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learning, computational topology
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Persistent homology 

Figure source: https://graphsandnetworks.com/what-is-persistent-homology/

https://graphsandnetworks.com/what-is-persistent-homology/


Persistent homology 

Figure source: https://graphsandnetworks.com/what-is-persistent-homology/

https://graphsandnetworks.com/what-is-persistent-homology/


Application: Brain data

For detecting voids or tunnels (higher-dimensional holes in the 

brain)

Figure source: https://www.semanticscholar.org/paper/2-Application-%3A-Persistent-Homology-and-Brain-Data-Conkey/f7007652db07ebc39b57e297122e6c474e64abae 

(Adam Conkey)

https://www.semanticscholar.org/paper/2-Application-%3A-Persistent-Homology-and-Brain-Data-Conkey/f7007652db07ebc39b57e297122e6c474e64abae


On analyzing volume data

Adler, Robert J., Omer Bobrowski, Matthew S. Borman, Eliran Subag, and Shmuel Weinberger. "Persistent homology for random 

fields and complexes." In Borrowing strength: theory powering applications–a Festschrift for Lawrence D. Brown, vol. 6, pp. 124-
144. Institute of Mathematical Statistics, 2010

Volume data:

• Consisting of cubes, with 
each cube having a value

• Filter the cubes by adding 
them one by one based on 
ordering the values (e.g., 
adding cubes of smaller 
values first, then ones with 
bigger values)



Persistent homology analysis of a 
hydrogen-bonding network

Xia, Kelin. "Persistent homology analysis of ion aggregations and hydrogen-bonding networks." Physical Chemistry Chemical 

Physics 20.19 (2018): 13448-13460.



On gerrymandering

Geographical 
localization of 
Fr échet features 
in Pennsylvania 
Congressional 
and Senate plans 
with respect to 
PRES16 voting 

Duchin, Moon, Tom Needham, and Thomas Weighill. "The (homological) persistence of 

gerrymandering." arXiv preprint arXiv:2007.02390 (2020



Topology based data analysis identifies a subgroup of breast 

cancers with a unique mutational profile and excellent survival 

Nicolau, Monica, Arnold J. Levine, and Gunnar Carlsson. "Topology based data analysis identifies a subgroup of breast cancers 

with a unique mutational profile and excellent survival." Proceedings of the National Academy of Sciences

Uses mapper (another 

popular tool in TDA)



Integrating into DL at 
various stages

Zia, Ali, Abdelwahed Khamis, James 

Nichols, Usman Bashir Tayab, 
Zeeshan Hayder, Vivien Rolland, Eric 
Stone, and Lars Petersson. 

"Topological deep learning: a review 
of an emerging paradigm." Artificial 

Intelligence Review 57, no. 4 (2024): 
77.



TDA: More Applications

Topological regularizer for ML [Chen et al. 20]

Binarizing microstructures [Patel et al. 22]

Features for ML [Zhao & Wang 19]

Brain functional networks [Petri et al. 14]



What’s so special about persistent homology?

Figure from: Bendich, Paul, Sang Peter Chin, Jesse Clark, Jonathan Desena, John Harer, Elizabeth Munch, Andrew Newman et al. 

"Topological and statistical behavior classifiers for tracking applications." IEEE Transactions on Aerospace and Electronic Systems 52, no. 6 
(2016): 2644-2661

Theoretically justified: 

being stable under small 

perturbations (noise) of 

data



What’s so special about persistent homology?

Figure from: Bastian Rieck: Topological Data Analysis for Machine Learning III: Topological Descriptors & How to Use Them 

(https://www.youtube.com/watch?app=desktop&v=7i1kabhl5IU)

Theoretically justified: 

being stable under small 

perturbations (noise) of 

data



Theoretical side of my research

• Using homology theory in 
algebraic topology, converting 
(topological) spaces into vector 
spaces (aka. homology 
groups)

Figure source: Eric Bunch: https://eric-bunch.github.io/blog/topological-

data-analysis-and-persistent-homology



Theoretical side of my research

• Using homology theory in 
algebraic topology, converting 
(topological) spaces into vector 
spaces (aka. homology 
groups)

• Then study the algebraic 
properties of the objects, e.g., 
dimension, homology classes, 
representative cycles

Figure source: Eric Bunch: https://eric-bunch.github.io/blog/topological-

data-analysis-and-persistent-homology



Theoretical side of my research

• Using homology theory in 
algebraic topology, converting 
(topological) spaces into vector 
spaces (aka. homology 
groups)

• Then study the algebraic 
properties of the objects, e.g., 
dimension, homology classes, 
representative cycles

• My past research mainly 
focuses on how to compute 
these topological and algebraic 
objects (e.g., prove the NP-
hardness, or come up with 
faster algorithms)

Figure source: Eric Bunch: https://eric-bunch.github.io/blog/topological-

data-analysis-and-persistent-homology



Computing representatives for zigzag persistence

• Representative for zigzag persistence:

• Our improvement: 𝑂(𝑚2𝑛2) ⇒ 𝑂(𝑚2𝑛)



Key to bringing down the complexity

• The straightforward method takes 

𝑂(𝑚𝑛) space for storing a 

representative

o Summing two representatives 

takes 𝑂(𝑚𝑛) time, and hence the 

𝑂(𝑚2𝑛2) complexity

• We find a compressed way to store a 

representative in 𝑂(𝑚) space

o Summing two representatives 

takes 𝑂(𝑚) time, and hence the 

𝑂(𝑚2𝑛) complexity



What the algorithms that I study look like

• A lot of the algorithms I study are (more involved) versions of Gaussian elimination, 

which heavily relies on a process called ‘reduction’



Sometimes improving the complexity relies on 
using some advanced data structures

• 𝑂 𝑚  ⇒ 𝑂 𝑚 log 𝑚 : Maintain the MSF’s for 𝑚 graphs in a sequence, each MSF is a 

Link-Cut tree

• 𝑂 𝑚  ⇒ 𝑂 log 𝑚 : Use Link-Cut trees (for detecting cycles) and DFT-tree (for 

maintaining a merge tree)

• 𝑂(𝑚2.37) ⇒ 𝑂 𝑚 log4𝑛 : Use dynamic-connectivity and dynamic-MSF data structures



How can these improvements be done?

• Improving complexity for a problem typically needs a deeper understanding of the 

problems

• You need to make some key observations which help you make connections to existing 

theoretical tools or even build new tools



An example: 𝑂(𝑚3) ⇒ 𝑂 𝑚2

Given:

Compute:

?
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An example: 𝑂(𝑚3) ⇒ 𝑂 𝑚2

Given:

Compute:



Converting the computation of zigzag persistence into 
computing a non-zigzag version (much faster)

• Compute barcode for non-zigzag filtration ℱ′ 

• Fast software [Gudhi, Phat, Dionysus etc.]

• Convert barcode of ℱ′ to that of ℱ
• O(1) conversion per bar

• Convert input zigzag filtration to a non-zigzag filtration in linear time

Conversions 1,2,3,4:

• Done by a simple linear scan of the input filtration 

Input zigzag
Non-repetitive   

zigzag
Up-down

Extended 

persistence
Non-zigzag

All filtrations have the same length (the same number of addition/deletions)
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NP-hardness proof for computing minimum 
representatives for persistent homology

Base case

• Reduction from MAX-2SAT

• Reduction from the nearest codeword problem
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Generalization to higher dimension

Using the suspension operator

NP-hardness proof for computing minimum 
representatives for persistent homology
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Computing optimal representatives for manifolds

• Weighting an edge 𝑒 in the graph:

- Dual 𝑝-simplex in 𝐾𝑏: same weight

- Otherwise:   +∞

• Source: Dual vertex of 𝜎𝑑

• Target: Dual vertices of (𝑝 + 1)-simplices not in 𝐾𝑑 ∪ the infinite vertex

Process of algorithm:

1. Build dual graph, assign weight

2. Compute the minimum 𝑠, 𝑡 -cut for the graph 

with specified source and target

3. Return the 𝑝-cycle dual to the minimum cut as 

a minimum persistent 𝑝-cycle for 𝑏, 𝑑



A short bio of me

• Finished bachelor’s and master’s in China

• Worked there in industry for 3 years

• A key event in my life leading me to academia: two books

o Linear algebra done right by Sheldon Axler

o Introduction to algorithms by CLRS

o Honorable mention: Introduction to Linear Algebra by gilbert strang

• I used to read these books pages by pages, problems by problems, exercises by 

exercises

• Reading these books made me realize that computer theory and mathematics are 

something that I really want to do

• (Due to my industry working experience, I am still passionate about coding, but I don’t 

have too much time for coding these days…)



A short bio of me (continued)

• Started my PhD originally at Ohio State in 2016

• Transferred to Purdue w. Advisor in 2020

• Graduated in 2022

• Before coming to UO this year, I was a faculty at DePaul U. (in Chicago) for two years



Suggestions for those who want to pursue 
research

• Do something that truly inspires you so that you can inspire others

• Make your own observation, do original work



A course advertisement

• I will be teaching a new 410/510 on my research in Spring 2025

• Tentatively called: Machine Learning and Data Analysis with Topological Priors

• Applications and best practices will be stressed

• Coding libraries in TDA will be reviewed

• Mathematical background is not necessary: I will try to focus only on the intuition 

necessary for doing applications



Thank you!
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