Computing Minimal Persistent Cycles: Polynomial and Hard Cases

Tamal K. Dey, **Tao Hou**, and Sayan Mandal

Department of Computer Science and Engineering
The Ohio State University

SODA 2020
Barcode/Persistence diagram

\[\mathcal{F} : \emptyset = K_0 \overset{\sigma_1}{\leftarrow} K_1 \overset{\sigma_2}{\rightarrow} \cdots \overset{\sigma_{m-1}}{\rightarrow} K_{m-1} \overset{\sigma_m}{\leftarrow} K_m = K \]

\[\Downarrow \]

Birth and death of \(d \)-th homological features: \(D_d(\mathcal{F}) \)
\[\mathcal{F} : \emptyset = K_0 \xrightarrow{\sigma_1} K_1 \xrightarrow{\sigma_2} \cdots \xrightarrow{\sigma_{m-1}} K_{m-1} \xrightarrow{\sigma_m} K_m = K \]

\[\Downarrow \]

Birth and death of \(d \)-th homological features: \(D_d(\mathcal{F}) \)
\[\mathcal{F} : \emptyset = K_0 \xleftarrow{\sigma_1} K_1 \xleftarrow{\sigma_2} \cdots \xleftarrow{\sigma_{m-1}} K_{m-1} \xleftarrow{\sigma_m} K_m = K \]

\[\Downarrow \]

Birth and death of \(d \)-th homological features: \(D_d(\mathcal{F}) \)

Therefore: An interval \([\beta, \delta) \in D_1(\mathcal{F})\)
Barcode/Persistence diagram

Two kinds of intervals
Finite interval: $[\beta, \delta)$ Infinite interval: $[\beta, +\infty)$

(Figure courtesy of [Ghrist, 2008])
Definition (Persistent d-cycle)

For $[\beta, \delta) \in D_d(F)$, it is a d-cycle ζ for $[\beta, \delta)$ s.t.

- $\delta = +\infty$ (infinite interval): ζ is a cycle in K_{β} containing σ_{β}
- $\delta \neq +\infty$ (finite interval): ζ is a cycle in K_{β} containing σ_{β} & ζ is not a boundary in $K_{\delta-1}$ but becomes boundary in K_{δ}
Definition

\[K_{\beta-1} \quad K_{\beta} \quad K_{\delta-1} \quad K_{\delta} \]

\[\sigma_{\beta} \rightarrow \quad \sigma_{\beta} \rightarrow \quad \sigma_{\delta} \rightarrow \quad \sigma_{\delta} \rightarrow \]

\[\sigma_{\beta} \rightarrow \quad \sigma_{\beta} \rightarrow \quad \sigma_{\delta} \rightarrow \quad \sigma_{\delta} \rightarrow \]
Definition

\(K_{\beta-1} \) \hspace{1cm} \(K_{\beta} \) \hspace{1cm} \(K_{\delta-1} \) \hspace{1cm} \(K_{\delta} \)

\(\cdots \) \hspace{1cm} \(\sigma_{\beta} \) \hspace{1cm} \(\sigma_{\beta} \) \hspace{1cm} \(\sigma_{\delta} \) \hspace{1cm} \(\sigma_{\delta} \) \hspace{1cm} \(\cdots \)

\(\cdots \) \hspace{1cm} \(\sigma_{\beta} \) \hspace{1cm} \(\sigma_{\beta} \) \hspace{1cm} \(\sigma_{\delta} \) \hspace{1cm} \(\sigma_{\delta} \) \hspace{1cm} \(\cdots \)

\(\cdots \) \hspace{1cm} \(\sigma_{\beta} \) \hspace{1cm} \(\sigma_{\beta} \) \hspace{1cm} \(\sigma_{\delta} \) \hspace{1cm} \(\sigma_{\delta} \) \hspace{1cm} \(\cdots \)

\(\cdots \) \hspace{1cm} \(\sigma_{\beta} \) \hspace{1cm} \(\sigma_{\beta} \) \hspace{1cm} \(\sigma_{\delta} \) \hspace{1cm} \(\sigma_{\delta} \) \hspace{1cm} \(\cdots \)
Definition (Minimal persistent d-cycle)

- Each d-simplex has a (non-negative) weight
- Weight of d-cycle: Sum of weights of its d-simplices
- Persistent d-cycle for the interval with the minimal weight
Definition (Minimal persistent d-cycle)

- Each d-simplex has a (non-negative) weight
- Weight of d-cycle: Sum of weights of its d-simplices
- Persistent d-cycle for the interval with the minimal weight

Problem (PCYC-FIN$_d$)

Given: Simplicial complex K, filtration \mathcal{F}, finite interval $[\beta, \delta) \in D_d(\mathcal{F})$
Compute: A minimal persistent d-cycle for the interval

Problem (PCYC-INF$_d$)

Similar to PCYC-FIN$_d$, only interval $[\beta, +\infty)$ becomes infinite
Hardness results over dimension 1 [Dey et al., 2019]:

<table>
<thead>
<tr>
<th>Problem</th>
<th>d</th>
<th>Hardness</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCYC-FIN$_1$</td>
<td>1</td>
<td>NP-hard</td>
</tr>
<tr>
<td>PCYC-INF$_1$</td>
<td>1</td>
<td>P</td>
</tr>
</tbody>
</table>
Hardness results over dimension 1 [Dey et al., 2019]:

<table>
<thead>
<tr>
<th>Problem</th>
<th>d</th>
<th>Hardness</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCYC-FIN$_1$</td>
<td>$= 1$</td>
<td>NP-hard</td>
</tr>
<tr>
<td>PCYC-INF$_1$</td>
<td>$= 1$</td>
<td>P</td>
</tr>
</tbody>
</table>

New findings over general dimension:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Restriction on K</th>
<th>d</th>
<th>Hardness</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCYC-FIN$_d$</td>
<td>—</td>
<td>≥ 1</td>
<td>NP-hard</td>
</tr>
<tr>
<td>WPCYC-FIN$_d$</td>
<td>Weak $(d + 1)$-pseudomanifold</td>
<td>≥ 1</td>
<td>P</td>
</tr>
<tr>
<td>PCYC-INF$_d$</td>
<td>—</td>
<td>$= 1$</td>
<td>P</td>
</tr>
<tr>
<td>WPCYC-INF$_d$</td>
<td>Weak $(d + 1)$-pseudomanifold</td>
<td>≥ 2</td>
<td>NP-hard</td>
</tr>
<tr>
<td>WEPCYC-INF$_d$</td>
<td>Weak $(d + 1)$-pseudomanifold in \mathbb{R}^{d+1}</td>
<td>≥ 2</td>
<td>P</td>
</tr>
</tbody>
</table>
Definition

A simplicial complex K is a weak $(d + 1)$-pseudomanifold if each d-simplex is face of no more than two $(d + 1)$-simplices in K.
Definition

A simplicial complex K is a weak $(d+1)$-pseudomanifold if each d-simplex is face of no more than two $(d+1)$-simplices in K.

* Generalization of pseudomanifold
Minimal persistent d-cycles of finite intervals for weak $(d + 1)$-pseudomanifold

Duality between

- persistent cycles of interval $[\beta, \delta)$
- s-t cuts on dual graph
Duality

Dual Graph

Weight of edge:

- Dual d-simplex in K_{β}: same weight
- Dual d-simplex not in K_{β}: $+\infty$

Src: Dual vertex of σ_{δ}

Sinks: Dual vertices of $(d+1)$-simplices not in $K_{\delta} +$ the inf. vertex
Duality

Weight of edge:
- Dual d-simplex in K_β: same weight
- Dual d-simplex not in K_β: $+\infty$
Duality

Weight of edge:
- Dual d-simplex in K_β: same weight
- Dual d-simplex not in K_β: $+\infty$

Src: Dual vertex of σ_δ
Duality

Weight of edge:
- Dual d-simplex in K_β: same weight
- Dual d-simplex not in K_β: $+\infty$

Src: Dual vertex of σ_δ

Sinks: Dual vertices of $(d + 1)$-simplices not in K_δ $+$ the inf. vertex
Duality

\[K_\beta \quad K_\delta \quad \text{Duality} \]
Min-cut: \((S, T)\)
Min-cut: \((S, T)\)

Edges across \((S, T)\)
Duality

Min-cut: \((S, T)\)

Edges across \((S, T)\)

Dual \(d\)-chain: Minimal persistent \(d\)-cycle
Correctness of the Algorithm

Proposition

For any cut \((S, T)\) of \((G, s_1, s_2)\) with finite weight, the \(d\)-chain
\[\zeta = \theta^{-1}(\xi(S, T)) \]
is a persistent \(d\)-cycle of \([\beta, \delta)\) and
\[w(\zeta) = w(S, T) \]

Proposition

For any persistent \(d\)-cycle \(\zeta\) of \([\beta, \delta)\), there exists a cut \((S, T)\) of
\((G, s_1, s_2)\) such that
\[w(S, T) \leq w(\zeta) \]
Minimal persistent d-cycles of infinite intervals for weak $(d + 1)$-pseudomanifold in \mathbb{R}^{d+1}

Aim: Find d-cycle with minimal weight containing σ_β in K_β

Similar duality as for finite interval

- No embedding assumption: NP-hard
- Needs some modification
Minimal persistent d-cycles of infinite intervals for weak $(d + 1)$-pseudomanifold in \mathbb{R}^{d+1}

Aim: Find d-cycle with minimal weight containing σ_β in K_β

Similar duality as for finite interval

• No embedding assumption: NP-hard
• Needs some modification
The problems for which we prove the NP-hardness:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Restriction on K</th>
<th>d</th>
<th>Hardness</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCYC-FIN$_d$</td>
<td>—</td>
<td>≥ 1</td>
<td>NP-hard</td>
</tr>
<tr>
<td>WPCYC-INF$_d$</td>
<td>Weak $(d + 1)$-pseudomanifold</td>
<td>≥ 2</td>
<td>NP-hard</td>
</tr>
</tbody>
</table>
NP-hardness proof

Suspension: Shifting dimension for reduction

Definition

\[SK = \{\{\omega_1\}, \{\omega_2\}\} \cup K \cup \left(\bigcup_{\sigma \in K} \{\sigma \cup \{\omega_1\}, \sigma \cup \{\omega_2\}\} \right) \]

E.g., suspension of \(S^1 \Rightarrow S^2 \):

<table>
<thead>
<tr>
<th></th>
<th>(\tilde{H}_0)</th>
<th>(\tilde{H}_1)</th>
<th>(\tilde{H}_2)</th>
<th>(\tilde{H}_3)</th>
<th>(\cdots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S^1)</td>
<td>0</td>
<td>(\mathbb{Z}_2)</td>
<td>0</td>
<td>0</td>
<td>(\cdots)</td>
</tr>
<tr>
<td>(S^2)</td>
<td>0</td>
<td>0</td>
<td>(\mathbb{Z}_2)</td>
<td>0</td>
<td>(\cdots)</td>
</tr>
</tbody>
</table>

(Figure courtesy of Wikipedia)
Finite interval hardness

Proposition

$PCYC\text{-FIN}_{d-1}$ reduces to $PCYC\text{-FIN}_d$ for $d \geq 2$

Recall: $PCYC\text{-FIN}_1$ is NP-hard

Theorem

$PCYC\text{-FIN}_d$ is NP-hard for $d \geq 1$.
Infinite interval hardness

Theorem

\(WPCYC-INF_2^+ \) is NP-hard to approximate with any fixed ratio

- \(WPCYC-INF_2^+ \): weights of the simplices are positive
- Reduce from the nearest codeword problem

Theorem

For \(d \geq 2 \), \(WPCYC-INF_d^+ \) is NP-hard to approximate with any fixed ratio

Shift the dimension by suspension
Cosmology
Hurricane/Medical MRI
References

Thank You

(Thanks to NSF for granting a student travel award)