$, or

(ii) $K_{i-1} \leftarrow K_i$ is backward and $\omega_i \in B(K_{i-1}) \setminus B(K_i)$, or

(iii) $K_{i-1} \hookrightarrow K_i$ is forward and $\omega_i \in B(K_i) \setminus B(K_{i-1})$.

We also say that ω_i is a wire at index i. The wires satisfying (i) or (ii) are also called non-boundary wires whereas those satisfying (iii) are called boundary wires.

• **Fact** [DHM25]: *zigzag representatives in our algorithm can always be generated from bundles of wires*

Theorem. There is a wire bundle $W = \{w_\iota | \iota \in P^H(\mathcal{F}) \cup P^B(\mathcal{F})\}$ so that a representative for any $[b, d] \in \text{Pers}^H(\mathcal{F}) \cup \text{Pers}^B(\mathcal{F})$ is generated by a wire bundle that is a subset of W.

• **Fact** [DHM25]: *zigzag representatives in our algorithm can always be generated from bundles of wires*

Theorem. There is a wire bundle $W = \{w_\iota | \iota \in P^H(\mathcal{F}) \cup P^B(\mathcal{F})\}$ so that a representative for any $[b, d] \in \text{Pers}^H(\mathcal{F}) \cup \text{Pers}^B(\mathcal{F})$ is generated by a wire bundle that is a subset of W.

• **Fact**: Different wires start with different indices, so we store each representative as a bundle which is nothing but a set of $O(m)$ indices

• **Fact** [DHM25]: *zigzag representatives in our algorithm can always be generated from bundles of wires*

Theorem. There is a wire bundle $W = \{w_\iota | \iota \in P^H(\mathcal{F}) \cup P^B(\mathcal{F})\}$ so that a representative for any $[b, d] \in \text{Pers}^H(\mathcal{F}) \cup \text{Pers}^B(\mathcal{F})$ is generated by a wire bundle that is a subset of W.

- **Fact**: Different wires start with different indices, so we store each representative as a bundle which is nothing but a set of $O(m)$ indices
- **Fact**: Summing two representatives boils down to symmetric difference of two bundles (sets) of indices

Proposition. Let $[b, i], [b', i] \in \text{Pers}^H(\mathcal{F}_i) \cup \text{Pers}^B(\mathcal{F}_i)$ and $b \prec b'$. Suppose that W and W' generate a representative for $[b, i]$ and $[b', i]$ respectively. Then, the sum $W \boxplus W'$ generates a representative for $[b', i] \in \text{Pers}^H(\mathcal{F}_i) \cup \text{Pers}^B(\mathcal{F}_i)$.

• **Fact** [DHM25]: *zigzag representatives in our algorithm can always be generated from bundles of wires*

Theorem. There is a wire bundle $W = \{w_\iota | \iota \in P^H(\mathcal{F}) \cup P^B(\mathcal{F})\}$ so that a representative for any $[b, d] \in \text{Pers}^H(\mathcal{F}) \cup \text{Pers}^B(\mathcal{F})$ is generated by a wire bundle that is a subset of W.

- **Fact**: Different wires start with different indices, so we store each representative as a bundle which is nothing but a set of $O(m)$ indices
- **Fact**: Summing two representatives boils down to symmetric difference of two bundles (sets) of indices

Proposition. Let $[b, i], [b', i] \in \text{Pers}^H(\mathcal{F}_i) \cup \text{Pers}^B(\mathcal{F}_i)$ and $b \prec b'$. Suppose that W and W' generate a representative for $[b, i]$ and $[b', i]$ respectively. Then, the sum $W \boxplus W'$ generates a representative for $[b', i] \in \text{Pers}^H(\mathcal{F}_i) \cup \text{Pers}^B(\mathcal{F}_i)$.

• Summing two representatives now takes $O(m)$ time $\Rightarrow O(mn)$ summations take $O(m^2n)$ time

Generating representative from bundle

• Can be done in $O(mn)$ time:

Algorithm 1 (ExtRep: Extracting representative from bundle). Let $W = {\omega_{\iota_1}, \dots, \omega_{\iota_\ell}}$ be a wire bundle where $\iota_1 < \cdots < \iota_\ell$ and let rep be the representative for an interval $[b, d]$ generated by W. We can assume $\iota_{\ell} \leq d$ because wires in W with indices greater than d do not contribute to a cycle in rep. Moreover, let ι_k be the last index in $\iota_1, \ldots, \iota_\ell$ no greater than b. We have that $z=\sum_{i=t_1}^{t_k}\omega_j$ is the cycle at indices $[b,\iota_{k+1})$ in rep. We then let λ iterate over $k+1,\ldots,\ell-1$. For each λ , we add $\omega_{\iota_{\lambda}}$ to z, and the resulting z is the cycle at indices $[\iota_{\lambda}, \iota_{\lambda+1})$ in rep. Finally, we add $\omega_{\iota_{\ell}}$ to z, and z is the cycle at indices $[\iota_{\ell}, d]$ in rep. Since at every $\lambda \in [k+1, \ell]$, we add at most one cycle to another cycle, the whole process involves $O(m)$ chain summations.

• Since there are $O(m)$ intervals, the overall complexity of our algorithm is $O(m^2n)$

Representative from bundle: Example

Implementation (and intro. of *boundary modules***)**

Two keys to implement in $O(m^2n)$ time:

- 1) Maintain two *pivoted matrices Z* and *B* whose columns have distinct pivots such that:
	- Columns of *Z* form a basis for $H(K_i)$
	- Columns of *B* form a basis for $B(K_i)$
- 2) We also need to make sure that each column of *Z* equals the last cycle in the representative generated by the wire bundle we maintain

Implementation (and intro. of *boundary modules***)**

Two keys to implement in $O(m^2n)$ time:

- 1) Maintain two *pivoted matrices Z* and *B* whose columns have distinct pivots such that:
	- Columns of *Z* form a basis for $H(K_i)$
	- Columns of *B* form a basis for $B(K_i)$
- 2) We also need to make sure that each column of *Z* equals the last cycle in the representative generated by the wire bundle we maintain
- But to make sure pivots are distinct, we cannot avoid summations of *B* to *Z*, making point (2) impossible to hold

Implementation (and intro. of *boundary modules***)**

Two keys to implement in $O(m^2n)$ time:

- 1) Maintain two *pivoted matrices Z* and *B* whose columns have distinct pivots such that:
	- Columns of *Z* form a basis for $H(K_i)$
	- Columns of *B* form a basis for $B(K_i)$
- 2) We also need to make sure that each column of *Z* equals the last cycle in the representative generated by the wire bundle we maintain
- But to make sure pivots are distinct, we cannot avoid summations of *B* to *Z*, making point (2) impossible to hold
- Unless we **make the columns of** *B* **also correspond to bundles**! (which are another types of bundles called the *boundary bundles*)

Boundary module

- Apply the boundary functor B (instead of the homology functor H)
- Connecting homomorphisms $\psi_i^\#$ are chain maps
- Can still define interval decomposition, representatives, wire and bundles

Boundary module

$$
\mathsf{B}(\mathcal{F}) : \mathsf{B}(K_0) \xleftrightarrow{\psi_0^{\#}} \mathsf{B}(K_1) \xleftrightarrow{\psi_1^{\#}} \cdots \xleftrightarrow{\psi_{m-2}^{\#}} \mathsf{B}(K_{m-1}) \xleftrightarrow{\psi_{m-1}^{\#}} \mathsf{B}(K_m)
$$

- Apply the boundary functor B (instead of the homology functor H)
- Connecting homomorphisms $\psi_i^\#$ are chain maps
- Can still define interval decomposition, representatives, wire and bundles
- Let each column of *B* equal the last cycle in the representative (in boundary moudle) generated by the wire bundle we maintain
- We can then add columns in *B* to *Z*
- So representatives come from a mix of wires from the homology module and the boundary module

Wires for the interval ℓ come from both the homology and boundary modules:

- Orange: homology module
- Blue: boundary module

Thank you!