A Fast Algorithm for Computing Zigzag Representatives

SODA 25'

Tamal K. Dey, Purdue University *Tao Hou, University of Oregon* Dmitriy Morozov, Lawrence Berkeley National Laboratory

Persistent homology (non-zigzag version)

- As we add each simplex in the sequence, the homology of the complex changes, with:
 - Birth: betti number increased by 1
 - Death: betti number decreased by 1

Persistent homology (non-zigzag version)

- As we add each simplex in the sequence, the homology of the complex changes, with:
 - Birth: betti number increased by 1
 - Death: betti number decreased by 1
- The birth and death points can be canonically paired, resulting in persistence barcode:

Persistent homology: Pipeline

Η

Simplex-wise filtration:

Zigzag persistence

Zigzag filtration:

$$\mathcal{F}: K_0 \stackrel{\sigma_0}{\longleftrightarrow} K_1 \stackrel{\sigma_1}{\longleftrightarrow} \cdots \stackrel{\sigma_{m-2}}{\longleftrightarrow} K_{m-1} \stackrel{\sigma_{m-1}}{\longleftrightarrow} K_m$$

Zigzag persistence

Zigzag filtration:

Zigzag persistence

Zigzag filtration: $\mathcal{F}: K_0 \stackrel{\sigma_0}{\longleftrightarrow} K_1 \stackrel{\sigma_1}{\longleftrightarrow} \cdots \stackrel{\sigma_{m-2}}{\longleftrightarrow} K_{m-1} \stackrel{\sigma_{m-1}}{\longleftrightarrow} K_m$ ∜ Induced module: $\mathsf{H}(\mathcal{F}): \mathsf{H}(K_0) \xleftarrow{\psi_0^*} \mathsf{H}(K_1) \xleftarrow{\psi_1^*} \cdots \xleftarrow{\psi_{m-2}^*} \mathsf{H}(K_{m-1}) \xleftarrow{\psi_{m-1}^*} \mathsf{H}(K_m)$ ∜ Interval decomposition: [Gabriel 72] $\mathsf{H}(\mathcal{F}) = \bigoplus_{\alpha \in \mathcal{A}} \mathcal{I}^{[b_{\alpha}, d_{\alpha}]}$ \Downarrow persistence barcode: $\mathsf{Pers}(\mathcal{F}) = \{ [b_{\alpha}, d_{\alpha}] \mid \alpha \in \mathcal{A} \}$

Non-zigzag vs. zigzag: Computing

Non-zigzag [ELZ2000]

```
integer YOUNGEST (simplex \sigma^j)

\Lambda = \{\sigma \in \partial_{k+1}(\sigma^j) \mid \sigma \text{ positive}\};

loop

i = \max(\Lambda);

if T[i] is unoccupied then

store j and \Lambda in T[i]; exit

endif;

\Lambda = \Lambda + \Lambda^i

forever;

return i.
```

Case f_i : We compute the representation of the boundary of simplex σ in terms of the cycles Z_i , and then reduce the result among the boundaries, obtaining: $\partial \sigma = Z_i v =$ $Z_i(B_i u + v')$. There are two possibilities:

Birth: If v' = 0, then $\partial \sigma$ is already a boundary, and addition of σ creates a new cycle, for example, $C_i u - \sigma$. We append this cycle to the matrix Z_i , and we append i + 1 to both the birth vector \mathbf{b}_i and the index vector \mathbf{idx}_i to get \mathbf{b}_{i+1} and \mathbf{idx}_{i+1} , respectively.

Death: If $v' \neq 0$, then let j be the row of the lowest nonzero element in vector v'. We output a pair $(\mathbf{b}_i[j], i)$. We append vector v' to the matrix B_i , and the corresponding chain $(C_i u - \sigma)$ to the matrix C_i to obtain matrices B_{i+1} and C_{i+1} , respectively.

Case g_i : There are once again two possibilities:

- **Birth:** There is no cycle in matrix Z_i that contains simplex σ . Let j be the index of the first column in C_i that contains σ , let l be the index of the row of the lowest non-zero element in $B_i[j]$.
 - 1. Prepend $D_i C_i[j]$ to Z_i to get Z'_i . Prepend i + 1 to the birth vector \mathbf{b}_i to get \mathbf{b}_{i+1} .
 - 2. Let $c = C_i[j][\sigma]$ be the coefficient of σ in the chain $C_i[j]$. Let \mathbf{r}_{σ} be the row of σ in matrix C_i . We prepend the row $-\mathbf{r}_{\sigma}/c$ to the matrix B_i to get B'_i .
 - 3. Subtract $(\mathbf{r}_{\sigma}[k]/c) \cdot C_i[j]$ from every column $C_i[k]$ to get C'_i .
 - 4. Subtract $(B'_i[k][l]/B'_i[j][l]) \cdot B'_i[j]$ from every other column $B'_i[k]$.

Zigzag [CdSM2009]

- 5. Drop row l and column j from B'_i to get B_{i+1} , drop column l from Z'_i , and drop column j from C_i to get C_{i+1} .
- 6. Reduce Z_{i+1} initially set to Z'_i :
 - 1: while $\exists k < j$ s.t. low $Z_{i+1}[j] = \log Z_{i+1}[k]$ do 2: $s = \log Z_{i+1}[j], s_k^j = Z_{i+1}[j][s]/Z_{i+1}[k][s]$ 3: $Z_{i+1}[j] = Z_{i+1}[j] - s_k^j \cdot Z_{i+1}[k]$ 4: In B_{i+1} , add row j multiplied by s_k^j to row k

We set the index \mathbf{idx}_{i+1} of the prepended cycle to be 1, and increase the index of every other column by 1. Figure 5 illustrates the changes made in this case.

Death: Let $Z_i[j]$ be the first cycle that contains simplex σ . Output $(\mathbf{b}_i[j], i)$.

- 1. Change basis to remove σ from matrix Z_i :
 - 1: for increasing k > j s.t. $\sigma \in Z_i[k]$ do
 - 2: Let $\sigma_j^k = Z_i[k][\sigma]/Z_i[j][\sigma]$
 - 3: $Z_{i+1}[k] = Z_i[k] \sigma_j^k \cdot Z_i[j]$
 - 4: In B_i , add row k multiplied by σ_j^k to row j
 - 5: if $\log Z_{i+1}[k] > \log Z_i[k]$ then
 - 6: j = k
- 2. Subtract cycle $(C_i[k][\sigma]/Z_i[j][\sigma]) \cdot Z_i[j]$ from every chain $C_i[k]$.
- 3. Drop $Z_{i+1}[j]$, the corresponding entry in vectors \mathbf{b}_i and \mathbf{idx}_i , row j from B_i , row σ from C_i and Z_i (as well as row and column of σ from D_i).

We increase the index of every column by 1, $\mathbf{idx}_{i+1}(l) = \mathbf{idx}_i(l) + 1.$

Recall:

Filtration: $\mathcal{F}: K_{0} \xleftarrow{\sigma_{0}} K_{1} \xleftarrow{\sigma_{1}} \cdots \xleftarrow{\sigma_{m-2}} K_{m-1} \xleftarrow{\sigma_{m-1}} K_{m}$ \Downarrow Induced module: $\mathsf{H}(\mathcal{F}): \mathsf{H}(K_{0}) \xleftarrow{\psi_{0}^{*}} \mathsf{H}(K_{1}) \xleftarrow{\psi_{1}^{*}} \cdots \xleftarrow{\psi_{m-2}^{*}} \mathsf{H}(K_{m-1}) \xleftarrow{\psi_{m-1}^{*}} \mathsf{H}(K_{m})$ \Downarrow Interval decomposition: $\mathsf{H}(\mathcal{F}) = \bigoplus_{\alpha \in \mathcal{A}} \mathcal{I}^{[b_{\alpha}, d_{\alpha}]}$

An interval module over [b, d]:

$$\begin{bmatrix} b, & b+1, & \cdots, & d \end{bmatrix}$$
$$0 \leftrightarrow \cdots \leftrightarrow 0 \leftrightarrow \mathbb{Z}_2 \stackrel{=}{\longleftrightarrow} \mathbb{Z}_2 \stackrel{=}{\longleftrightarrow} \cdots \stackrel{=}{\longleftrightarrow} \mathbb{Z}_2 \leftrightarrow 0 \leftrightarrow \cdots \leftrightarrow 0$$

Recall:

An interval module over [b, d]:

$$\begin{bmatrix} b, & b+1, & \cdots, & d \end{bmatrix}$$
$$0 \leftrightarrow \cdots \leftrightarrow 0 \leftrightarrow \mathbb{Z}_2 \stackrel{=}{\longleftrightarrow} \mathbb{Z}_2 \stackrel{=}{\longleftrightarrow} \cdots \stackrel{=}{\longleftrightarrow} \mathbb{Z}_2 \leftrightarrow 0 \leftrightarrow \cdots \leftrightarrow 0$$

Definition. Given the decomposition into interval modules, a *representative* for an interval [b, d] is a sequence of cycles which form the interval module over [b, d]

 aka. homology class of cycle at each index generates the one-dimensional vector space at the index

Recall:

An interval module over [b, d]:

 $\begin{bmatrix} b, & b+1, & \cdots, & d \end{bmatrix}$ $0 \leftrightarrow \cdots \leftrightarrow 0 \leftrightarrow \mathbb{Z}_2 \stackrel{=}{\longleftrightarrow} \mathbb{Z}_2 \stackrel{=}{\longleftrightarrow} \cdots \stackrel{=}{\longleftrightarrow} \mathbb{Z}_2 \leftrightarrow 0 \leftrightarrow \cdots \leftrightarrow 0$

Definition. Given the decomposition into interval modules, a *representative* for an interval [b, d] is a sequence of cycles which form the interval module over [b, d]

 aka. homology class of cycle at each index generates the one-dimensional vector space at the index

Remark. Representatives for all of the intervals form a *compatible basis* for each homology group in the persistence module

 aka. not only we have a basis at each homology group, but also the basic elements at consecutive groups map to each other by the induced homomorphism

Recall:

An interval module over [b, d]:

 $\begin{bmatrix} b, & b+1, & \cdots, & d \end{bmatrix}$ $0 \to \cdots \to 0 \to \mathbb{Z}_2 \xrightarrow{\approx} \mathbb{Z}_2 \xrightarrow{\approx} \cdots \xrightarrow{\approx} \mathbb{Z}_2 \to 0 \to \cdots \to 0$

Definition. Given the decomposition into interval modules, a *representative* for an interval [b, d] is a sequence of cycles which form the interval module over [b, d]

 aka. homology class of cycle at each index generates the one-dimensional vector space at the index

Definition. A representative for an interval [b, d] in the *non-zigzag* persistence is just a cycle z

- born in K_b (aka. in K_b but not in K_{b-1}) and
- dying entering K_{d+1} (aka. not a boundary in K_d but becomes a boundary in K_{d+1})

Representatives for non-zigzag: Example

Zigzag representatives

- Representative for non-zigzag contains a single cycle: all inclusion maps are forward
- Not true for zigzag persistence: a representative for zigzag is a sequence of cycles generating an interval module

Zigzag representatives

- Representative for non-zigzag contains a single cycle: all inclusion maps are forward
- Not true for zigzag persistence: a representative for zigzag is a sequence of cycles generating an interval module

Definition. A *representative* for [b, d] is a sequence of cycles

 $\mathsf{rep} = \{ z_\alpha \in \mathsf{Z}(K_\alpha) \, | \, \alpha \in [b,d] \}$

such that for every $b \leq \alpha < d$,

either $[z_{\alpha}] \mapsto [z_{\alpha+1}]$ or $[z_{\alpha+1}] \leftarrow [z_{\alpha}]$ by ψ_{α}^* .

Zigzag representatives

- Representative for non-zigzag contains a single cycle: all inclusion maps are forward
- Not true for zigzag persistence: a representative for zigzag is a sequence of cycles generating an interval module

Definition. A *representative* for [b, d] is a sequence of cycles

$$\mathsf{rep} = \{ z_\alpha \in \mathsf{Z}(K_\alpha) \, | \, \alpha \in [b,d] \}$$

such that for every $b \leq \alpha < d$,

either
$$[z_{\alpha}] \mapsto [z_{\alpha+1}]$$
 or $[z_{\alpha+1}] \leftarrow [z_{\alpha}]$ by ψ_{α}^* .

Furthermore:

Birth condition:

- $\psi_{b-1}^* : \mathsf{H}(K_{b-1}) \to \mathsf{H}(K_b)$ is forward: $z_b \in \mathsf{Z}(K_b) \setminus \mathsf{Z}(K_{b-1})$;
- $\psi_{b-1}^* : \mathsf{H}(K_{b-1}) \leftarrow \mathsf{H}(K_b)$ is backward: $[z_b]$ is the non-zero element in $\mathsf{Ker}(\psi_{b-1}^*)$.

Death condition:

- ψ_d^* : $H(K_d) \leftarrow H(K_{d+1})$ is backward: $z_d \in Z(K_d) \setminus Z(K_{d+1})$;
- $\psi_d^* : \mathsf{H}(K_d) \to \mathsf{H}(K_{d+1})$ is forward: $[z_d]$ is the non-zero element in $\mathsf{Ker}(\psi_d^*)$.

Zigzag representatives: Example

Filtration:

Zigzag representatives: Example

Filtration:

Interval:

6

Zigzag representatives: Example

Filtration:

Interval:

Representative:

Computing barcodes	Computing representatives
$O(m^{\omega}) / O(mn^2)$	$O(m^2 n^2)$

m: length of filtration *n*: maximum size of complexes

Computing barcodes	Computing representatives
$O(m^{\omega}) / O(mn^2)$	$O(m^2 n^2)$

m: length of filtration *n*: maximum size of complexes

Reason for naive $O(m^2n^2)$ complexity (see also [Maria&Outdot2015]):

- During computing the barcode, there are O(mn) summations of intervals and their representatives
- Each representative takes O(mn) space and hence their summation takes O(mn) time

Computing barcodes	Computing representatives
$O(m^{\omega}) / O(mn^2)$	$O(m^2n^2) \implies O(m^2n)$

m: length of filtration *n*: maximum size of complexes

Computing barcodes	Computing representatives
$O(m^{\omega}) / O(mn^2)$	$O(m^2n^2) \implies O(m^2n)$

m: length of filtration *n*: maximum size of complexes

Reason for the improved $O(m^2n)$ complexity:

- There are still O(mn) summations of representatives
- BUT each representative takes O(m) space in our algorithm (instead of O(mn)) and their summation takes O(m) time

"Naive" $O(m^2n^2)$ algorithm

- Based on a direct maintenance of representatives.
- Scan each $K_i \xleftarrow{\sigma_i} K_{i+1}$ in the filtration one by one:
 - During the process we maintain a set of "*active*" intervals (those ending with the current index *i*)
 - When we encounter a birth, we start a new interval [i + 1, i + 1] and assign it a new representative
 - When we encounter a death, we choose an active interval to kill (which ends with *i*), and possibly assign the killed interval a new (finalized) representative
 - We also extend those active intervals which we do not choose to kill from i to i + 1, whose representatives may change during extension

"Naive" $O(m^2n^2)$ algorithm

- Based on a direct maintenance of representatives.
- Scan each $K_i \xleftarrow{\sigma_i} K_{i+1}$ in the filtration one by one:
 - During the process we maintain a set of "*active*" intervals (those ending with the current index *i*)
 - When we encounter a birth, we start a new interval [i + 1, i + 1] and assign it a new representative
 - When we encounter a death, we choose an active interval to kill (which ends with *i*), and possibly assign the killed interval a new (finalized) representative
 - We also extend those active intervals which we do not choose to kill from i to i + 1, whose representatives may change during extension
- Observation: Other than having a new representative for a new starting interval, changing representatives for the intervals are done by representative summations (a critical fact leading to the improvement)

Illustration of representative summation

(ii)

Wires and bundles

- Key definitions leading to the improvement. With details omitted:
 - A wire is a cycle $\omega_i \in Z(K_i)$ with a starting index i
 - \circ A *bundle* is a set of wires
- A key observation: *zigzag representatives in our algorithm can always be generated from bundles of wires*

Wires and bundles

- Key definitions leading to the improvement. With details omitted:
 - A *wire* is a cycle $\omega_i \in Z(K_i)$ with a *starting index i*
 - A *bundle* is a set of wires
- A key observation: *zigzag representatives in our algorithm can always be generated from bundles of wires*

Definition. A wire is a cycle $\omega_i \in Z(K_i)$ with a starting index $i \in P^H(\mathcal{F}) \cup P^B(\mathcal{F})$ s.t.

(i)
$$K_{i-1} \hookrightarrow K_i$$
 is forward and $\omega_i \in Z(K_i) \setminus Z(K_{i-1})$, or

(ii) $K_{i-1} \leftarrow K_i$ is backward and $\omega_i \in B(K_{i-1}) \setminus B(K_i)$, or

(iii) $K_{i-1} \hookrightarrow K_i$ is forward and $\omega_i \in B(K_i) \setminus B(K_{i-1})$.

We also say that ω_i is a wire *at* index *i*. The wires satisfying (i) or (ii) are also called *non-boundary wires* whereas those satisfying (iii) are called *boundary wires*.

• Fact [DHM25]: zigzag representatives in our algorithm can always be generated from bundles of wires

Theorem. There is a wire bundle $W = \{w_{\iota} | \iota \in \mathsf{P}^{H}(\mathcal{F}) \cup \mathsf{P}^{B}(\mathcal{F})\}$ so that a representative for any $[b, d] \in \mathsf{Pers}^{H}(\mathcal{F}) \cup \mathsf{Pers}^{B}(\mathcal{F})$ is generated by a wire bundle that is a subset of W.

• Fact [DHM25]: zigzag representatives in our algorithm can always be generated from bundles of wires

Theorem. There is a wire bundle $W = \{w_{\iota} | \iota \in \mathsf{P}^{H}(\mathcal{F}) \cup \mathsf{P}^{B}(\mathcal{F})\}$ so that a representative for any $[b,d] \in \mathsf{Pers}^{H}(\mathcal{F}) \cup \mathsf{Pers}^{B}(\mathcal{F})$ is generated by a wire bundle that is a subset of W.

Fact: Different wires start with different indices, so we store each representative as a bundle which is nothing but a set of O(m) indices

• Fact [DHM25]: zigzag representatives in our algorithm can always be generated from bundles of wires

Theorem. There is a wire bundle $W = \{w_{\iota} | \iota \in \mathsf{P}^{H}(\mathcal{F}) \cup \mathsf{P}^{B}(\mathcal{F})\}$ so that a representative for any $[b,d] \in \mathsf{Pers}^{H}(\mathcal{F}) \cup \mathsf{Pers}^{B}(\mathcal{F})$ is generated by a wire bundle that is a subset of W.

- Fact: Different wires start with different indices, so we store each representative as a bundle which is nothing but a set of O(m) indices
- Fact: Summing two representatives boils down to symmetric difference of two bundles (sets) of indices

Proposition. Let $[b, i], [b', i] \in \text{Pers}^H(\mathcal{F}_i) \cup \text{Pers}^B(\mathcal{F}_i)$ and $b \prec b'$. Suppose that W and W' generate a representative for [b, i] and [b', i] respectively. Then, the sum $W \boxplus W'$ generates a representative for $[b', i] \in \text{Pers}^H(\mathcal{F}_i) \cup \text{Pers}^B(\mathcal{F}_i)$.

• Fact [DHM25]: zigzag representatives in our algorithm can always be generated from bundles of wires

Theorem. There is a wire bundle $W = \{w_{\iota} | \iota \in \mathsf{P}^{H}(\mathcal{F}) \cup \mathsf{P}^{B}(\mathcal{F})\}$ so that a representative for any $[b, d] \in \mathsf{Pers}^{H}(\mathcal{F}) \cup \mathsf{Pers}^{B}(\mathcal{F})$ is generated by a wire bundle that is a subset of W.

- Fact: Different wires start with different indices, so we store each representative as a bundle which is nothing but a set of O(m) indices
- Fact: Summing two representatives boils down to symmetric difference of two bundles (sets) of indices

Proposition. Let $[b, i], [b', i] \in \text{Pers}^H(\mathcal{F}_i) \cup \text{Pers}^B(\mathcal{F}_i)$ and $b \prec b'$. Suppose that W and W' generate a representative for [b, i] and [b', i] respectively. Then, the sum $W \boxplus W'$ generates a representative for $[b', i] \in \text{Pers}^H(\mathcal{F}_i) \cup \text{Pers}^B(\mathcal{F}_i)$.

• Summing two representatives now takes O(m) time $\Rightarrow O(mn)$ summations take $O(m^2n)$ time

Generating representative from bundle

• Can be done in O(mn) time:

Algorithm 1 (ExtRep: Extracting representative from bundle). Let $W = \{\omega_{\iota_1}, \ldots, \omega_{\iota_\ell}\}$ be a wire bundle where $\iota_1 < \cdots < \iota_\ell$ and let rep be the representative for an interval [b, d]generated by W. We can assume $\iota_\ell \leq d$ because wires in W with indices greater than d do not contribute to a cycle in rep. Moreover, let ι_k be the last index in $\iota_1, \ldots, \iota_\ell$ no greater than b. We have that $z = \sum_{j=\iota_1}^{\iota_k} \omega_j$ is the cycle at indices $[b, \iota_{k+1})$ in rep. We then let λ iterate over $k + 1, \ldots, \ell - 1$. For each λ , we add ω_{ι_λ} to z, and the resulting z is the cycle at indices $[\iota_\lambda, \iota_{\lambda+1})$ in rep. Finally, we add ω_{ι_ℓ} to z, and z is the cycle at indices $[\iota_\ell, d]$ in rep. Since at every $\lambda \in [k + 1, \ell]$, we add at most one cycle to another cycle, the whole process involves O(m) chain summations.

• Since there are O(m) intervals, the overall complexity of our algorithm is $O(m^2n)$

Representative from bundle: Example

Implementation (and intro. of *boundary modules*)

Two keys to implement in $O(m^2n)$ time:

- 1) Maintain two *pivoted matrices Z* and *B* whose columns have distinct pivots such that:
 - Columns of Z form a basis for $H(K_i)$
 - Columns of *B* form a basis for $B(K_i)$
- 2) We also need to make sure that each column of *Z* equals the last cycle in the representative generated by the wire bundle we maintain

Implementation (and intro. of *boundary modules*)

Two keys to implement in $O(m^2n)$ time:

- 1) Maintain two *pivoted matrices Z* and *B* whose columns have distinct pivots such that:
 - Columns of Z form a basis for $H(K_i)$
 - Columns of *B* form a basis for $B(K_i)$
- 2) We also need to make sure that each column of *Z* equals the last cycle in the representative generated by the wire bundle we maintain
- But to make sure pivots are distinct, we cannot avoid summations of B to Z, making point (2) impossible to hold

Implementation (and intro. of *boundary modules*)

Two keys to implement in $O(m^2n)$ time:

- 1) Maintain two *pivoted matrices Z* and *B* whose columns have distinct pivots such that:
 - Columns of Z form a basis for $H(K_i)$
 - Columns of *B* form a basis for $B(K_i)$
- 2) We also need to make sure that each column of *Z* equals the last cycle in the representative generated by the wire bundle we maintain
- But to make sure pivots are distinct, we cannot avoid summations of B to Z, making point (2) impossible to hold
- Unless we make the columns of B also correspond to bundles! (which are another types of bundles called the *boundary bundles*)

Boundary module

- Apply the boundary functor *B* (instead of the homology functor *H*)
- Connecting homomorphisms $\psi_i^{\#}$ are chain maps
- Can still define interval decomposition, representatives, wire and bundles

Boundary module

$$\mathsf{B}(\mathcal{F}): \mathsf{B}(K_0) \xleftarrow{\psi_0^{\#}} \mathsf{B}(K_1) \xleftarrow{\psi_1^{\#}} \cdots \xleftarrow{\psi_{m-2}^{\#}} \mathsf{B}(K_{m-1}) \xleftarrow{\psi_{m-1}^{\#}} \mathsf{B}(K_m)$$

- Apply the boundary functor *B* (instead of the homology functor *H*)
- Connecting homomorphisms $\psi_i^{\#}$ are chain maps
- Can still define interval decomposition, representatives, wire and bundles
- Let each column of *B* equal the last cycle in the representative (in boundary moudle) generated by the wire bundle we maintain
- We can then add columns in *B* to *Z*
- So representatives come from a mix of wires from the homology module and the boundary module

Wires for the interval & come from both the homology and boundary modules:

- Orange: homology module
- Blue: boundary module

Thank you!