
Can zigzag persistence be computed as

efficiently as the standard version?

Geometry and Topology Seminar, Oregon State University

Tao Hou, CS Department

University of Oregon

Joint work with Tamal K. Dey, Dmitriy Morozov, Salman Parsa

Topological data analysis (TDA)

Rips

Filtration

Persistent

Homology

Computation

Algorithm
Data

Analysis

Application

Mathematics

Topology Geometry

Algebra… …ML Stat

Persistent homology

• As we add each simplex in the sequence, the homology of the complex changes, with:

• Birth: betti number increased by 1

• Death: betti number decreased by 1

Persistent homology

• As we add each simplex in the sequence, the homology of the complex changes, with:

• Birth: betti number increased by 1

• Death: betti number decreased by 1

• The birth and death points can be canonically paired, resulting in persistence barcode:

Persistent homology: example

An interval: 𝑏, 𝑑 = [𝑏, 𝑑 − 1]

Persistent homology: Simplex-wise filtration

Expand each arrow into a sequence of additions of a single simplex

Persistent homology: Simplex-wise filtration

Expand each arrow into a sequence of additions of a single simplex

Simplex-wise filtration: a sequence of additions of a single simplex

Persistent homology: Simplex-wise filtration

Expand each arrow into a sequence of additions of a single simplex

Simplex-wise filtration: a sequence of additions of a single simplex

Persistent homology: Pipeline

[Gabriel 72]

Persistent homology: Pipeline

[Gabriel 72]

starts and ends with indices in the filtration

assumes ℤ2 as coefficients

Persistent homology: Applications

Topological regularizer for ML [Chen et al. 20]

Binarizing microstructures [Patel et al. 22]

Features for ML [Zhao & Wang 19]

Brain functional networks [Petri et al. 14]

Zigzag persistence

Gunnar Carlsson and Vin de Silva. Zigzag persistence.
Foundations of Computational Mathematics, 10(4):367–405, 2010.

Zigzag persistence

Gunnar Carlsson and Vin de Silva. Zigzag persistence.
Foundations of Computational Mathematics, 10(4):367–405, 2010.

Zigzag persistence

Peter Gabriel. Unzerlegbare Darstellungen I. Manuscripta Mathematica, 6(1):71–103, 1972.

[Gabriel 72]

Applications of Zigzag Persistence

• In time varying settings: functions, point cloud, vector field

• G. Carlsson, V. de Silva, and D. Morozov. Zigzag persistent homology and real-valued functions.

SoCG 2009.

• W. Kim and F. Mémoli. Spatiotemporal persistent homology for dynamic metric spaces. DCG 2020.

• T. Dey, M. Lipinsky, M. Mrozek, R. Slechta. Tracking dynamical features via continuation and

persistence. SoCG 2022.

• In multiparameter persistence

Non-Zigzag vs. Zigzag persistence

• closed-open

• closed-open

• closed-closed

• open-closed

• open-open

Bars in non-zigzag: 1 type

Bars in zigzag: 4 types

Simplices(𝜎) in zigzag: insertion(), deletion(), repeated()

[b d]

1

2

Non-Zigzag vs. Zigzag: Computing

Non-zigzag [ELZ2000] Zigzag [CdSM2009]

1. An algorithm for computing zigzag persistence (FastZigzag)
• Converts to a computation of non-zigzag persistence

• Bridges gap of efficiency for computing the two versions

2. 𝑂(𝑚 log 𝑚) algorithm for computing graph zigzag persistence

3. Algorithms for updating zigzag persistence over local changes
• Focus on contractions and expansions

• Match the O(m2) complexity of the non-zigzag version

4. Algorithms for updating graph persistence (over switches)
• Non-zigzag: 𝑂(log 𝑚)

• Zigzag: 𝑂(𝑚 log 𝑚)

5. O(m2n) algorithm for computing zigzag representatives

13

Outline

Fast computation of zigzag persistence

[DeyH]: Fast Computation of Zigzag Persistence. ESA22

Complexities of persistence computing

Edelsbrunner, Letscher, Zomorodian. Topological persistence and simplification. FoCS 2000.

Carlsson, de Silva, Morozov. Zigzag persistent homology and real-valued functions. SoCG 2009.
Milosavljevi´c, Morozov, Skraba. Zigzag persistent homology in matrix multiplication time. SoCG 2011.
Cl´ement Maria and Steve Y. Oudot. Zigzag persistence via reflections and transpositions. SODA 2015.

Overview of FastZigzag

• Input zigzag filtration

• Compute barcode for non-zigzag filtration ℱ′

• Fast software [Gudhi, Phat, Dionysus etc.]

• Convert barcode of ℱ′ to that of ℱ
• O(1) conversion per bar

• Convert to a non-zigzag filtration of same length (linear time)

Overall conversion has very little cost

Conversion of Filtrations in FastZigzag

Conversions 1,2,3,4:

• Done by a simple linear scan of the input filtration

Input zigzag
Non-repetitive

zigzag
Up-down

Extended

persistence
Non-zigzag

All filtrations have the same length (the same number of addition/deletions)

• Idea: Treat new occurrence of simplex 𝜎 as a new copy (barcodes stay the same)

• Simplices with the same vertex set shall occur in same complex in later filtration:

use Δ-complex [Hatcher02]

Non-repetitive filtration: A simplex is added at most one time

Two triangles sharing 0,1,2,3 edges

Input zigzag
Non-repetitive

zigzag
Up-down

Extended

persistence
Non-zigzag

Conversion of Filtrations in FastZigzag

(𝑚 = 2𝑛)

List the additions in ℱ first

and then the deletions in ℱ,

following the orders in ℱ

Input zigzag
Non-repetitive

zigzag
Up-down

Extended

persistence
Non-zigzag

Conversion of Filtrations in FastZigzag

Input zigzag
Non-repetitive

zigzag
Up-down

Extended

persistence
Non-zigzag

Conversion of Filtrations in FastZigzag

Cohen-Steiner, Edelsbrunner, Harer. Extending persistence using Poincaré and Lefschetz duality. FoCM 2009

Conversion of Filtrations in FastZigzag

Mayer-Vietoris Diamond [CdS10]

• ℱ1 to ℱ2: Outward switch

• ℱ2 to ℱ1: Inward switch

Input zigzag
Non-repetitive

zigzag
Up-down Non-zigzag

Extended

persistence

Gunnar Carlsson and Vin de Silva. Zigzag persistence. FoCM 2010

Conversion of Filtrations in FastZigzag

Mayer-Vietoris Diamond [CdS10]

• ℱ1 to ℱ2: Outward switch

• ℱ2 to ℱ1: Inward switch

Input zigzag
Non-repetitive

zigzag
Up-down Non-zigzag

Extended

persistence

Major takeaway: there is a bijection between the barcodes of the filtrations s.t.

corresponding intervals have same creator and destroyer simplices (cells)

Use ‘Coning’ [CEH09]: No change in barcode

Input zigzag
Non-repetitive

zigzag
Up-down

Extended

persistence
Non-zigzag

Conversion of Filtrations in FastZigzag

Overall Conversions

Pseudocodes for the conversion

Running time comparison

• All run on Intel(R), Core , i5-9500 CPU@3.00GHz, 16GB memory, Linux OS
• Software FZZ using Phat software for non-zigzag (https://github.com/taohou01/fzz)

1-2: Non-repetitive

random shuffles from

height functions on

triangular meshes

3-8: Clique complexes

from random edge

additions/deletions

9-11: Oscillating Rips
zigzag from point clouds

of 2000 – 4000 sampled

from triangular meshes

mailto:CPU@3.00GHz

Running time comparison

• All run on Intel(R), Core , i5-9500 CPU@3.00GHz, 16GB memory, Linux OS
• Software FZZ using Phat software for non-zigzag (https://github.com/taohou01/fzz)

1-2: Non-repetitive

random shuffles from

height functions on

triangular meshes

3-8: Clique complexes

from random edge

additions/deletions

9-11: Oscillating Rips
zigzag from point clouds

of 2000 – 4000 sampled

from triangular meshes

mailto:CPU@3.00GHz

𝑂(𝑚 log 𝑚) computation of graph zigzag persistence

[Dey-H-Parsa]. Revisiting Graph Persistence for Updates and Efficiency. WADS 2023

32

An application of graph zigzag persistence:
Dynamic networks

Petter Holme and Jari Saramaki. Temporal networks. Physics Reports, 519(3):97–125, 2012.

33

Complexities of persistence computing

Nikola Milosavljevi´c, Dmitriy Morozov, and Primoz Skraba. Zigzag persistent homology in matrix multiplication time. 2011.
Tamal K. Dey and Tao Hou. Computing Zigzag Persistence on Graphs in Near-Linear Time. 2021

* Graphs

Standard 𝑂(𝑚𝜔) 𝑂(𝑚 𝛼(𝑚))

Zigzag 𝑂(𝑚𝜔) 𝑂(𝑚 log4 𝑛)

𝑚: length of filtration

𝜔 ≈ 2.37286: matrix multiplication exponent

𝛼(𝑚): inverse Ackermann function

𝑛: size of 𝐺

Input for graph zigzag:

Computation

1

2

3

Compute them
separately

Utilize the conversion in FastZigzag to convert the input zigzag into an

up-down filtration 𝒰, with the following barcode mapping:

Computation

1. Pers0
co(𝒰), Pers0

oc(𝒰): run the persistence pairing for 0-dimensional

standard persistence with Union-Find on the ascending and

descending parts of 𝒰 in 𝑂(𝑚 𝛼(𝑚)) time

ascending part descending part

Computation

2. Pers0
cc(𝒰) :

• Identify each connected component 𝐶 of 𝐺𝑛

• Pair:
• first vertex in the ascending part coming from 𝐶

• first vertex in the descending part coming from 𝐶

• Can be done in linear time

ascending part descending part

Computation

3. Pers1
cc(𝒰) : from the edge-edge pairs; the first edge is a positive edge from

the ascending part 𝒰𝑢, the second edge is a positive edge from the

descending part 𝒰𝑑.

Positive edge: connect to the same connected component

Negative edge: connect to the different connected components

Computation

3. Pers1
cc(𝒰) : from the edge-edge pairs; the first edge is a positive edge from

the ascending part 𝒰𝑢, the second edge is a positive edge from the

descending part 𝒰𝑑.

Zuoyu Yan, Tengfei Ma,

Liangcai Gao, Zhi Tang, and

Chao Chen. Link prediction with

persistent homology: An

interactive view. 2021.

Positive edge: connect to the same connected component

Negative edge: connect to the different connected components

Computation

Figure from [Yan et al. 2021]

Computation

3. Pers1
cc(𝒰) :

• The algorithm in [Yan et al. 2021] runs in 𝑂(𝑚2) time using a direct

implementation for the trees

• We propose to use the Link-Cut tree [Sleator, Tarjan, 1981] so that

finding the edge-edge pairs runs in 𝑂(𝑚 log 𝑚) time.

• Since the conversions between input zigzag and up-down are linear

time, the overall complexity is 𝑂(𝑚 log 𝑚).

Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. 1981.

Updating zigzag persistence

[DeyH]: Computing Zigzag Vineyard Efficiently Including Expansions and Contractions. SoCG24

Background

Consider local changes on filtration and update the barcode accordingly

• Produces vineyard (a stack of barcodes)

Background

Consider local changes on filtration and update the barcode accordingly

• Produces vineyard (a stack of barcodes)

Example: Dynamic point cloud

Point cloud moving

with time

Distance-time curves of all pairs Zigzag filtrations changing

over distance

Vineyard

(figure from Computational

topology: An Introduction)

Background

Consider local changes on filtration and update the barcode accordingly

• Produces vineyard (a stack of barcodes)

Switch (transposition)

Operations in standard persistence, computed in O(m) time [CEM06]

Cohen-Steiner, Edelsbrunner, and Morozov. Vines and vineyards by updating persistence in linear time. 2006

Background

Consider local changes on filtration and update the barcode accordingly

• Produces vineyard (a stack of barcodes)

Forward switch

Backward switch

Outward/inward switch

Inward contraction/expansion

Outward contraction/expansion

Operations we consider

Keep filtration size Increase/decrease filtration size

Easy updates

For following switch operations (do not change input length):

• Barcodes can be easily updated in O(m) time

• Using the conversion in FastZigzag

Forward switch

Backward switch

Outward/inward switch

Cohen-Steiner, Edelsbrunner, and Morozov. Vines and vineyards by updating persistence in linear time. 2006

Difficulties with (outward) contraction/expansion

Difficulties lie in (outward) contraction/expansion (input length changes)

Inward contraction/expansion

Outward contraction/expansion

Difficulties with (outward) contraction/expansion

• If we convert the zigzag filtrations into up-down/non-zigzag filtrations, there are some adjacency change

on the cells:

o Before and after the operation, boundary faces of certain (𝑝 + 1)-cells change into other 𝑝-cells

(which come in earlier/later in the up-down/non-zigzag filtration)

• Straightforward approach takes O(m3) time

Before outward

expansion

After outward

expansion

• Convert input zigzag filtration into up-down filtration

• [Observation] The boundary change of cells in the up-down filtration in the contraction:

o Two 𝑝-cells 𝜎1, 𝜎2 are identified as the same 𝑝-cell 𝜎0

Idea of the computation for outward contraction

• Convert input zigzag filtration into up-down filtration

• [Observation] The boundary change of cells in the up-down filtration in the contraction:

o Two 𝑝-cells 𝜎1, 𝜎2 are identified as the same 𝑝-cell 𝜎0

Original

Zigzag:

Up-down:

Idea of the computation for outward contraction

Solution for outward contraction

Given:

Solution for outward contraction

Given:

Compute:

Solution for outward contraction

Given:

Compute:

Solution for outward contraction

Given:

Compute:

Solution for outward contraction

Given:

Compute:

Solution for outward contraction

Given:

Compute:

Solution for outward contraction

Given:

Compute:

𝑈 ⇒ 𝑈+:

• Attaching 𝜒

• O(m2)

•

•

•

•

Solution for outward contraction

Given:

Compute:

𝑈 ⇒ 𝑈+:

• Attaching 𝜒

• O(m2)

𝑈+ ⇒ ෩𝑈:

• Perform switches

• O(m2)

•

•

Solution for outward contraction

Given:

Compute:

𝑈 ⇒ 𝑈+:

• Attaching 𝜒

• O(m2)

𝑈+ ⇒ ෩𝑈:

• Perform switches

• O(m2)

෩𝑈 ⇒ 𝑈′:

• “Almost” the same

• O(m)

Solution for outward contraction

෩𝑈 ⇒ 𝑈′, formally:

Solution for outward contraction

෩𝑈 ⇒ 𝑈′, formally:

Conclusion:

Inward contraction

• While inward contraction is easy by converting to non-zigzag, it becomes non-trivial when

converting to up-down

• Algorithm idea:

o After some preprocessing, we are left with certain intervals which are not ‘settled’ (contains

the cell being removed)

o These intervals follow a fixed pattern, and we utilized an ‘alternative relinking’ to produce

intervals for the new filtration

Updating zigzag persistence on graphs over switches

[Dey-H-Parsa]. Revisiting Graph Persistence for Updates and Efficiency. WADS 2023

Update for non-zigzag graph filtrations

• Propose 𝑂 log 𝑚 algorithms for updating non-zigzag filtrations on graphs over

switches

• Maintain merge forest (trees) encoding all info in the pers module

• Case analysis: Perform the update in difference cases

• Use two dynamic trees data structure (DFT tree, Link-Cut tree) to achieve the

complexity

Merge forest (tree)

Merge forest (tree)

Merge forest (tree)

Merge forest (tree)

Merge forest (tree)

Merge forest (tree)

1. Switch two vertices 𝒗𝟏, 𝒗𝟐

• The only situation where the pairing changes:

o 𝑣1, 𝑣2 are in the same tree in the merge forest

o 𝑣1, 𝑣2 are both unpaired when 𝑒 is added in ℱ, where 𝑒 is the edge

corresponding to the nearest common ancestor of 𝑣1, 𝑣2 in the merge forest

• In above case, we switch the paired edges of 𝑣1, 𝑣2

More definitions

Two types of edges in the graph filtration:

• Negative edge: connect two different connected components

• Positive edge: connect the same connected component

2. Switch a negative edge 𝒆𝟏 and a positive edge 𝒆𝟐

• If 𝑒1 is in a 1-cycle after is 𝑒2 added:

o This is the case where 𝑒1, 𝑒2 connect to the same two connected components

o After the switch, 𝑒1 becomes positive and 𝑒2 becomes negative

o We pair 𝑒2 with the vertex that 𝑒1 previously pairs with

o The node in the merge forest corresponding to 𝑒1 should now correspond to 𝑒2

3. Switch two negative edges 𝒆𝟏, 𝒆𝟐

• Only need to make changes when the corresponding node of 𝑒1 is a child of the

corresponding node of 𝑒2 in the merge forest

• Let 𝑢, 𝑣, 𝑤 be the lowest leaves in 𝑇1, 𝑇2, 𝑇3.

• WLOG, assume 𝑣 is lower than 𝑢.

3. Switch two negative edges 𝒆𝟏, 𝒆𝟐

• Based on the structure of the merge forest, there are two connecting configurations for 𝐶1,

𝐶2, 𝐶3 in 𝐺𝑖−1 (𝐶1, 𝐶2, 𝐶3 are the connected components containing 𝑢, 𝑣, 𝑤 respectively)

(a)

(b)

3. Switch two negative edges 𝒆𝟏, 𝒆𝟐

• Based on the structure of the merge forest, there are two connecting configurations for 𝐶1,

𝐶2, 𝐶3 in 𝐺𝑖−1 (𝐶1, 𝐶2, 𝐶3 are the connected components containing 𝑢, 𝑣, 𝑤 respectively)

(a)

(b) If 𝑤 is lower than 𝑢, then swap the

paired vertices of 𝑒1, 𝑒2

• Provable by case analysis

DFT-Tree

Data structures implementing the merge forests [Farina, Laura, 2015]:

Gabriele Farina and Luigi Laura. Dynamic subtrees queries revisited: The depth first tour tree. 2015.

𝑂 log 𝑚

Returns the lowest leaf for a subtree

Detecting if 𝒆𝟏 = (𝒖, 𝒗) is in a cycle in 𝑮𝒊+𝟏

• Check if 𝑢, 𝑣 are connected in 𝐺′𝑖

• Check the first time 𝑢, 𝑣 are connected in the filtration ℱ′

• Based on an idea in [DH21], do following:

o Let edges in 𝐺 ≔ 𝐺𝑚 be weighted by their indices in ℱ′

o The first time 𝑢, 𝑣 are connected = 1 + the bottleneck weight of the path in the MSF of

𝐺 (bottleneck weight: max weight of edges)

• Maintain the MSF over the switch by the Link-Cut tree [ST81]:

• Everything can be in 𝑂 log 𝑚 time

• This is possible because we are only doing switches (switching the weights for edges

whose weights are consecutive)

- Tamal K. Dey and Tao Hou. Computing zigzag persistence on graphs in near-linear time. 2021.

- Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. 1981.

Update for zigzag graph filtrations

• Four switch operations:

Forward

switch

Backward

switch

Outward

switch
Inward

switch

• Strategy: Convert the zigzag filtrations to up-down filtrations as previous

• Immediately, inward and outward switches take 𝑂(1) time

• Forward and backward switches: For intervals other than those from the edge-edge

pairs, the update reduces to the standard persistence case, hence 𝑂(log 𝑚) time

𝑶 𝒎 algorithm for updating edge-edge pairs

• Based on a direct maintenance of representative cycles for pairs

𝑶(𝒎 𝐥𝐨𝐠 𝒎) algorithm: ideas

• Eliminate the explicit maintenance of representative cycles by observing:

• We only need to check the connectivity of two vertices in the intersection of two

graphs in the up-down

• One graph is from the ascending part, the other is from the descending part

• Maintain the MSF’s for 𝑚 graphs in the ascending part where the edges are weighted

by indices in the descending part.

• Each MSF is a Link-Cut tree

Computing zigzag representatives in O(m2n) time

[Dey-H-Morozov] A fast Algorithm for computing zigzag representatives. SODA25 (to appear)

Computing representatives for persistence

• Standard persistence:

o 𝑂(𝑚3) or 𝑂(𝑚𝜔) time by simply using the original persistence algorithm

Computing representatives for persistence

• Standard persistence:

o 𝑂(𝑚3) or 𝑂(𝑚𝜔) time by simply using the original persistence algorithm

• Zigzag persistence:

o 𝑂(𝑚2𝑛2) time by directly adapt the algorithm in [MO15]

Maria and Oudot. Zigzag persistence via reflections and transpositions. 2015

Computing representatives for persistence

• Standard persistence:

o 𝑂(𝑚3) or 𝑂(𝑚𝜔) time by simply using the original persistence algorithm

• Zigzag persistence:

o 𝑂(𝑚2𝑛2) time by directly adapt the algorithm in [MO15]

• Find a way to compress the representatives to achieve the 𝑂(𝑚2𝑛) complexity

Maria and Oudot. Zigzag persistence via reflections and transpositions. 2015

Key to bringing down the complexity

• How to store a representative for an interval in memory:

o The straightforward method takes 𝑂(𝑚𝑛) space, so that summing two representatives

takes 𝑂(𝑚𝑛) time, and hence the 𝑂(𝑚2𝑛2) complexity

Key to bringing down the complexity

• How to store a representative for an interval in memory:

o The straightforward method takes 𝑂(𝑚𝑛) space, so that summing two representatives

takes 𝑂(𝑚𝑛) time, and hence the 𝑂(𝑚2𝑛2) complexity

• We find a compressed way to store a representative

o The compressed method takes 𝑂(𝑚) space, so that summing two representatives

takes 𝑂(𝑚) time, and hence the 𝑂(𝑚2𝑛) complexity

o This is by storing a representatives as a set of wires, each a cycle born at a certain

time and extending indefinitely

An example for
storing a rep. as
wires

To Answer the Question in the Title

Can zigzag persistence be computed as efficiently as
the standard version?

Problems Wall-clock time Complexity

Compute

persistence

General Yes!

Graph Not far away 𝑂(𝑚 𝛼(𝑚)) vs 𝑂(𝑚 log 𝑚)

Update

General ? Yes

Graph No 𝑂(log 𝑚) vs 𝑂(𝑚 log 𝑚)

Compute representatives Still a gap 𝑂(𝑚𝜔) vs 𝑂(𝑚2𝑛)

Thank you!

	Slide 1: Can zigzag persistence be computed as efficiently as the standard version?
	Slide 2
	Slide 3: Persistent homology
	Slide 4: Persistent homology
	Slide 5: Persistent homology: example
	Slide 6: Persistent homology: Simplex-wise filtration
	Slide 7: Persistent homology: Simplex-wise filtration
	Slide 8: Persistent homology: Simplex-wise filtration
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Outline
	Slide 19: Fast computation of zigzag persistence
	Slide 20
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: O m log m computation of graph zigzag persistence
	Slide 39
	Slide 40
	Slide 41: Computation
	Slide 42: Computation
	Slide 43: Computation
	Slide 44: Computation
	Slide 45: Computation
	Slide 46: Computation
	Slide 47: Computation
	Slide 48: Updating zigzag persistence
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70: Updating zigzag persistence on graphs over switches
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89: Computing zigzag representatives in O(m2n) time
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96: To Answer the Question in the Title
	Slide 97
	Slide 98: Thank you!

