Computing Minimal Persistent Cycles: Polynomial and Hard Cases

Tamal K. Dey, Tao Hou, and Sayan Mandal

Department of Computer Science and Engineering The Ohio State University

SODA 2020

Therefore: An interval $[\beta, \delta) \in \mathsf{D}_1(\mathcal{F})$

Two kinds of intervals Finite interval: $[\beta, \delta)$ Infinite interval: $[\beta, +\infty)$

(Figure courtesy of [Ghrist, 2008])

Definition (Persistent *d*-cycle)

For $[\beta, \delta) \in D_d(\mathcal{F})$, it is a *d*-cycle ζ for $[\beta, \delta)$ *s.t.*

- $\delta = +\infty$ (infinite interval): ζ is a cycle in K_{β} containing σ_{β}
- δ ≠ +∞ (finite interval): ζ is a cycle in K_β containing σ_β & ζ is not a boundary in K_{δ-1} but becomes boundary in K_δ

Definition (Minimal persistent *d*-cycle)

- •Each *d*-simplex has a (non-negative) weight
- •Weight of *d*-cycle: Sum of weights of its *d*-simplices
- •Persistent d-cycle for the interval with the minimal weight

Definition (Minimal persistent *d*-cycle)

- •Each *d*-simplex has a (non-negative) weight
- •Weight of *d*-cycle: Sum of weights of its *d*-simplices
- •Persistent d-cycle for the interval with the minimal weight

Problem (PCYC-FIN_d)

Given: Simplicial complex K, filtration \mathcal{F} , finite interval $[\beta, \delta) \in \mathsf{D}_d(\mathcal{F})$ Compute: A minimal persistent *d*-cycle for the interval

Problem (PCYC-INF_d)

Similar to PCYC-FIN_d, only interval [$\beta, +\infty$) becomes infinite

Hardness results over dimension 1 [Dey et al., 2019]:

Problem	d	Hardness
$PCYC-FIN_1$	= 1	NP-hard
$PCYC-INF_1$	= 1	Р

Hardness results over dimension 1 [Dey et al., 2019]:

Problem	d	Hardness
$PCYC-FIN_1$	=1	NP-hard
$PCYC-INF_1$	= 1	Р

New findings over general dimension:

Problem	Restriction on K	d	Hardness
PCYC-FIN _d	_	≥ 1	NP-hard
WPCYC-FIN _d	Weak $(d+1)$ -pseudomanifold	\geq 1	Р
$PCYC-INF_d$	_	= 1	Р
WPCYC-INF _d	Weak $(d + 1)$ -pseudomanifold	≥ 2	NP-hard
WEPCYC-INF _d	Weak $(d+1)$ -pseudomanifold in \mathbb{R}^{d+1}	≥ 2	Р

A simplicial complex K is a weak (d + 1)-pseudomanifold if each d-simplex is face of no more than two (d + 1)-simplices in K.

A simplicial complex K is a weak (d + 1)-pseudomanifold if each d-simplex is face of no more than two (d + 1)-simplices in K.

* Generalization of *pseudomanifold*

Minimal persistent *d*-cycles of finite intervals for weak (d + 1)-pseudomanifold

Duality between

- persistent cycles of interval $[\beta, \delta)$
- s-t cuts on dual graph

Dual Graph

Weight of edge:

- •Dual *d*-simplex in K_{β} : same weight
- •Dual *d*-simplex not in K_{β} : + ∞

Dual Graph

Weight of edge:

- •Dual *d*-simplex in K_{β} : same weight
- •Dual *d*-simplex not in K_{β} : + ∞

Src: Dual vertex of σ_{δ}

Dual Graph

Weight of edge:

- •Dual *d*-simplex in K_{β} : same weight
- •Dual *d*-simplex not in K_{β} : + ∞

Src: Dual vertex of σ_{δ}

Sinks: Dual vertices of (d + 1)-simplices **not** in K_{δ} + the inf. vertex

 K_{β}

 K_{δ}

Duality

Min-cut: (S, T)

Min-cut: (S, T) \downarrow Edges across (S, T)

Edges across
$$(S, T)$$

 \downarrow
Dual *d*-chain: Minimal persistent *d*-cycle

Correctness of the Algorithm

Proposition

For any cut (S, T) of (G, s_1, s_2) with finite weight, the d-chain $\zeta = \theta^{-1}(\xi(S, T))$ is a persistent d-cycle of $[\beta, \delta)$ and $w(\zeta) = w(S, T)$

Proposition

For any persistent d-cycle ζ of $[\beta, \delta)$, there exists a cut (S, T) of (G, s_1, s_2) such that $w(S, T) \leq w(\zeta)$

Minimal persistent *d*-cycles of infinite intervals for weak (d + 1)-pseudomanifold in \mathbb{R}^{d+1}

Aim: Find *d*-cycle with minimal weight containing σ_{β} in K_{β}

Similar duality as for finite interval

- •No embedding assumption: NP-hard
- •Needs some modification

Minimal persistent *d*-cycles of infinite intervals for weak (d + 1)-pseudomanifold in \mathbb{R}^{d+1}

Aim: Find *d*-cycle with minimal weight containing σ_{β} in K_{β}

Similar duality as for finite interval

- •No embedding assumption: NP-hard
- •Needs some modification

NP-hardness proof

The problems for which we prove the NP-hardness:

Problem	Restriction on K	d	Hardness
$PCYC-FIN_d$	_	≥ 1	NP-hard
WPCYC-INF _d	Weak $(d+1)$ -pseudomanifold	≥ 2	NP-hard

NP-hardness proof

Suspension: Shifting dimension for reduction Definition

$$\mathcal{SK} = \left\{ \{\omega_1\}, \{\omega_2\} \right\} \cup \mathcal{K} \cup \left(\bigcup_{\sigma \in \mathcal{K}} \left\{ \sigma \cup \{\omega_1\}, \sigma \cup \{\omega_2\} \right\} \right)$$

E.g., suspension of
$$\mathbb{S}^1 \Rightarrow \mathbb{S}^2$$
:

	\widetilde{H}_0	\widetilde{H}_1	\widetilde{H}_2	\widetilde{H}_3	•••
\mathbb{S}^1	0	\mathbb{Z}_2	0	0	•••
\mathbb{S}^2	0	0	\mathbb{Z}_2	0	

(Figure courtesy of Wikipedia)

Finite interval hardness

Proposition

 $\textit{PCYC-FIN}_{d-1}$ reduces to $\textit{PCYC-FIN}_d$ for $d \geq 2$

Recall: PCYC-FIN₁ is NP-hard

Theorem *PCYC-FIN_d* is *NP-hard* for $d \ge 1$.

Infinite interval hardness

Theorem

 $WPCYC-INF_2^+$ is NP-hard to approximate with any fixed ratio

- WPCYC-INF₂⁺: weights of the simplices are positive
- Reduce from the nearest codeword problem

Theorem

For $d \ge 2$, WPCYC-INF⁺_d is NP-hard to approximate with any fixed ratio

Shift the dimension by suspension

Cosmology

Hurricane/Medical MRI

References

 Dey, T. K., Hou, T., and Mandal, S. (2019).
 Persistent 1-cycles: Definition, computation, and its application.
 In International Workshop on Computational Topology in Image Context, pages 123–136. Springer.

Ghrist, R. (2008).

Barcodes: the persistent topology of data.

Bulletin of the American Mathematical Society, 45(1):61–75.

Thank You

(Thanks to NSF for granting a student travel award)