Can zigzag persistence be computed as efficiently as the standard version?

Geometry and Topology Seminar, Oregon State University

Tao Hou, CS Department University of Oregon

Joint work with Tamal K. Dey, Dmitriy Morozov, Salman Parsa

Topological data analysis (TDA)

Persistent homology

- As we add each simplex in the sequence, the homology of the complex changes, with:
 - Birth: betti number increased by 1
 - Death: betti number decreased by 1

Persistent homology

- As we add each simplex in the sequence, the homology of the complex changes, with:
 - Birth: betti number increased by 1
 - Death: betti number decreased by 1
- The birth and death points can be canonically paired, resulting in persistence barcode:

Persistent homology: example

An interval: [b, d) = [b, d - 1]

Persistent homology: Simplex-wise filtration

Expand each arrow into a sequence of additions of a single simplex

Persistent homology: Simplex-wise filtration

Expand each arrow into a sequence of additions of a single simplex

Simplex-wise filtration: a sequence of additions of a single simplex

$$\mathcal{F}: \emptyset = K_0 \stackrel{\sigma_0}{\longleftrightarrow} K_1 \stackrel{\sigma_1}{\longleftrightarrow} \cdots \stackrel{\sigma_{m-1}}{\longleftrightarrow} K_{m-1} \stackrel{\sigma_m}{\longleftrightarrow} K_m$$

Persistent homology: Simplex-wise filtration

Expand each arrow into a sequence of additions of a single simplex

Simplex-wise filtration: a sequence of additions of a single simplex

$$\mathcal{F}: \emptyset = K_0 \stackrel{\sigma_0}{\longleftrightarrow} K_1 \stackrel{\sigma_1}{\longleftrightarrow} \cdots \stackrel{\sigma_{m-1}}{\longleftrightarrow} K_{m-1} \stackrel{\sigma_m}{\longleftrightarrow} K_m$$

Persistent homology: Pipeline

Standard filtration:

$$\mathcal{F}: K_0 \stackrel{\sigma_0}{\longleftrightarrow} K_1 \stackrel{\sigma_1}{\longleftrightarrow} \cdots \stackrel{\sigma_{m-2}}{\longleftrightarrow} K_{m-1} \stackrel{\sigma_{m-1}}{\longleftrightarrow} K_m$$

Induced module:

$$\mathsf{H}_p(\mathcal{F}): \mathsf{H}_p(K_0) \to \mathsf{H}_p(K_1) \to \dots \to \mathsf{H}_p(K_{m-1}) \to \mathsf{H}_p(K_m)$$
$$\downarrow$$

Interval decomposition: [Gabriel 72] $H_p(\mathcal{F}) = \bigoplus_{\alpha \in \mathcal{A}} \mathcal{I}^{[b_\alpha, d_\alpha]}$ \Downarrow

p-th persistence barcode: $\mathsf{Pers}_p(\mathcal{F}) = \{ [b_\alpha, d_\alpha] \mid \alpha \in \mathcal{A} \}$

Persistent homology: Pipeline

Standard filtration:

$$\mathcal{F}: K_0 \stackrel{\sigma_0}{\longleftrightarrow} K_1 \stackrel{\sigma_1}{\longleftrightarrow} \cdots \stackrel{\sigma_{m-2}}{\longleftrightarrow} K_{m-1} \stackrel{\sigma_{m-1}}{\longleftrightarrow} K_m$$

 \Downarrow

Induced module:

Interval decomposition: [Gabriel 72]

$$H_p(\mathcal{F}) = \bigoplus_{\alpha \in \mathcal{A}} \mathcal{I}^{[b_\alpha, d_\alpha]}$$

 \Downarrow

p-th persistence barcode: $\mathsf{Pers}_p(\mathcal{F}) = \{[b_\alpha, d_\alpha] \mid \alpha \in \mathcal{A}\}$

starts and ends with indices in the filtration

Persistent homology: Applications

Features for ML [Zhao & Wang 19]

Topological regularizer for ML [Chen et al. 20]

Brain functional networks [Petri et al. 14]

Binarizing microstructures [Patel et al. 22]

Zigzag persistence

Zigzag filtration:

 $\mathcal{F}: K_0 \stackrel{\sigma_0}{\longleftrightarrow} K_1 \stackrel{\sigma_1}{\longleftrightarrow} \cdots \stackrel{\sigma_{m-2}}{\longleftrightarrow} K_{m-1} \stackrel{\sigma_{m-1}}{\longleftrightarrow} K_m$

Gunnar Carlsson and Vin de Silva. Zigzag persistence. Foundations of Computational Mathematics, 10(4):367–405, 2010.

Zigzag persistence

Zigzag filtration:

Gunnar Carlsson and Vin de Silva. Zigzag persistence. Foundations of Computational Mathematics, 10(4):367–405, 2010.

Zigzag persistence

Zigzag filtration:

$$\mathcal{F}: K_0 \xleftarrow{\sigma_0} K_1 \xleftarrow{\sigma_1} \cdots \xleftarrow{\sigma_{m-2}} K_{m-1} \xleftarrow{\sigma_{m-1}} K_m$$

↓ Induced module:

 $\begin{aligned} \mathsf{H}_{p}(\mathcal{F}) &: \mathsf{H}_{p}(K_{0}) &\longleftrightarrow \mathsf{H}_{p}(K_{1}) &\longleftrightarrow \mathsf{H}_{p}(K_{m-1}) &\longleftrightarrow \mathsf{H}_{p}(K_{m}) \\ & \downarrow \\ \mathbf{Interval decomposition:} \quad [\mathbf{Gabriel 72}] \\ & \mathsf{H}_{p}(\mathcal{F}) = \bigoplus_{\alpha \in \mathcal{A}} \mathcal{I}^{[b_{\alpha}, d_{\alpha}]} \\ & \downarrow \\ & p\text{-th persistence barcode:} \\ & \mathsf{Pers}_{p}(\mathcal{F}) = \{[b_{\alpha}, d_{\alpha}] \mid \alpha \in \mathcal{A}\} \end{aligned}$

Peter Gabriel. Unzerlegbare Darstellungen I. Manuscripta Mathematica, 6(1):71–103, 1972.

Applications of Zigzag Persistence

- In time varying settings: functions, point cloud, vector field
 - G. Carlsson, V. de Silva, and D. Morozov. Zigzag persistent homology and real-valued functions. SoCG 2009.
 - W. Kim and F. Mémoli. Spatiotemporal persistent homology for dynamic metric spaces. DCG 2020.
 - T. Dey, M. Lipinsky, M. Mrozek, R. Slechta. Tracking dynamical features via continuation and persistence. SoCG 2022.

• In multiparameter persistence

Non-Zigzag vs. Zigzag persistence

Simplices(σ) in zigzag: insertion($\downarrow \sigma$), deletion($\uparrow \sigma$), repeated($\downarrow \sigma$)

$$\mathcal{F}: \varnothing = K_0 \leftrightarrow \cdots \stackrel{\downarrow \sigma}{\longrightarrow} \cdots \stackrel{\uparrow \sigma}{\longleftrightarrow} \cdots \stackrel{\downarrow \sigma}{\longleftrightarrow} \cdots \leftrightarrow K_m = \varnothing$$

Non-Zigzag vs. Zigzag: Computing

Non-zigzag [ELZ2000]

```
integer YOUNGEST (simplex \sigma^j)

\Lambda = \{\sigma \in \partial_{k+1}(\sigma^j) \mid \sigma \text{ positive}\};

loop

i = \max(\Lambda);

if T[i] is unoccupied then

store j and \Lambda in T[i]; exit

endif;

\Lambda = \Lambda + \Lambda^i

forever;

return i.
```

Case f_i : We compute the representation of the boundary of simplex σ in terms of the cycles Z_i , and then reduce the result among the boundaries, obtaining: $\partial \sigma = Z_i v =$ $Z_i(B_i u + v')$. There are two possibilities:

Birth: If v' = 0, then $\partial \sigma$ is already a boundary, and addition of σ creates a new cycle, for example, $C_i u - \sigma$. We append this cycle to the matrix Z_i , and we append i + 1 to both the birth vector \mathbf{b}_i and the index vector \mathbf{idx}_i to get \mathbf{b}_{i+1} and \mathbf{idx}_{i+1} , respectively.

Death: If $v' \neq 0$, then let j be the row of the lowest nonzero element in vector v'. We output a pair $(\mathbf{b}_i[j], i)$. We append vector v' to the matrix B_i , and the corresponding chain $(C_i u - \sigma)$ to the matrix C_i to obtain matrices B_{i+1} and C_{i+1} , respectively.

Case g_i : There are once again two possibilities:

- **Birth:** There is no cycle in matrix Z_i that contains simplex σ . Let j be the index of the first column in C_i that contains σ , let l be the index of the row of the lowest non-zero element in $B_i[j]$.
 - 1. Prepend $D_i C_i[j]$ to Z_i to get Z'_i . Prepend i + 1 to the birth vector \mathbf{b}_i to get \mathbf{b}_{i+1} .
 - 2. Let $c = C_i[j][\sigma]$ be the coefficient of σ in the chain $C_i[j]$. Let \mathbf{r}_{σ} be the row of σ in matrix C_i . We prepend the row $-\mathbf{r}_{\sigma}/c$ to the matrix B_i to get B'_i .
 - 3. Subtract $(\mathbf{r}_{\sigma}[k]/c) \cdot C_i[j]$ from every column $C_i[k]$ to get C'_i .
 - 4. Subtract $(B'_i[k][l]/B'_i[j][l]) \cdot B'_i[j]$ from every other column $B'_i[k]$.

Zigzag [CdSM2009]

- 5. Drop row l and column j from B'_i to get B_{i+1} , drop column l from Z'_i , and drop column j from C_i to get C_{i+1} .
- 6. Reduce Z_{i+1} initially set to Z'_i :
 - 1: while $\exists k < j$ s.t. low $Z_{i+1}[j] = \log Z_{i+1}[k]$ do 2: $s = \log Z_{i+1}[j], s_k^j = Z_{i+1}[j][s]/Z_{i+1}[k][s]$ 3: $Z_{i+1}[j] = Z_{i+1}[j] - s_k^j \cdot Z_{i+1}[k]$ 4: In B_{i+1} , add row j multiplied by s_k^j to row k

We set the index \mathbf{idx}_{i+1} of the prepended cycle to be 1, and increase the index of every other column by 1. Figure 5 illustrates the changes made in this case.

Death: Let $Z_i[j]$ be the first cycle that contains simplex σ . Output $(\mathbf{b}_i[j], i)$.

- 1. Change basis to remove σ from matrix Z_i :
 - 1: for increasing k > j s.t. $\sigma \in Z_i[k]$ do
 - 2: Let $\sigma_j^k = Z_i[k][\sigma]/Z_i[j][\sigma]$
 - 3: $Z_{i+1}[k] = Z_i[k] \sigma_j^k \cdot Z_i[j]$
 - 4: In B_i , add row k multiplied by σ_j^k to row j
 - 5: if $\log Z_{i+1}[k] > \log Z_i[k]$ then
 - 6: j = k
- 2. Subtract cycle $(C_i[k][\sigma]/Z_i[j][\sigma]) \cdot Z_i[j]$ from every chain $C_i[k]$.
- 3. Drop $Z_{i+1}[j]$, the corresponding entry in vectors \mathbf{b}_i and \mathbf{idx}_i , row j from B_i , row σ from C_i and Z_i (as well as row and column of σ from D_i).

We increase the index of every column by 1, $\mathbf{idx}_{i+1}(l) = \mathbf{idx}_i(l) + 1.$

Outline

- 1. An algorithm for computing zigzag persistence (FastZigzag)
 - Converts to a computation of non-zigzag persistence
 - Bridges gap of efficiency for computing the two versions
- 2. $O(m \log m)$ algorithm for computing graph zigzag persistence
- 3. Algorithms for updating zigzag persistence over local changes
 - Focus on contractions and expansions
 - Match the $O(m^2)$ complexity of the non-zigzag version
- 4. Algorithms for updating graph persistence (over switches)
 - Non-zigzag: $O(\log m)$
 - Zigzag: $O(\sqrt{m} \log m)$
- 5. $O(m^2 n)$ algorithm for computing zigzag representatives

Fast computation of zigzag persistence

[DeyH]: Fast Computation of Zigzag Persistence. ESA22

Complexities of persistence computing

	Theoretical	In Practice
Standard	$O(m^{\omega})$	Various optimizations
Zigzag	$O(m^{\omega})$	Much slower

 $\omega\approx 2.37286,$ matrix multiplication exponent

Edelsbrunner, Letscher, Zomorodian. Topological persistence and simplification. FoCS 2000. Carlsson, de Silva, Morozov. Zigzag persistent homology and real-valued functions. SoCG 2009. Milosavljevi´c, Morozov, Skraba. Zigzag persistent homology in matrix multiplication time. SoCG 2011. Cl´ement Maria and Steve Y. Oudot. Zigzag persistence via reflections and transpositions. SODA 2015.

Overview of FastZigzag

• Input zigzag filtration

$$\mathcal{F}: \varnothing = K_0 \xleftarrow{\sigma_0} K_1 \xleftarrow{\sigma_1} \cdots \xleftarrow{\sigma_{m-1}} K_m = \varnothing$$

• Convert to a non-zigzag filtration of same length (linear time)

$$\mathcal{F}': K'_0 \stackrel{\sigma'_0}{\longleftrightarrow} K'_1 \stackrel{\sigma'_1}{\longleftrightarrow} \cdots \stackrel{\sigma'_{m-1}}{\longleftrightarrow} K'_m$$

- Compute barcode for non-zigzag filtration \mathcal{F}'
 - Fast software [Gudhi, Phat, Dionysus etc.]
- Convert barcode of \mathcal{F}' to that of \mathcal{F}
 - 0(1) conversion per bar

Overall conversion has very little cost

All filtrations have the same length (the same number of addition/deletions)

Conversions 1,2,3,4:

• Done by a simple linear scan of the input filtration

Idea: Treat new occurrence of simplex σ as a new copy (barcodes stay the same)

$$\mathcal{F}: \varnothing = K_0 \leftrightarrow \cdots \stackrel{\sigma}{\hookrightarrow} \cdots \stackrel{\sigma}{\longleftrightarrow} \cdots \stackrel{\sigma}{\longleftrightarrow} \cdots \leftrightarrow K_m = \varnothing$$

$$\hat{\mathcal{F}}: \varnothing = \hat{K}_0 \leftrightarrow \cdots \stackrel{\hat{\sigma}_1}{\longrightarrow} \cdots \stackrel{\hat{\sigma}_2}{\longleftrightarrow} \cdots \stackrel{\hat{\sigma}_2}{\longleftrightarrow} \cdots \leftrightarrow \hat{K}_m = \varnothing$$

 Simplices with the same vertex set shall occur in same complex in later filtration: use Δ-complex [Hatcher02]

Two triangles sharing 0,1,2,3 edges

$$\mathcal{U}: \varnothing = L_0 \xrightarrow{\tau_0} \cdots \xrightarrow{\tau_{n-1}} L_n \xleftarrow{\tau_n} \cdots \xleftarrow{\tau_{2n-2}} L_{2n-1} \xleftarrow{\tau_{2n-1}} L_{2n} = \varnothing$$
$$\downarrow$$
$$\mathcal{E}: \varnothing = L_0 \xrightarrow{\tau_0} \cdots \xrightarrow{\tau_{n-1}} L_n = (\hat{K}, L_{2n}) \xrightarrow{\tau_{2n-1}} (\hat{K}, L_{2n-1}) \xrightarrow{\tau_{2n-2}} \cdots \xrightarrow{\tau_n} (\hat{K}, L_n) = (\hat{K}, \hat{K})$$

Cohen-Steiner, Edelsbrunner, Harer. Extending persistence using Poincaré and Lefschetz duality. FoCM 2009

Mayer-Vietoris Diamond [CdS10]

Major takeaway: there is a bijection between the barcodes of the filtrations s.t. corresponding intervals have same creator and destroyer simplices (cells)

Use 'Coning' [CEH09]: No change in barcode

Overall Conversions

Pseudocodes for the conversion

Algorithm 3.1 Pseudocode for converting input filtration 1: procedure CONVERTFILT(\mathcal{F}) initialize boundary matrix D, cell-id map cid, deleted cell list del_list as empty 2: append an empty column to D representing vertex ω for coning 3: $\texttt{id} \leftarrow 1$ \triangleright variable keeping track of id for cells 4: for each $K_i \stackrel{\sigma_i}{\longleftrightarrow} K_{i+1}$ in \mathcal{F} do 5: if σ_i is being inserted then 6: $\operatorname{cid}[\sigma_i] = \operatorname{id}$ \triangleright get a new cell as a copy of simplex σ_i 7: $col \leftarrow CELLBOUNDARY(\sigma_i, cid)$ 8: append col to D9: $id \leftarrow id + 1$ 10: else 11: append $\operatorname{cid}[\sigma_i]$ to $\operatorname{del_list}$ 12:▷ cone_id tracks id for coned cells initialize map cone_id as empty 13:for each del_id in del_list (accessed reversely) do 14: $cone_id[del_id] \leftarrow id$ \triangleright get a new coned cell 15: $col \leftarrow CONEDCELLBOUNDARY(del_id, D, cone_id)$ 16:append col to D17: $id \leftarrow id + 1$ 18: return D19:

Running time comparison

1-2: Non-repetitive random shuffles from height functions on triangular meshes

3-8: Clique complexes from random edge additions/deletions

9-11: Oscillating Rips zigzag from point clouds of 2000 – 4000 sampled from triangular meshes

No.	Length	D	Rep	MaxK	$\mathrm{T}_{\mathrm{DIO2}}$	$\mathrm{T}_{\mathrm{Gudhi}}$	$\mathrm{T}_{\mathrm{FZZ}}$	\mathbf{SU}
1	5,260,700	5	1.0	883,350	2h02m46.0s	_	8.9s	873
2	5,254,620	4	1.0	1,570,326	19m36.6s	_	11.0s	107
3	5,539,494	5	1.3	1,671,047	3h05m00.0s	45m47.0s	3m20.8s	13.7
4	5,660,248	4	2.0	1,385,979	2h59m57.0s	29m46.7s	4m59.5s	6.0
5	5,327,422	4	3.5	760,098	43m54.8s	10m35.2s	3m32.1s	3.0
6	5,309,918	3	5.1	523,685	5h46m03.0s	1h32m37.0s	19m30.2s	4.7
7	5,357,346	3	7.3	368,830	3h37m54.0s	57m28.4s	30m25.2s	1.9
8	6,058,860	4	9.1	331,211	53m21.2s	7m19.0s	3m44.4s	2.0
9	5,135,720	3	21.9	11,859	23.8s	15.6s	8.6s	1.9
10	5,110,976	3	27.7	11,435	36.2s	39.9s	8.5s	4.3
11	5,811,310	4	44.2	7,782	38.5s	36.9s	23.9s	1.5

All run on Intel(R), Core[™], i5-9500 <u>CPU@3.00GHz</u>, 16GB memory, Linux OS

• Software FZZ using Phat software for non-zigzag (https://github.com/taohou01/fzz)

Running time comparison

1-2: Non-repetitive random shuffles from height functions on triangular meshes

3-8: Clique complexes from random edge additions/deletions

9-11: Oscillating Rips zigzag from point clouds of 2000 – 4000 sampled from triangular meshes

No.	Length	D	Rep	MaxK	$\mathrm{T}_{\mathrm{DIO2}}$	$\mathrm{T}_{\mathrm{Gudhi}}$	$\mathrm{T_{FZZ}}$	SU
1	5,260,700	5	1.0	883,350	2h02m46.0s	_	8.9s	873
2	5,254,620	4	1.0	1,570,326	19m36.6s	_	11.0s	107
3	5,539,494	5	1.3	1,671,047	3h05m00.0s	45m47.0s	3m20.8s	13.7
4	5,660,248	4	2.0	1,385,979	2h59m57.0s	29m46.7s	4m59.5s	6.0
5	5,327,422	4	3.5	760,098	43m54.8s	10m35.2s	3m32.1s	3.0
6	5,309,918	3	5.1	523,685	5h46m03.0s	1h32m37.0s	19m30.2s	4.7
7	5,357,346	3	7.3	368,830	3h37m54.0s	57m28.4s	30m25.2s	1.9
8	6,058,860	4	9.1	331,211	53m21.2s	7m19.0s	3m44.4s	2.0
9	5,135,720	3	21.9	11,859	23.8s	15.6s	8.6s	1.9
10	5,110,976	3	27.7	11,435	36.2s	39.9s	8.5s	4.3
11	5,811,310	4	44.2	7,782	38.5s	36.9s	23.9s	1.5

All run on Intel(R), Core[™], i5-9500 <u>CPU@3.00GHz</u>, 16GB memory, Linux OS

• Software FZZ using Phat software for non-zigzag (https://github.com/taohou01/fzz)

$O(m \log m)$ computation of graph zigzag persistence

[Dey-H-Parsa]. Revisiting Graph Persistence for Updates and Efficiency. WADS 2023

An application of graph zigzag persistence: Dynamic networks

Petter Holme and Jari Saramaki. Temporal networks. Physics Reports, 519(3):97–125, 2012.

Complexities of persistence computing

	*	Graphs
Standard	$O(m^{\omega})$	$O(m \alpha(m))$
Zigzag	$O(m^{\omega})$	$O(m\log^4 n)$

m: length of filtration $\omega \approx 2.37286$: matrix multiplication exponent $\alpha(m)$: inverse Ackermann function

Input for graph zigzag:

$$\mathcal{F}: \varnothing = G_0 \xleftarrow{\sigma_0} G_1 \xleftarrow{\sigma_1} \cdots \xleftarrow{\sigma_{m-1}} G_m; G = \bigcup_{i=0}^m G_i$$

n: size of G

Nikola Milosavljevi'c, Dmitriy Morozov, and Primoz Skraba. Zigzag persistent homology in matrix multiplication time. 2011. Tamal K. Dey and Tao Hou. Computing Zigzag Persistence on Graphs in Near-Linear Time. 2021

Computation

Utilize the conversion in FastZigzag to convert the input zigzag into an up-down filtration \mathcal{U} , with the following barcode mapping:

1. Pers₀^{CO}(\mathcal{U}), Pers₀^{OC}(\mathcal{U}): run the persistence pairing for 0-dimensional standard persistence with Union-Find on the *ascending* and *descending* parts of \mathcal{U} in $O(m \alpha(m))$ time

- 2. $\text{Pers}_0^{\text{CC}}(\mathcal{U})$:
- Identify each connected component C of \hat{G}_n
- Pair:
 - first vertex in the ascending part coming from C
 - first vertex in the descending part coming from C
- Can be done in linear time

$$\begin{aligned} \mathcal{U} : \varnothing &= \hat{G}_0 \stackrel{\hat{\sigma}_0}{\longleftrightarrow} \hat{G}_1 \stackrel{\hat{\sigma}_1}{\longleftrightarrow} \cdots \stackrel{\hat{\sigma}_{n-1}}{\longleftrightarrow} \hat{G}_n \stackrel{\hat{\sigma}_n}{\longleftrightarrow} \hat{G}_{n+1} \stackrel{\hat{\sigma}_{n+1}}{\longleftrightarrow} \cdots \stackrel{\hat{\sigma}_{m-1}}{\longleftrightarrow} \hat{G}_m = \varnothing \end{aligned}$$

$$ascending part$$

$$descending part$$

3. Pers₁^{CC}(\mathcal{U}) : from the edge-edge pairs; the first edge is a positive edge from the ascending part \mathcal{U}_u , the second edge is a positive edge from the descending part \mathcal{U}_d .

Positive edge: connect to the same connected component *Negative* edge: connect to the different connected components

3. Pers₁^{CC}(\mathcal{U}) : from the edge-edge pairs; the first edge is a positive edge from the ascending part \mathcal{U}_u , the second edge is a positive edge from the descending part \mathcal{U}_d .

► Algorithm.

- **1.** Maintain a spanning forest T of \hat{G}_n while processing \mathcal{U}_d . Initially, T consists of all vertices of \hat{G}_n and all negative edges in \mathcal{U}_d .
- **2.** For every positive edge e in \mathcal{U}_d :
 - **a.** Add e to T and check the *unique* cycle c formed by e in T.
 - **b.** Determine the edge e' which is the youngest edge of c with respect to the filtration \mathcal{U}_u . The edge e' has to be positive in \mathcal{U}_u .
 - **c.** Delete e' from T. This maintains T to be a tree all along.
 - **d.** Pair the positive edge e from \mathcal{U}_d with the positive edge e' from \mathcal{U}_u .

Zuoyu Yan, Tengfei Ma, Liangcai Gao, Zhi Tang, and Chao Chen. Link prediction with persistent homology: An interactive view. 2021.

Positive edge: connect to the same connected component *Negative* edge: connect to the different connected components

Figure from [Yan et al. 2021]

- 3. $\text{Pers}_1^{\text{CC}}(\mathcal{U})$:
- The algorithm in [Yan et al. 2021] runs in $O(m^2)$ time using a direct implementation for the trees
- We propose to use the Link-Cut tree [Sleator, Tarjan, 1981] so that finding the edge-edge pairs runs in $O(m \log m)$ time.
- Since the conversions between input zigzag and up-down are linear time, the overall complexity is $O(m \log m)$.

Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. 1981.

Updating zigzag persistence

[DeyH]: Computing Zigzag Vineyard Efficiently Including Expansions and Contractions. SoCG24

Consider local changes on filtration and update the barcode accordingly

• Produces *vineyard* (a stack of barcodes)

Consider local changes on filtration and update the barcode accordingly

• Produces *vineyard* (a stack of barcodes)

Example: Dynamic point cloud

(figure from *Computational* topology: An Introduction)

Consider local changes on filtration and update the barcode accordingly

Produces *vineyard* (a stack of barcodes)

Operations in standard persistence, computed in O(m) time [CEM06]

Switch (transposition) $\mathcal{F}: \emptyset = K_0 \hookrightarrow \cdots \hookrightarrow K_{i-1} \stackrel{\sigma}{\hookrightarrow} K_i \stackrel{\tau}{\hookrightarrow} K_{i+1} \hookrightarrow \cdots \hookrightarrow K_m \stackrel{\sim}{\longrightarrow} \mathcal{F}': \emptyset = K_0 \hookrightarrow \cdots \hookrightarrow K_{i-1} \stackrel{\tau}{\hookrightarrow} K'_i \stackrel{\sigma}{\hookrightarrow} K_{i+1} \hookrightarrow \cdots \hookrightarrow K_m \stackrel{\sim}{\dashrightarrow} \mathcal{F}'$

Cohen-Steiner, Edelsbrunner, and Morozov. Vines and vineyards by updating persistence in linear time. 2006

Consider local changes on filtration and update the barcode accordingly

Produces vineyard (a stack of barcodes)

Operations we consider

Forward switch $\mathcal{F}: K_0 \leftrightarrow \cdots \leftrightarrow K_{i-1} \stackrel{\sigma}{\hookrightarrow} K_i \stackrel{\tau}{\hookrightarrow} K_{i+1} \leftrightarrow \cdots \leftrightarrow K_m$ $\mathcal{F}': K_0 \leftrightarrow \cdots \leftrightarrow K_{i-1} \stackrel{\tau}{\hookrightarrow} K'_i \stackrel{\sigma}{\hookrightarrow} K_{i+1} \leftrightarrow \cdots \leftrightarrow K_m$

Backward switch

 $\mathcal{F}: K_0 \leftrightarrow \cdots \leftrightarrow K_{i-1} \xleftarrow{\sigma} K_i \xleftarrow{\tau} K_{i+1} \leftrightarrow \cdots \leftrightarrow K_m$ $\mathcal{F}': K_0 \leftrightarrow \cdots \leftrightarrow K_{i-1} \xleftarrow{\tau} K'_i \xleftarrow{\sigma} K_{i+1} \leftrightarrow \cdots \leftrightarrow K_m$

Outward/inward switch

$$\mathcal{F}: K_0 \leftrightarrow \cdots \leftrightarrow K_{i-1} \stackrel{\sigma}{\hookrightarrow} K_i \stackrel{\tau}{\longleftrightarrow} K_{i+1} \leftrightarrow \cdots \leftrightarrow K_m \quad \bullet$$
$$\mathcal{F}': K_0 \leftrightarrow \cdots \leftrightarrow K_{i-1} \stackrel{\tau}{\longleftrightarrow} K'_i \stackrel{\sigma}{\hookrightarrow} K_{i+1} \leftrightarrow \cdots \leftrightarrow K_m \quad \bullet$$

Keep filtration size

Inward contraction/expansion $\mathcal{F}: K_0 \leftrightarrow \cdots \leftrightarrow K_{i-2} \leftrightarrow K_{i-1} \stackrel{\sigma}{\hookrightarrow} K_i \stackrel{\sigma}{\longleftrightarrow} K_{i+1} \leftrightarrow K_{i+2} \leftrightarrow \cdots \leftrightarrow K_m \stackrel{\bullet}{\bullet}$ $\mathcal{F}': K_0 \leftrightarrow \cdots \leftrightarrow K_{i-2} \leftrightarrow K'_i \leftrightarrow K_{i+2} \leftrightarrow \cdots \leftrightarrow K_m \stackrel{\bullet}{\bullet}$

Outward contraction/expansion $\mathcal{F}: K_0 \leftrightarrow \cdots \leftrightarrow K_{i-2} \leftrightarrow K_{i-1} \xleftarrow{\sigma} K_i \xleftarrow{\sigma} K_{i+1} \leftrightarrow K_{i+2} \leftrightarrow \cdots \leftrightarrow K_m \leftarrow \mathcal{F}': K_0 \leftrightarrow \cdots \leftrightarrow K_{i-2} \leftrightarrow K'_i \leftrightarrow K_{i+2} \leftrightarrow \cdots \leftrightarrow K_m \leftarrow \mathcal{F}'$

Increase/decrease filtration size

Easy updates

For following switch operations (do not change input length):

- Barcodes can be easily updated in O(m) time
- Using the conversion in FastZigzag

Forward switch

$$\mathcal{F}: K_0 \leftrightarrow \cdots \leftrightarrow K_{i-1} \stackrel{\sigma}{\hookrightarrow} K_i \stackrel{\tau}{\hookrightarrow} K_{i+1} \leftrightarrow \cdots \leftrightarrow K_m$$
$$\mathcal{F}': K_0 \leftrightarrow \cdots \leftrightarrow K_{i-1} \stackrel{\tau}{\hookrightarrow} K'_i \stackrel{\sigma}{\hookrightarrow} K_{i+1} \leftrightarrow \cdots \leftrightarrow K_m$$

Backward switch

$$\mathcal{F}: K_0 \leftrightarrow \cdots \leftrightarrow K_{i-1} \xleftarrow{\sigma} K_i \xleftarrow{\tau} K_{i+1} \leftrightarrow \cdots \leftrightarrow K_m$$
$$\mathcal{F}': K_0 \leftrightarrow \cdots \leftrightarrow K_{i-1} \xleftarrow{\tau} K'_i \xleftarrow{\sigma} K_{i+1} \leftrightarrow \cdots \leftrightarrow K_m$$

Outward/inward switch $\mathcal{F}: K_0 \leftrightarrow \cdots \leftrightarrow K_{i-1} \xrightarrow{\sigma} K_i \xleftarrow{\tau} K_{i+1} \leftrightarrow \cdots \leftrightarrow K_m \xleftarrow{r} K_i : K_0 \leftrightarrow \cdots \leftrightarrow K_{i-1} \xleftarrow{\tau} K_i' \xrightarrow{\sigma} K_{i+1} \leftrightarrow \cdots \leftrightarrow K_m \xleftarrow{r}$

Cohen-Steiner, Edelsbrunner, and Morozov. Vines and vineyards by updating persistence in linear time. 2006

Difficulties with (outward) contraction/expansion

Difficulties lie in (outward) contraction/expansion (input length changes)

Inward contraction/expansion $\mathcal{F}: K_0 \leftrightarrow \cdots \leftrightarrow K_{i-2} \leftrightarrow K_{i-1} \stackrel{\sigma}{\hookrightarrow} K_i \stackrel{\sigma}{\longleftrightarrow} K_{i+1} \leftrightarrow K_{i+2} \leftrightarrow \cdots \leftrightarrow K_m \stackrel{\bullet}{\bullet} K_i \stackrel{\bullet}{\leftarrow} K_{i+1} \leftrightarrow K_{i+2} \leftrightarrow \cdots \leftrightarrow K_m \stackrel{\bullet}{\bullet} K_i \stackrel{\bullet}{\leftarrow} K_i \mapsto K_i$

Outward contraction/expansion $\mathcal{F}: K_0 \leftrightarrow \cdots \leftrightarrow K_{i-2} \leftrightarrow K_{i-1} \xleftarrow{\sigma} K_i \xleftarrow{\sigma} K_{i+1} \leftrightarrow K_{i+2} \leftrightarrow \cdots \leftrightarrow K_m \leftarrow \mathcal{F}': K_0 \leftrightarrow \cdots \leftrightarrow K_{i-2} \leftrightarrow K'_i \leftrightarrow K_{i+2} \leftrightarrow \cdots \leftrightarrow K_m \leftarrow \mathcal{F}'$

Difficulties with (outward) contraction/expansion

- If we convert the zigzag filtrations into up-down/non-zigzag filtrations, there are some adjacency change on the cells:
 - Before and after the operation, boundary faces of certain (p + 1)-cells change into other p-cells (which come in earlier/later in the up-down/non-zigzag filtration)
- Straightforward approach takes $O(m^3)$ time

Idea of the computation for outward contraction

- Convert input zigzag filtration into up-down filtration
- [Observation] The boundary change of cells in the up-down filtration in the contraction:
 - $\circ~$ Two $p\text{-cells}~\sigma_{1},~\sigma_{2}$ are identified as the same $p\text{-cell}~\sigma_{0}$

Idea of the computation for outward contraction

- Convert input zigzag filtration into up-down filtration
- [Observation] The boundary change of cells in the up-down filtration in the contraction:
 - $\circ~$ Two $p\text{-cells}~\sigma_{\!1},\sigma_{\!2}$ are identified as the same $p\text{-cell}~\sigma_{\!0}$

 $U \Rightarrow U^+$:

- Attaching χ
- O(m²)

 $U \Rightarrow U^+$:

- Attaching χ
- O(m²)

 $U^+ \Rightarrow \widetilde{U}$:

- Perform switches
- O(m²)

 $U \Rightarrow U^+$:

- Attaching χ
- O(m²)

 $U^+ \Rightarrow \widetilde{U}$:

- Perform switches
- O(m²)

 $\widetilde{U} \Rightarrow U'$:

- "Almost" the same
- O(m)

$\widetilde{U} \Rightarrow U'$, formally:

Proposition. Given $\operatorname{Pers}_*(\tilde{\mathcal{U}})$, one only needs to do the following to obtain $\operatorname{Pers}_*(\mathcal{U}')$: Ignoring the pairs $(\searrow \sigma_2, \searrow \xi)$ and $(\nwarrow \xi, \rightthreetimes \sigma_1)$ in $\operatorname{Pers}_*(\tilde{\mathcal{U}})$, for each remaining pair $(\bigtriangleup \eta, \backsim \gamma) \in \operatorname{Pers}_*(\tilde{\mathcal{U}})$, produce a corresponding pair $(\theta(\backsim \eta), \theta(\backsim \gamma)) \in \operatorname{Pers}_*(\mathcal{U}')$.

$\widetilde{U} \Rightarrow U'$, formally:

Proposition. Given $\operatorname{Pers}_*(\tilde{\mathcal{U}})$, one only needs to do the following to obtain $\operatorname{Pers}_*(\mathcal{U}')$: Ignoring the pairs $(\searrow \sigma_2, \searrow \xi)$ and $(\nwarrow \xi, \rightthreetimes \sigma_1)$ in $\operatorname{Pers}_*(\tilde{\mathcal{U}})$, for each remaining pair $(\trianglerighteq \eta, \image \gamma) \in \operatorname{Pers}_*(\tilde{\mathcal{U}})$, produce a corresponding pair $(\theta(\backsim \eta), \theta(\backsim \gamma)) \in \operatorname{Pers}_*(\mathcal{U}')$.

Conclusion:

Theorem. The barcodes for an outward contraction on zigzag filtrations can be updated in $O(m^2)$ time, matching the complexity for a contraction on the standard filtrations.

Inward contraction

- While inward contraction is easy by converting to non-zigzag, it becomes non-trivial when converting to up-down
- Algorithm idea:
 - After some preprocessing, we are left with certain intervals which are not 'settled' (contains the cell being removed)
 - These intervals follow a fixed pattern, and we utilized an 'alternative relinking' to produce intervals for the new filtration

Updating zigzag persistence on graphs over switches

[Dey-H-Parsa]. Revisiting Graph Persistence for Updates and Efficiency. WADS 2023

Update for non-zigzag graph filtrations

 Propose O(log m) algorithms for updating non-zigzag filtrations on graphs over switches

$$\mathcal{F}: \varnothing = G_0 \hookrightarrow \dots \hookrightarrow G_{i-1} \stackrel{\sigma}{\hookrightarrow} G_i \stackrel{\tau}{\hookrightarrow} G_{i+1} \hookrightarrow \dots \hookrightarrow G_m \stackrel{\tau}{\longrightarrow} \mathcal{F}': \varnothing = G_0 \hookrightarrow \dots \hookrightarrow G_{i-1} \stackrel{\tau}{\hookrightarrow} G'_i \stackrel{\sigma}{\hookrightarrow} G_{i+1} \hookrightarrow \dots \hookrightarrow G_m \stackrel{\tau}{\checkmark}$$

- Maintain merge forest (trees) encoding all info in the pers module
- Case analysis: Perform the update in difference cases
- Use two dynamic trees data structure (DFT tree, Link-Cut tree) to achieve the complexity

1. Switch two vertices v_1 , v_2

- The only situation where the pairing changes:
 - \circ v_1 , v_2 are in the same tree in the merge forest
 - v_1, v_2 are both unpaired when *e* is added in \mathcal{F} , where *e* is the edge corresponding to the *nearest common ancestor* of v_1, v_2 in the merge forest
- In above case, we switch the paired edges of v_1 , v_2

More definitions

Two types of edges in the graph filtration:

- Negative edge: connect two different connected components
- Positive edge: connect the same connected component

2. Switch a negative edge e_1 and a positive edge e_2

- If e_1 is in a 1-cycle after is e_2 added:
 - \circ This is the case where e_1 , e_2 connect to the same two connected components
 - \circ After the switch, e_1 becomes positive and e_2 becomes negative
 - \circ We pair e_2 with the vertex that e_1 previously pairs with
 - \circ The node in the merge forest corresponding to e_1 should now correspond to e_2

3. Switch two negative edges e_1 , e_2

- Only need to make changes when the corresponding node of e₁ is a child of the corresponding node of e₂ in the merge forest
- Let u, v, w be the lowest leaves in T_1, T_2, T_3 .
- WLOG, assume v is lower than u.

3. Switch two negative edges e_1 , e_2

• Based on the structure of the merge forest, there are two connecting configurations for C_1 , C_2 , C_3 in G_{i-1} (C_1 , C_2 , C_3 are the connected components containing u, v, w respectively)

3. Switch two negative edges e_1 , e_2

• Based on the structure of the merge forest, there are two connecting configurations for C_1 , C_2 , C_3 in G_{i-1} (C_1 , C_2 , C_3 are the connected components containing u, v, w respectively)

- If *w* is lower than *u*, then swap the paired vertices of e_1 , e_2
 - Provable by case analysis

DFT-Tree

 $O(\log m)$

Data structures implementing the merge forests [Farina, Laura, 2015]:

- $\mathbf{ROOT}(v)$: Returns the root of the tree containing node v.
 - $\operatorname{cut}(v)$: Deletes the edge connecting node v to its parent.
 - link(u, v): Makes the root of the tree containing node v be a child of node u.
 - NCA(u, v): Returns the nearest common ancestor of two nodes u, v in the same tree.
- CHANGE-VAL(v, x): Assigns the value associated to a leaf v to be x.
- SUBTREE-MIN(v): Returns the leaf with the minimum associated value in the subtree rooted at v.

Returns the lowest leaf for a subtree

Gabriele Farina and Luigi Laura. Dynamic subtrees queries revisited: The depth first tour tree. 2015.

Detecting if $e_1 = (u, v)$ is in a cycle in G_{i+1}

• Check if u, v are connected in G'_i

 $\mathcal{F}': \emptyset = G_0 \hookrightarrow \cdots \hookrightarrow G_{i-1} \hookrightarrow G'_i \stackrel{e_1}{\hookrightarrow} G_{i+1} \hookrightarrow \cdots \hookrightarrow G_m$

- Check the first time u, v are connected in the filtration \mathcal{F}'
- Based on an idea in [DH21], do following:
 - \circ Let edges in $G \coloneqq G_m$ be weighted by their indices in \mathcal{F}'
 - The first time *u*, *v* are connected = 1 + the bottleneck weight of the path in the MSF of
 G (bottleneck weight: max weight of edges)
- Maintain the MSF over the switch by the Link-Cut tree [ST81]:
 - Everything can be in $O(\log m)$ time
 - This is possible because we are only doing switches (switching the weights for edges whose weights are consecutive)

- Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. 1981.

⁻ Tamal K. Dey and Tao Hou. Computing zigzag persistence on graphs in near-linear time. 2021.

Update for zigzag graph filtrations

• Four switch operations:

Forward switch $\begin{pmatrix}
\mathcal{F}: G_{0} \leftrightarrow \cdots \leftrightarrow G_{i-1} \stackrel{\sigma}{\longrightarrow} G_{i} \stackrel{\tau}{\longrightarrow} G_{i+1} \leftrightarrow \cdots \leftrightarrow G_{m} \\
\mathcal{F}': G_{0} \leftrightarrow \cdots \leftrightarrow G_{i-1} \stackrel{\tau}{\longrightarrow} G'_{i} \stackrel{\sigma}{\longrightarrow} G_{i+1} \leftrightarrow \cdots \leftrightarrow G_{m}
\end{pmatrix}$ Backward $\begin{pmatrix}
\mathcal{F}: G_{0} \leftrightarrow \cdots \leftrightarrow G_{i-1} \stackrel{\sigma}{\longleftrightarrow} G_{i} \stackrel{\tau}{\longleftrightarrow} G_{i+1} \leftrightarrow \cdots \leftrightarrow G_{m} \\
\mathcal{F}': G_{0} \leftrightarrow \cdots \leftrightarrow G_{i-1} \stackrel{\tau}{\longleftrightarrow} G'_{i} \stackrel{\sigma}{\leftrightarrow} G_{i+1} \leftrightarrow \cdots \leftrightarrow G_{m}
\end{pmatrix}$ Outward $\begin{pmatrix}
\mathcal{F}: G_{0} \leftrightarrow \cdots \leftrightarrow G_{i-1} \stackrel{\sigma}{\longrightarrow} G_{i} \stackrel{\tau}{\longleftrightarrow} G_{i+1} \leftrightarrow \cdots \leftrightarrow G_{m} \\
\mathcal{F}': G_{0} \leftrightarrow \cdots \leftrightarrow G_{i-1} \stackrel{\sigma}{\leftrightarrow} G_{i} \stackrel{\tau}{\leftrightarrow} G_{i+1} \leftrightarrow \cdots \leftrightarrow G_{m}
\end{pmatrix}$ Inward
switch $\begin{pmatrix}
\mathcal{F}: G_{0} \leftrightarrow \cdots \leftrightarrow G_{i-1} \stackrel{\sigma}{\leftrightarrow} G_{i} \stackrel{\sigma}{\leftrightarrow} G_{i+1} \leftrightarrow \cdots \leftrightarrow G_{m} \\
\mathcal{F}': G_{0} \leftrightarrow \cdots \leftrightarrow G_{i-1} \stackrel{\tau}{\leftrightarrow} G'_{i} \stackrel{\sigma}{\to} G_{i+1} \leftrightarrow \cdots \leftrightarrow G_{m}
\end{pmatrix}$

- Strategy: Convert the zigzag filtrations to up-down filtrations as previous
- Immediately, inward and outward switches take O(1) time
- Forward and backward switches: For intervals other than those from the edge-edge pairs, the update reduces to the standard persistence case, hence $O(\log m)$ time

O(m) algorithm for updating edge-edge pairs

• Based on a direct maintenance of representative cycles for pairs

Algorithm 1. We describe the algorithm for the forward switch and the procedure for a backward switch is symmetric. Let Π be the set of edge-edge pairs initially for \mathcal{U} . Since a switch containing a vertex makes no changes to the edge-edge pairs, suppose that the switch is an edge-edge switch and let e_1 , e_2 be the two switched edges. Also, let \mathcal{U}_u be the ascending part of \mathcal{U} . We have the following cases:

- A. e_1 and e_2 are both negative in U_u : Do nothing.
- **B.** e_1 is positive and e_2 is negative in \mathcal{U}_u : Do nothing.
- **C.** e_1 is negative and e_2 is positive in \mathcal{U}_u : Let z be the representative cycle for the pair $(e_2, \epsilon) \in \Pi$. If $e_1 \in z$, pair e_1 with ϵ in Π with the same representative z (notice that e_2 becomes unpaired).
- **D.** e_1 and e_2 are both positive in \mathcal{U}_u : Let z, z' be the representative cycles for the pairs $(e_1, \epsilon), (e_2, \epsilon') \in \Pi$ respectively. Do the following according to different cases:
 - If $e_1 \in z'$ and the deletion of ϵ' is before the deletion of ϵ in \mathcal{U} : Let the representative for (e_2, ϵ') be z + z'. The pairing does not change.
 - If $e_1 \in z'$ and the deletion of ϵ' is after the deletion of ϵ in \mathcal{U} : Pair e_1 and ϵ' in Π with the representative z'; pair e_2 and ϵ in Π with the representative z + z'.

$O(\sqrt{m} \log m)$ algorithm: ideas

- Eliminate the explicit maintenance of representative cycles by observing:
 - We only need to check the connectivity of two vertices in the intersection of two graphs in the up-down
 - One graph is from the ascending part, the other is from the descending part
- Maintain the MSF's for \sqrt{m} graphs in the ascending part where the edges are weighted by indices in the descending part.
- Each MSF is a Link-Cut tree

Computing zigzag representatives in $O(m^2n)$ time

[Dey-H-Morozov] A fast Algorithm for computing zigzag representatives. SODA25 (to appear)

Computing representatives for persistence

• Standard persistence:

 $\circ O(m^3)$ or $O(m^{\omega})$ time by simply using the original persistence algorithm

Computing representatives for persistence

• Standard persistence:

 $\circ O(m^3)$ or $O(m^{\omega})$ time by simply using the original persistence algorithm

• Zigzag persistence:

Definition 4 (Representative). Let [b, d] ⊆ {1,..., m − 1} be an interval. A p-th representative sequence (also simply called p-th representative) for [b, d] consists of a sequence of p-cycles {z_i ∈ Z_p(K_i) | b ≤ i ≤ d} and a sequence of (p + 1)-chains {c_i | b − 1 ≤ i ≤ d}, typically denoted as c_{b-1} ← - z_b ← ^{c_b} ← · · · ← ^{c_{d-1}} → z_d → c_d,
such that for each i with b ≤ i < d:
if K_i ↔ K_{i+1} is forward, then c_i ∈ C_{p+1}(K_{i+1}) and z_i + z_{i+1} = ∂(c_i) in K_{i+1};
if K_i ↔ K_{i+1} is backward, then c_i ∈ C_{p+1}(K_i) and z_i + z_{i+1} = ∂(c_i) in K_i.
Furthermore, the sequence satisfies the additional conditions:
Birth condition: If K_{b-1} ← ^{σ_{b-1}} → K_b is backward, then z_b = ∂(c_{b-1}) for c_{b-1} a (p + 1)-chain in K_{b-1} containing σ_{b-1}; if K_b ← K_{d+1} is forward, then z_d = ∂(c_d) for c_d a (p + 1)-chain in K_{d+1} containing σ_d; if K_d ← ^{σ_d} → K_{d+1} is backward, then σ_d ∈ z_d and c_d is undefined.

 \circ $O(m^2n^2)$ time by directly adapt the algorithm in [MO15]

Maria and Oudot. Zigzag persistence via reflections and transpositions. 2015

Computing representatives for persistence

• Standard persistence:

 $\circ O(m^3)$ or $O(m^{\omega})$ time by simply using the original persistence algorithm

• Zigzag persistence:

 $\circ O(m^2n^2)$ time by directly adapt the algorithm in [MO15]

• Find a way to compress the representatives to achieve the $O(m^2n)$ complexity

Key to bringing down the complexity

- How to store a representative for an interval in memory:
 - The straightforward method takes O(mn) space, so that summing two representatives takes O(mn) time, and hence the $O(m^2n^2)$ complexity

Key to bringing down the complexity

- How to store a representative for an interval in memory:
 - The straightforward method takes O(mn) space, so that summing two representatives takes O(mn) time, and hence the $O(m^2n^2)$ complexity
- We find a *compressed* way to store a representative
 - The compressed method takes O(m) space, so that summing two representatives takes O(m) time, and hence the $O(m^2n)$ complexity
 - This is by storing a representatives as a set of *wires*, each a cycle born at a certain time and extending indefinitely

An example for storing a rep. as wires

To Answer the Question in the Title

Can zigzag persistence be computed as efficiently as the standard version?

Problems		Wall-clock time	Complexity
Compute persistence	General	Yes!	
	Graph	Not far away	$O(m \alpha(m)) $ vs $O(m \log m)$
Update	General	?	Yes
	Graph	No	$O(\log m)$ vs $O(\sqrt{m}\log m)$
Compute representatives		Still a gap	$O(m^{\omega})$ vs $O(m^2n)$

Thank you!