A Fast Algorithm for Computing Zigzag
Representatives

SODA 25’

Tamal K. Dey, Purdue University
Tao Hou, University of Oregon
Dmitriy Morozov, Lawrence Berkeley National Laboratory

Persistent homology (non-zigzag version)

« As we add each simplex in the sequence, the homology of the complex changes, with:
« Birth: betti number increased by 1

« Death: betti number decreased by 1

Persistent homology (non-zigzag version)

« As we add each simplex in the sequence, the homology of the complex changes, with:
« Birth: betti number increased by 1
« Death: betti number decreased by 1

« The birth and death points can be canonically paired, resulting in persistence barcode:

Persistent homology: Pipeline

Simplex-wise filtration:

Om—2

g g Om—1
F: Ky K — - — S5 K1 —— K,

$

Induced module:

H(F) : H(K,) 22 H(K,) s ... tn2y

U

Interval decomposition: [Gabriel 72]
H(F) = @aea T

4

persistence barcode:
Pers(F) = {[ba,ds] | € A}

Ym—1

H(K,,_1) —— H(K,,)

/Z1gzag persistence

Zigzag filtration:

o o Om—2 Om—1
F: Kge K¢ 4 v K, 11— K,

/Z1gzag persistence

Zigzag filtration:

loJy) g1 Om—2 Om—1
F i Kos— K<< T Ky 1—— Ky,
\\\ AN l’ /’/

oo
K, — K;yor K; «— K, 4

/Z1gzag persistence

Zigzagq filtration:
F: K¢ K¢ 2 I K N K

4

Induced module:

H(F) : H(Ko) < H(K)P - W (K)< S HK,)

4

Interval decomposition: [Gabriel 72]
H(]:) — @aeAI[bmda]

4

persistence barcode:
Pers(F) = {[ba,do] | € A}

Non-zigzag vs. zigzag. Computing

Non-zigzag [ELZ2000]

integer YOUNGEST (simplex o7) Case fi: We compute the representation of the boundary
A = {0 € Ok41(07) | o positive} ; of simplex o in terms of the cycles Z;, and then reduce
loop the result among the boundaries, obtaining: do = Z;v =
i = max(A); Zi(Biu+v'"). There are two possibilities:
if T[¢] is unoccupied then
store j and A in T[i]; exit Birth: If v = 0, then do is already a boundary, and
endif; addition of o creates a new cycle, for example, C;u —o.
A=A+ A We append this cycle to the matrix Z;, and we append
forever; i+ 1 to both the birth vector b; and the index vector
returns. idx; to get b;;; and idx;,, respectively.

Death: If v’ # 0, then let j be the row of the lowest non-
zero element in vector v. We output a pair (b;[j],1).
We append vector v’ to the matrix B;, and the corre-
sponding chain (C;u — o) to the matrix C; to obtain
matrices B;+1 and Ciy1, respectively.

Case g;: There are once again two possibilities:

Birth: There is no cycle in matrix Z; that contains sim-
plex 0. Let j be the index of the first column in C; that
contains o, let [be the index of the row of the lowest
non-zero element in B;[j].

1. Prepend D;C;[j] to Z: to get Z;. Prepend i + 1 to
the birth vector b; to get b, ;.

2. Let ¢ = Cj[j][o] be the coefficient of o in the chain
Cilj]. Let r, be the row of ¢ in matrix C;. We
prepend the row —r, /c to the matrix B; to get B;.

3. Subtract (r,[k]/c) - C;[7] from every column C;[k]
to get C,.

4. Subtract (B;[k][l]/Bi[7][l]) - Bi[j] from every other
column Bj[k].

Zigzag [CdSM2009]

5. Drop row [and column j from B; to get Bit+1, drop
column [from Z., and drop column j from C; to
gct Ci+1.

6. Reduce Z;+ initially set to Z;:

1: while 3k < j s.t. low Zi;1[j] = low Z;41[k] do
2: s=low Zina[j], si = Zisalills]/Zis1[K][s]

3 Zinli) = Zinlil - o Zinlk]

4: In Bj;1, add row j multiplied by s, to row k

We set the index idxi4+1 of the prepended cycle to be
1, and increase the index of every other column by 1.
Figure 5 illustrates the changes made in this case.

Death: Let Z;[j] be the first cycle that contains simplex
o. Output (b;[j],7).
1. Change basis to remove o from matrix Z;:
1: for increasing k > j s.t. o € Z;[k] do
2: Let of = Zi[k][0]/Z:i[j][o]
3 Ziyi[k] = Zi[k] — o7 - Zi[3]
4: In B;, add row k multiplied by af to row j
5. if low Z;;1[k] > low Z;[k] then
6: ji=k
2. Subtract cycle (Ci[k][o]/Zi[j][e]) - Zi[j] from every
chain C;[k].
3. Drop Z;;1[j], the corresponding entry in vectors b;
and idx;, row j from B;, row o from C; and Z; (as
well as row and column of ¢ from D;).

We increase the index of every column by 1,

Representatives for persistent homology

Recall:
Filtration:
F: Kp¢&S K2 o S K 15 K,
J
Induced module:
H(F) : H(Ko) <45 H(KG) <2 o m22 H(K,,) <22 H(K,,)

4

Interval decomposition:
H(F) = Daca 0

An interval module over [b, dJ:

b, b+1, e d]

00— -+ 00 Zy e— Ty — s Ty >0 -+ =0

Representatives for persistent homology

Recall:
Filtration:
F i Ko Ki¢Zs o 2K LK,
N3

Induced module:
¥ Vi, Vs Ui
H(F) : H(Kp) +— H(K}) «+— - ¢——
4

Interval decomposition:
H(F) = @oen I
An interval module over [b, dJ:

b, b+1, e d]

0> oo 3 04 Zog ¢ Ly +— +++ & Lg < 0 & -+

H(K; 1) «— H(K,,)

— 0

Definition. Given the decomposition into interval

modules, a representative for an interval [b, d] is a

sequence of cycles which form the interval module

over [b, d]

« aka. homology class of cycle at each index
generates the one-dimensional vector space at
the index

Representatives for persistent homology

Recall:

Filtration:

F i Ko S K¢ o 2K, 5K,

Y

Induced module:
¥ Vi, Vs Ui
H(F) : H(Kp) +— H(K}) «+— - ¢——
4

Interval decomposition:
H(F) = @oen I
An interval module over [b, dJ:

b, b+1, e d]

0> oo 3 04 Zog ¢ Ly +— +++ & Lg < 0 & -+

H(K; 1) «— H(K,,)

— 0

Definition. Given the decomposition into interval

modules, a representative for an interval [b, d] is a

sequence of cycles which form the interval module

over [b, d]

« aka. homology class of cycle at each index
generates the one-dimensional vector space at
the index

Remark. Representatives for all of the intervals

form a compatible basis for each homology group in

the persistence module

« aka. not only we have a basis at each homology
group, but also the basic elements at
consecutive groups map to each other by the
induced homomorphism

Representatives for persistent homology

Recall: Definition. Given the decomposition into interval
modules, a representative for an interval [b, d] is a

Filtration: sequence of cycles which form the interval module

o0 o o o over [b, d]
F i K= K== K e K - aka. homology class of cycle at each index
\ generates the one-dimensional vector space at
Induced module: the index
H(F) - H(Eo) <5 H(EL) <5 - 72 HK,) <2 H(K,)
\ Definition. Arepresentative for an interval [b, d] in
Interval decomposition: the non-zigzag perSiStence IS jUSt a CyC|e y4
H(F) = @ g It « bornin K, (aka. in K, but not in K;_;) and

« dying entering K,4,; (aka. not a boundary in K
but becomes a boundary in K ,,)

An interval module over [b, dJ:
b, b+1, ---, d]

05 - 30Z 57 5 oo B2y 5050050

~

Representatives for non-zigzag: Example

Op

Od

g6

Kd-+1

Zlgzag representatives

» Representative for non-zigzag contains a single cycle: all inclusion maps are forward

« Not true for zigzag persistence: a representative for zigzag is a sequence of cycles generating an
interval module

Zlgzag representatives

» Representative for non-zigzag contains a single cycle: all inclusion maps are forward

« Not true for zigzag persistence: a representative for zigzag is a sequence of cycles generating an
interval module

Definition. A representative for [b, d] is a sequence of cycles
rep = {z, € Z(K,) | a € [b,d]|}
such that for every b < a < d,

either [z,] — [za11] OF [2441] < [24] DY ¥

Zlgzag representatives

« Representative for non-zigzag contains a single cycle: all inclusion maps are forward

« Not true for zigzag persistence: a representative for zigzag is a sequence of cycles generating an
interval module

Definition. A representative for [b, d] is a sequence of cycles
rep = {z, € Z(K,) | a € [b,d]|}
such that for every b < a < d,

either [z,] — [za11] OF [2441] < [24] DY ¥

Furthermore:

Birth condition:
o ¥y 1 H(Kp—1) = H(Ky) is forward: z, € Z(Kp) \ Z(Kp—1);
« ¢ ;H(Ky_ 1) + H(K,) is backward: [z] is the non-zero element in Ker(¢); ;).

Death condition:
o ¥ H(Ky) <+ H(Ky.q) is backward: z; € Z(K,) \ Z(Ky441);
« ¢} H(K;) — H(K4.,) is forward: [z4] is the non-zero element in Ker(¢}).

Zlgzag representatives: Example

aton ﬂ\ HA HA HA HA HA H/k
H'_ .Ir':-;' .Ir':-'-l .I‘!-.". .I‘!-.". Hh. H.—

Zlgzag representatives: Example

aton ﬂ\ HA HA HA HA HA H/k
H'_ .Ir':-;' .Ir':-'-l .I‘!-.". .I‘!-.'_'. Hh. H.—

Interval: B

Zlgzag representatives: Example

e ﬂ\ HA HA HA HA HA H/K
K M M Ay Ay L1 My

Interval: &

Representative: /\ *—*/\ *—*ﬂ\ TN TN e TN e TN

Contributions

Computing Computing
barcodes representatives

m. length of filtration

w 2 2.2
O(m®) 1 0(mn®) O(m°n?) n: maximum size of complexes

Contributions

Computing Computing
barcodes representatives

m. length of filtration

w 2 2.2
O(m®) 1 0(mn®) O(m°n?) n: maximum size of complexes

Reason for naive 0(m?n?) complexity (see also [Maria&Outdot2015]):

« During computing the barcode, there are O(mn) summations of intervals and their
representatives

« Each representative takes 0(mn) space and hence their summation takes 0 (mn) time

Contributions

Computing Computing
barcodes representatives

m. length of filtration

0(m®)/0(mn?) 0(m?n?) = 0(m*n) n: maximum size of complexes

Contributions

Computing Computing
barcodes representatives

m. length of filtration

0(m®)/0(mn?) 0(m?n?) = 0(m*n) n: maximum size of complexes

Reason for the improved 0(m?n) complexity:
* There are still 0(mn) summations of representatives

 BUT each representative takes O (m) space in our algorithm (instead of 0(mn)) and their
summation takes 0(m) time

“Naive” 0(m?*n?) algorithm

« Based on a direct maintenance of representatives.
« Scan each K;«<>K;.; in the filtration one by one:

During the process we maintain a set of “active” intervals (those ending with
the current index i)

When we encounter a birth, we start a new interval [i + 1,i + 1] and assign it a
new representative

When we encounter a death, we choose an active interval to kill (which ends
with i), and possibly assign the killed interval a new (finalized) representative

We also extend those active intervals which we do not choose to kill from i to
[+ 1, whose representatives may change during extension

“Naive” 0(m?*n?) algorithm

« Based on a direct maintenance of representatives.
« Scan each K;«<>K;.; in the filtration one by one:

« During the process we maintain a set of “active” intervals (those ending with
the current index i)

 When we encounter a birth, we start a new interval [i + 1,7 + 1] and assign it a
new representative

 When we encounter a death, we choose an active interval to kill (which ends
with i), and possibly assign the killed interval a new (finalized) representative

« We also extend those active intervals which we do not choose to kill from i to
[+ 1, whose representatives may change during extension

« Observation: Other than having a new representative for a new starting interval,
changing representatives for the intervals are done by representative
summations (a critical fact leading to the improvement)

lllustration of representative summation

Wires and bundles

» Key definitions leading to the improvement. With details omitted:
o Awireis acycle w; € Z(K;) with a starting index i
o Abundle is a set of wires

« AKkey observation: zigzag representatives in our algorithm can always be
generated from bundles of wires

Wires and bundles

» Key definitions leading to the improvement. With details omitted:
o Awireis acycle w; € Z(K;) with a starting index i
o Abundle is a set of wires

« AKkey observation: zigzag representatives in our algorithm can always be
generated from bundles of wires

Definition. A wire is a cycle w; € Z(K;) with a starting index i € P?(F) UPZ(F) s.t.
(i) K;—1 — K, isforward and w; € Z(K;) \ Z(K;_1), or

(i) K;—1 « K, is backward and w; € B(K;_1) \ B(Kj;), or

(iii) K;_; — K, is forward and w; € B(K;) \ B(K;_1).

We also say that w; is a wire at index i. The wires satisfying (i) or (ii) are also called
non-boundary wires whereas those satisfying (iii) are called boundary wires.

Representatives as bundles of wires

i+ 1 i

Representatives as bundles of wires

Representatives as bundles of wires

Representatives as bundles of wires

o
T4+ 1 k: Luly 4
I.-I-II.I '
[
+ = &
i+ 1
L [y
. w1 —)|
[
=
i+ 1 i

Representatives as bundles of wires

|'_|_|_| '
i
2 a i 10
(41 }[Lita [T, |:| [T} [FRLS L5 |
wy
|'_|_|'* .
o
3 T 10
wn s +wr—]

Representatives as bundles of wires

3 [10

Representatives as bundles of wires

Ly -
W -
L
2 i 10
[[b s] "
o »
Gt .
+ L
3 3
. [~)|
Lty -
L
3 7 10
[

Bundles and wires for improvement

« Fact [DHM25]: zigzag representatives in our algorithm can always be generated from
bundles of wires

Theorem. There is a wire bundle W = {w, |« € PH(F) U P5(F)} so that a representative
for any [b, d] € Pers” (F) U Pers®(F) is generated by a wire bundle that is a subset of V.

Bundles and wires for improvement

« Fact [DHM25]: zigzag representatives in our algorithm can always be generated from
bundles of wires

Theorem. There is a wire bundle W = {w, |« € PH(F) U P5(F)} so that a representative
for any [b, d] € Pers” (F) U Pers®(F) is generated by a wire bundle that is a subset of V.

« Fact: Different wires start with different indices, so we store each representative as a
bundle which is nothing but a set of O(m) indices

Bundles and wires for improvement

Fact [DHM25]: zigzag representatives in our algorithm can always be generated from
bundles of wires

Theorem. There is a wire bundle W = {w, |« € PH(F) U P5(F)} so that a representative
for any [b, d] € Pers” (F) U Pers®(F) is generated by a wire bundle that is a subset of V.

Fact: Different wires start with different indices, so we store each representative as a
bundle which is nothing but a set of O(m) indices

Fact. Summing two representatives boils down to symmetric difference of two bundles
(sets) of indices

Proposition. Let [b,i], [V',i] € Pers” (F;) U Pers®(F;) and b < ¥'. Suppose that W and W’
generate a representative for |b,i] and |V, i| respectively. Then, the sum W B W' generates
a representative for [V',i] € Pers” (F;) U Pers®(F;).

Bundles and wires for improvement

Fact [DHM25]: zigzag representatives in our algorithm can always be generated from
bundles of wires

Theorem. There is a wire bundle W = {w, |« € PH(F) U P5(F)} so that a representative
for any [b, d] € Pers” (F) U Pers®(F) is generated by a wire bundle that is a subset of V.

Fact: Different wires start with different indices, so we store each representative as a
bundle which is nothing but a set of O(m) indices

Fact. Summing two representatives boils down to symmetric difference of two bundles
(sets) of indices

Proposition. Let [b,i], [V',i] € Pers” (F;) U Pers®(F;) and b < ¥'. Suppose that W and W’
generate a representative for |b,i] and |V, i| respectively. Then, the sum W B W' generates
a representative for [V',i] € Pers” (F;) U Pers®(F;).

Summing two representatives now takes 0(m) time = 0(mn) summations take 0(m?n)
time

Generating representative from bundle

« Can be done in O(mn) time:

Algorithm 1 (ExtRep: Extracting representative from bundle). Let W = {w,,,...,w,,} be
a wire bundle where 1, < --- < 1, and let rep be the representative for an interval [b, d]
generated by W. We can assume 1, < d because wires in W with indices greater than d do
not contribute to a cycle in rep. Moreover, let .;, be the last index in ¢y, . .., 1, no greater than
b. We have that z =)" w; is the cycle at indices [b, t1.1) in rep. We then let) iterate
overk+1,...,£—1. Foreach)\, we add w,, to z, and the resulting z is the cycle at indices
[tx, tat1) N rep. Finally, we add w,, to z, and z is the cycle at indices [, d] in rep. Since at
every A € [k + 1,¢], we add at most one cycle to another cycle, the whole process involves
O(m) chain summations.

* Since there are 0(m) intervals, the overall complexity of our algorithm is 0 (m?n)

Representative from bundle: Example

o AN A A
iy Ka Hy o oy Ry My

Interval:

Bundle:

VANV

Representative: /\ ,_}/\ “’ﬂ\ T N

Implementation (and intro. of boundary modules)

Two keys to implement in 0 (m?n) time:
1) Maintain two pivoted matrices Z and B whose columns have distinct pivots such
that:

» Columns of Z form a basis for H(K;)
« Columns of B form a basis for B(K;)

2) We also need to make sure that each column of Z equals the last cycle in the
representative generated by the wire bundle we maintain

Implementation (and intro. of boundary modules)

Two keys to implement in 0 (m?n) time:
1) Maintain two pivoted matrices Z and B whose columns have distinct pivots such
that:

» Columns of Z form a basis for H(K;)
« Columns of B form a basis for B(K;)

2) We also need to make sure that each column of Z equals the last cycle in the
representative generated by the wire bundle we maintain

« But to make sure pivots are distinct, we cannot avoid summations of B to Z,
making point (2) impossible to hold

Implementation (and intro. of boundary modules)

Two keys to implement in 0 (m?n) time:

1) Maintain two pivoted matrices Z and B whose columns have distinct pivots such
that:

» Columns of Z form a basis for H(K;)
« Columns of B form a basis for B(K;)

2) We also need to make sure that each column of Z equals the last cycle in the
representative generated by the wire bundle we maintain

« But to make sure pivots are distinct, we cannot avoid summations of B to Z,
making point (2) impossible to hold

« Unless we make the columns of B also correspond to bundles! (which are
another types of bundles called the boundary bundles)

Boundary module

Filtration:

Om—2 Om—1

F: Kp O K¢ B K, 16— K,
U

Induced boundary module:

¥ 0 Y2 L
B(F) : B(Kjp) «+— B(Ky) «— -+ «+—— B(K,,_1) +— B(K,,)

* Apply the boundary functor B (instead of the homology functor H)
- Connecting homomorphisms y{ are chain maps
« Can still define interval decomposition, representatives, wire and bundles

Boundary module

Filtration:

Om—2 Om—1

F KB K¢ 8K, 1+— 5K,
!

Induced boundary module:

¥} i Vo2 Vi1
B(F) : B(Kjp) «+— B(Ky) «— -+ «+—— B(K,,_1) +— B(K,,)

* Apply the boundary functor B (instead of the homology functor H)

- Connecting homomorphisms y{ are chain maps

« Can still define interval decomposition, representatives, wire and bundles

» Let each column of B equal the last cycle in the representative (in boundary moudle)
generated by the wire bundle we maintain

 We can then add columns in Bto Z

* SO representatives come from a mix of wires from the homology module and the boundary
module

Wires for the interval 4 come
from both the homology and
boundary modules:

. . homology module
« Blue: boundary module

&

ﬂ\qz xué x{_l; &HAH xd‘_‘/&
iy Ha K oy K Mg i

Wires

TH|
s
Ty

. Wi
iy

Uy

Bundle for bar 6
'?I.I'.-'l
iy
Wiy

Representative for bar &

Thank you!

	Slide 1: A Fast Algorithm for Computing Zigzag Representatives
	Slide 3: Persistent homology (non-zigzag version)
	Slide 4: Persistent homology (non-zigzag version)
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56: Thank you!

