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Persistent homology (non-zigzag version)

« As we add each simplex in the sequence, the homology of the complex changes, with:
« Birth: betti number increased by 1

« Death: betti number decreased by 1



Persistent homology (non-zigzag version)

« As we add each simplex in the sequence, the homology of the complex changes, with:
« Birth: betti number increased by 1
« Death: betti number decreased by 1

« The birth and death points can be canonically paired, resulting in persistence barcode:
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Zigzagq filtration:
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Induced module:

H(F) : H(Ko) < H( K )P - W (K )< S HK,)

4

Interval decomposition: [Gabriel 72]
H(]:) — @aeAI[bmda]
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persistence barcode:
Pers(F) = {[ba,do] | € A}



Non-zigzag vs. zigzag. Computing

Non-zigzag [ELZ2000]

integer YOUNGEST (simplex o7) Case fi: We compute the representation of the boundary
A = {0 € Ok41(07) | o positive} ; of simplex o in terms of the cycles Z;, and then reduce
loop the result among the boundaries, obtaining: do = Z;v =
i = max(A); Zi(Biu+v'"). There are two possibilities:
if T[¢] is unoccupied then
store j and A in T[i]; exit Birth: If v = 0, then do is already a boundary, and
endif; addition of o creates a new cycle, for example, C;u —o.
A=A+ A We append this cycle to the matrix Z;, and we append
forever; i+ 1 to both the birth vector b; and the index vector
returns. idx; to get b;;; and idx;,, respectively.

Death: If v’ # 0, then let j be the row of the lowest non-
zero element in vector v. We output a pair (b;[j],1).
We append vector v’ to the matrix B;, and the corre-
sponding chain (C;u — o) to the matrix C; to obtain
matrices B;+1 and Ciy1, respectively.

Case g;: There are once again two possibilities:

Birth: There is no cycle in matrix Z; that contains sim-
plex 0. Let j be the index of the first column in C; that
contains o, let [ be the index of the row of the lowest
non-zero element in B;[j].

1. Prepend D;C;[j] to Z: to get Z;. Prepend i + 1 to
the birth vector b; to get b, ;.

2. Let ¢ = Cj[j][o] be the coefficient of o in the chain
Cilj]. Let r, be the row of ¢ in matrix C;. We
prepend the row —r, /c to the matrix B; to get B;.

3. Subtract (r,[k]/c) - C;[7] from every column C;[k]
to get C,.

4. Subtract (B;[k][l]/Bi[7][l]) - Bi[j] from every other
column Bj[k].

Zigzag [CdSM2009]

5. Drop row [ and column j from B; to get Bit+1, drop
column [ from Z., and drop column j from C; to
gct Ci+1.

6. Reduce Z;+ initially set to Z;:

1: while 3k < j s.t. low Zi;1[j] = low Z;41[k] do
2:  s=low Zina[j], si = Zisalills]/Zis1[K][s]

3 Zinli) = Zinlil - o Zinlk]

4:  In Bj;1, add row j multiplied by s, to row k

We set the index idxi4+1 of the prepended cycle to be
1, and increase the index of every other column by 1.
Figure 5 illustrates the changes made in this case.

Death: Let Z;[j] be the first cycle that contains simplex
o. Output (b;[j],7).
1. Change basis to remove o from matrix Z;:
1: for increasing k > j s.t. o € Z;[k] do
2:  Let of = Zi[k][0]/Z:i[j][o]
3 Ziyi[k] = Zi[k] — o7 - Zi[3]
4: In B;, add row k multiplied by af to row j
5.  if low Z;;1[k] > low Z;[k] then
6: ji=k
2. Subtract cycle (Ci[k][o]/Zi[j][e]) - Zi[j] from every
chain C;[k].
3. Drop Z;;1[j], the corresponding entry in vectors b;
and idx;, row j from B;, row o from C; and Z; (as
well as row and column of ¢ from D;).

We increase the index of every column by 1,



Representatives for persistent homology

Recall:
Filtration:
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Representatives for persistent homology

Recall:
Filtration:
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Definition. Given the decomposition into interval

modules, a representative for an interval [b, d] is a

sequence of cycles which form the interval module

over [b, d]

« aka. homology class of cycle at each index
generates the one-dimensional vector space at
the index



Representatives for persistent homology

Recall:

Filtration:

F i Ko S K¢ o 2K, 5K,

Y

Induced module:
¥ Vi, Vs Ui
H(F) : H(Kp) +— H(K}) «+— - ¢——
4

Interval decomposition:
H(F) = @oen I
An interval module over [b, dJ:

b, b+1, e d]

0> oo 3 04 Zog ¢ Ly +— +++ & Lg < 0 & -+

H(K; 1) «— H(K,,)

— 0

Definition. Given the decomposition into interval

modules, a representative for an interval [b, d] is a

sequence of cycles which form the interval module

over [b, d]

« aka. homology class of cycle at each index
generates the one-dimensional vector space at
the index

Remark. Representatives for all of the intervals

form a compatible basis for each homology group in

the persistence module

« aka. not only we have a basis at each homology
group, but also the basic elements at
consecutive groups map to each other by the
induced homomorphism



Representatives for persistent homology

Recall: Definition. Given the decomposition into interval
modules, a representative for an interval [b, d] is a

Filtration: sequence of cycles which form the interval module

o0 o o o over [b, d]
F i K= K== K e K - aka. homology class of cycle at each index
\ generates the one-dimensional vector space at
Induced module: the index
H(F) - H(Eo) <5 H(EL) <5 - 72 HK, ) <2 H(K,)
\ Definition. Arepresentative for an interval [b, d] in
Interval decomposition: the non-zigzag perSiStence IS jUSt a CyC|e y4
H(F) = @ g It « bornin K, (aka. in K, but not in K;_;) and

« dying entering K,4,; (aka. not a boundary in K
but becomes a boundary in K ,,)

An interval module over [b, dJ:
b, b+1, ---, d]

05 - 30Z 57 5 oo B2y 5050050
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Representatives for non-zigzag: Example
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Zlgzag representatives

» Representative for non-zigzag contains a single cycle: all inclusion maps are forward

« Not true for zigzag persistence: a representative for zigzag is a sequence of cycles generating an
interval module
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Definition. A representative for [b, d] is a sequence of cycles
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such that for every b < a < d,

either [z,] — [za11] OF [2441] < [24] DY ¥



Zlgzag representatives

« Representative for non-zigzag contains a single cycle: all inclusion maps are forward

« Not true for zigzag persistence: a representative for zigzag is a sequence of cycles generating an
interval module

Definition. A representative for [b, d] is a sequence of cycles
rep = {z, € Z(K,) | a € [b,d]|}
such that for every b < a < d,

either [z,] — [za11] OF [2441] < [24] DY ¥

Furthermore:

Birth condition:
o ¥y 1 H(Kp—1) = H(Ky) is forward: z, € Z(Kp) \ Z(Kp—1);
« ¢ ;H(Ky_ 1) + H(K,) is backward: [z] is the non-zero element in Ker(¢); ;).

Death condition:
o ¥ H(Ky) <+ H(Ky.q) is backward: z; € Z(K,) \ Z(Ky441);
« ¢} H(K;) — H(K4.,) is forward: [z4] is the non-zero element in Ker(¢}).



Zlgzag representatives: Example
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Zlgzag representatives: Example

aton ﬂ\ HA HA HA HA HA H/k
H'_ .Ir':-;' .Ir':-'-l .I‘!-.". .I‘!-.'_'. Hh. H.—

Interval: B




Zlgzag representatives: Example

e ﬂ\ HA HA HA HA HA H/K
K M M Ay Ay L1 My

Interval: &

Representative: /\ *—*/\ *—*ﬂ\ TN TN e TN e TN
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Contributions

Computing Computing
barcodes representatives

m. length of filtration

w 2 2.2
O(m®) 1 0(mn®)  O(m°n?) n: maximum size of complexes

Reason for naive 0(m?n?) complexity (see also [Maria&Outdot2015]):

« During computing the barcode, there are O(mn) summations of intervals and their
representatives

« Each representative takes 0(mn) space and hence their summation takes 0 (mn) time
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Contributions

Computing Computing
barcodes representatives

m. length of filtration

0(m®)/0(mn?)  0(m?n?) = 0(m*n) n: maximum size of complexes

Reason for the improved 0(m?n) complexity:
* There are still 0(mn) summations of representatives

 BUT each representative takes O (m) space in our algorithm (instead of 0(mn)) and their
summation takes 0(m) time



“Naive” 0(m?*n?) algorithm

« Based on a direct maintenance of representatives.
« Scan each K;«<>K;.; in the filtration one by one:

During the process we maintain a set of “active” intervals (those ending with
the current index i)

When we encounter a birth, we start a new interval [i + 1,i + 1] and assign it a
new representative

When we encounter a death, we choose an active interval to kill (which ends
with i), and possibly assign the killed interval a new (finalized) representative

We also extend those active intervals which we do not choose to kill from i to
[ + 1, whose representatives may change during extension



“Naive” 0(m?*n?) algorithm

« Based on a direct maintenance of representatives.
« Scan each K;«<>K;.; in the filtration one by one:

« During the process we maintain a set of “active” intervals (those ending with
the current index i)

 When we encounter a birth, we start a new interval [i + 1,7 + 1] and assign it a
new representative

 When we encounter a death, we choose an active interval to kill (which ends
with i), and possibly assign the killed interval a new (finalized) representative

« We also extend those active intervals which we do not choose to kill from i to
[ + 1, whose representatives may change during extension

« Observation: Other than having a new representative for a new starting interval,
changing representatives for the intervals are done by representative
summations (a critical fact leading to the improvement)



lllustration of representative summation




Wires and bundles

» Key definitions leading to the improvement. With details omitted:
o Awireis acycle w; € Z(K;) with a starting index i
o Abundle is a set of wires

« AKkey observation: zigzag representatives in our algorithm can always be
generated from bundles of wires



Wires and bundles

» Key definitions leading to the improvement. With details omitted:
o Awireis acycle w; € Z(K;) with a starting index i
o Abundle is a set of wires

« AKkey observation: zigzag representatives in our algorithm can always be
generated from bundles of wires

Definition. A wire is a cycle w; € Z(K;) with a starting index i € P?(F) UPZ(F) s.t.
(i) K;—1 — K, isforward and w; € Z(K;) \ Z(K;_1), or

(i) K;—1 « K, is backward and w; € B(K;_1) \ B(Kj;), or

(iii) K;_; — K, is forward and w; € B(K;) \ B(K;_1).

We also say that w; is a wire at index i. The wires satisfying (i) or (ii) are also called
non-boundary wires whereas those satisfying (iii) are called boundary wires.




Representatives as bundles of wires
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Representatives as bundles of wires
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Representatives as bundles of wires
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Representatives as bundles of wires
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Representatives as bundles of wires
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Bundles and wires for improvement

« Fact [DHM25]: zigzag representatives in our algorithm can always be generated from
bundles of wires

Theorem. There is a wire bundle W = {w, |« € PH(F) U P5(F)} so that a representative
for any [b, d] € Pers” (F) U Pers®(F) is generated by a wire bundle that is a subset of V.
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bundle which is nothing but a set of O(m) indices



Bundles and wires for improvement

Fact [DHM25]: zigzag representatives in our algorithm can always be generated from
bundles of wires

Theorem. There is a wire bundle W = {w, |« € PH(F) U P5(F)} so that a representative
for any [b, d] € Pers” (F) U Pers®(F) is generated by a wire bundle that is a subset of V.

Fact: Different wires start with different indices, so we store each representative as a
bundle which is nothing but a set of O(m) indices

Fact. Summing two representatives boils down to symmetric difference of two bundles
(sets) of indices

Proposition. Let [b,i], [V',i] € Pers” (F;) U Pers®(F;) and b < ¥'. Suppose that W and W’
generate a representative for |b,i] and |V, i| respectively. Then, the sum W B W' generates
a representative for [V',i] € Pers” (F;) U Pers®(F;).




Bundles and wires for improvement

Fact [DHM25]: zigzag representatives in our algorithm can always be generated from
bundles of wires

Theorem. There is a wire bundle W = {w, |« € PH(F) U P5(F)} so that a representative
for any [b, d] € Pers” (F) U Pers®(F) is generated by a wire bundle that is a subset of V.

Fact: Different wires start with different indices, so we store each representative as a
bundle which is nothing but a set of O(m) indices

Fact. Summing two representatives boils down to symmetric difference of two bundles
(sets) of indices

Proposition. Let [b,i], [V',i] € Pers” (F;) U Pers®(F;) and b < ¥'. Suppose that W and W’
generate a representative for |b,i] and |V, i| respectively. Then, the sum W B W' generates
a representative for [V',i] € Pers” (F;) U Pers®(F;).

Summing two representatives now takes 0(m) time = 0(mn) summations take 0(m?n)
time




Generating representative from bundle

« Can be done in O(mn) time:

Algorithm 1 (ExtRep: Extracting representative from bundle). Let W = {w,,,...,w,,} be
a wire bundle where 1, < --- < 1, and let rep be the representative for an interval [b, d]
generated by W. We can assume 1, < d because wires in W with indices greater than d do
not contribute to a cycle in rep. Moreover, let .;, be the last index in ¢y, . .., 1, no greater than
b. We have that z = )" w; is the cycle at indices [b, t1.1) in rep. We then let ) iterate
overk+1,...,£—1. Foreach )\, we add w,, to z, and the resulting z is the cycle at indices
[tx, tat1) N rep. Finally, we add w,, to z, and z is the cycle at indices [, d] in rep. Since at
every A € [k + 1,¢], we add at most one cycle to another cycle, the whole process involves
O(m) chain summations.

* Since there are 0(m) intervals, the overall complexity of our algorithm is 0 (m?n)



Representative from bundle: Example
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Interval:

Bundle:
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Implementation (and intro. of boundary modules)

Two keys to implement in 0 (m?n) time:
1) Maintain two pivoted matrices Z and B whose columns have distinct pivots such
that:

» Columns of Z form a basis for H(K;)
« Columns of B form a basis for B(K;)

2) We also need to make sure that each column of Z equals the last cycle in the
representative generated by the wire bundle we maintain
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2) We also need to make sure that each column of Z equals the last cycle in the
representative generated by the wire bundle we maintain

« But to make sure pivots are distinct, we cannot avoid summations of B to Z,
making point (2) impossible to hold



Implementation (and intro. of boundary modules)

Two keys to implement in 0 (m?n) time:

1) Maintain two pivoted matrices Z and B whose columns have distinct pivots such
that:

» Columns of Z form a basis for H(K;)
« Columns of B form a basis for B(K;)

2) We also need to make sure that each column of Z equals the last cycle in the
representative generated by the wire bundle we maintain

« But to make sure pivots are distinct, we cannot avoid summations of B to Z,
making point (2) impossible to hold

« Unless we make the columns of B also correspond to bundles! (which are
another types of bundles called the boundary bundles)



Boundary module

Filtration:

Om—2 Om—1

F: Kp O K¢ B K, 16— K,
U

Induced boundary module:

¥ 0 Y2 L
B(F) : B(Kjp) «+— B(Ky) «— -+ «+—— B(K,,_1) +— B(K,,)

* Apply the boundary functor B (instead of the homology functor H)
- Connecting homomorphisms y{ are chain maps
« Can still define interval decomposition, representatives, wire and bundles



Boundary module

Filtration:

Om—2 Om—1

F KB K¢ 8K, 1+— 5K,
!

Induced boundary module:

¥} i Vo2 Vi1
B(F) : B(Kjp) «+— B(Ky) «— -+ «+—— B(K,,_1) +— B(K,,)

* Apply the boundary functor B (instead of the homology functor H)

- Connecting homomorphisms y{ are chain maps

« Can still define interval decomposition, representatives, wire and bundles

» Let each column of B equal the last cycle in the representative (in boundary moudle)
generated by the wire bundle we maintain

 We can then add columns in Bto Z

* SO representatives come from a mix of wires from the homology module and the boundary
module



Wires for the interval 4 come
from both the homology and
boundary modules:

. . homology module
« Blue: boundary module

&
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Thank you!
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