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Summary

Build
Filtration

Persistent 
Homology

• Our focus: Persistent homology on graphs (i.e., graph persistence)

o Persistent homology is a major tool in TDA

• We consider both standard and zigzag persistence

o Zigzag persistence is an extension of the standard version by incorporating deletions

• We propose efficient algorithms for graph persistence with a special focus on update

o Update means the transposition operation proposed in the vineyard paper [CEM06]



Existing results

General Graph

Update
Standard 𝑂(𝑚) 𝑂(𝑚)

Zigzag 𝑂(𝑚) 𝑂(𝑚)

Comp. from 
Scratch

Standard 𝑂(𝑚!) / 𝑂(𝑚") 𝑂(𝑚	𝛼(𝑚))

Zigzag 𝑂(𝑚!) / 𝑂(𝑚𝑛#) 𝑂(𝑚 log4 𝑛)
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New results
Detailed complexity for update on zigzag persistence of graphs

• Closed-closed intervals in dim 0: 𝑂(1)

• Closed-open and open-closed intervals: 𝑂(log𝑚)

• Open-open in dim 0 and closed-closed in dim 1: 𝑂( 𝑚 log𝑚)



Updating standard persistence on graphs in 
𝑶 𝐥𝐨𝐠𝒎  time



Transposition (switch) operation
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More definitions
Two types of edges in the graph filtration:
• Negative edge: connect two different connected components
• Positive edge: connect the same connected component



Focus on certain cases
• There are different cases for the update, and the data structures for some 

cases do not change. 
• We will focus on those cases where the merge forest of the paring do change.



1. Switch two vertices 𝒗𝟏, 𝒗𝟐
• The only situation where the pairing changes:

o 𝑣!, 𝑣" are in the same tree in the merge forest
o 𝑣!, 𝑣" are both unpaired when 𝑒 is added in ℱ, where 𝑒 is the edge 

corresponding to the nearest common ancestor of 𝑣!, 𝑣" in the merge forest
• In above case, we switch the paired edges of 𝑣!, 𝑣"
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2. Switch a negative edge 𝒆𝟏 and a positive edge 𝒆𝟐
• If 𝑒! is in a 1-cycle after is 𝑒" added:

o This is the case where 𝑒!, 𝑒" connect to the same two connected components
o After the switch, 𝑒! becomes positive and 𝑒" becomes negative 
o We pair 𝑒" with the vertex that 𝑒! previously pairs with
o The node in the merge forest corresponding to 𝑒! should now correspond to 𝑒"
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3. Switch two negative edges 𝒆𝟏, 𝒆𝟐
• Only need to make changes when the corresponding node of 𝑒!	is a child of the 

corresponding node of 𝑒" in the merge forest
• Let 𝑢, 𝑣, 𝑤 be the lowest leaves in 𝑇!, 𝑇", 𝑇#. 
• WLOG, assume 𝑣 is lower than 𝑢.
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3. Switch two negative edges 𝒆𝟏, 𝒆𝟐
• Only need to make changes when the corresponding node of 𝑒!	is a child of the 

corresponding node of 𝑒" in the merge forest
• Let 𝑢, 𝑣, 𝑤 be the lowest leaves in 𝑇!, 𝑇", 𝑇#. 
• WLOG, assume 𝑣 is lower than 𝑢.
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3. Switch two negative edges 𝒆𝟏, 𝒆𝟐
• Based on the structure of the merge forest, there are two connecting configurations for 𝐶!, 
𝐶", 𝐶#	in 𝐺$%! (𝐶!, 𝐶", 𝐶# are the connected components containing 𝑢, 𝑣, 𝑤 respectively)
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3. Switch two negative edges 𝒆𝟏, 𝒆𝟐
• Based on the structure of the merge forest, there are two connecting configurations for 𝐶!, 
𝐶", 𝐶#	in 𝐺$%! (𝐶!, 𝐶", 𝐶# are the connected components containing 𝑢, 𝑣, 𝑤 respectively)
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3. Switch two negative edges 𝒆𝟏, 𝒆𝟐
• Based on the structure of the merge forest, there are two connecting configurations for 𝐶!, 
𝐶", 𝐶#	in 𝐺$%! (𝐶!, 𝐶", 𝐶# are the connected components containing 𝑢, 𝑣, 𝑤 respectively)

C1

C2 C3

e1

u

v w
e2

C1

C2

C3

e1

u

v

w
e2

(a)
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paired vertices of 𝑒%, 𝑒#
• Provable by case analysis



DFT-Tree
Data structures implementing the merge forests [Farina, Laura, 2015]:

Gabriele Farina and Luigi Laura. Dynamic subtrees queries revisited: The depth first tour tree. 2015.



DFT-Tree
Data structures implementing the merge forests [Farina, Laura, 2015]:

Gabriele Farina and Luigi Laura. Dynamic subtrees queries revisited: The depth first tour tree. 2015.

𝑂 log𝑚

Returns the lowest leaf for a subtree



Detecting if 𝒆𝟏 = (𝒖, 𝒗) is in a cycle in 𝑮𝒊$𝟏
• Check if 𝑢, 𝑣 are connected in 𝐺′(
  
• Check the first time 𝑢, 𝑣 are connected in the filtration ℱ′
• Based on an idea in [DH21], do following:

o Let edges in 𝐺 ≔ 𝐺& be weighted by their indices in ℱ′
o The first time 𝑢, 𝑣 are connected = 1 + the bottleneck weight of the path in the MSF of 
𝐺 (bottleneck weight: max weight of edges)

• Maintain the MSF over the switch by the Link-Cut tree [ST81]:
• Everything can be in 𝑂 log𝑚  time
• This is possible because we are only doing switches (switching the weights for edges 

whose weights are consecutive)

- Tamal K. Dey and Tao Hou. Computing zigzag persistence on graphs in near-linear time. 2021.
- Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. 1981.
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Updating zigzag persistence on graphs



Four witches on zigzag filtrations
• Switch two consecutive simplex-wise inclusions (additions or deletions)
• Four operations:

Forward 
switch

Backward 
switch

Outward 
switch

Inward 
switch



Converting to up-down filtrations
• Our strategy: Convert the zigzag filtrations to up-down filtrations as in [DH22]

o The first half is only additions, and the second is only deletions

o Barcodes of the two filtrations can be easily converted for constant time per bar

• Immediately, inward and outward switches take 𝑂(1) time

• Forward and backward switches: For intervals other than those from the edge-edge pairs, 
the update reduces to the standard persistence case, hence 𝑂(log𝑚) time

Tamal K. Dey and Tao Hou. Fast Computation of Zigzag Persistence. 2022.
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𝑶 𝒎  algorithm for updating edge-edge pairs
• Based on a direct maintenance of representative cycles for the pairs
• Similar to the vineyard algorithm [CEM06]



𝑶( 𝒎 𝐥𝐨𝐠𝒎)	algorithm: ideas
• Eliminate the explicit maintenance of representative cycles by observing: the update only 

need to check the connectivity of two vertices in the intersection of two graphs in the up-
down filtration, where one graph is from the ascending part and the other is from the 
descending part.

• Maintain the MSF’s for 𝑚 graphs in the ascending part where the edges are weighted 
by indices in the descending part. 

• Each MSF is a Link-Cut tree.
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Computing zigzag persistence on graphs in 
𝑶(𝒎 𝐥𝐨𝐠𝒎) time 



Ideas
• Converting to up-down filtration as done previously in 𝑂 𝑚  time

• Utilize the pairing algorithm proposed in [YMGTC21]

• Use the Link-Cut tree to perform the pairing

Zuoyu Yan, Tengfei Ma, Liangcai Gao, Zhi Tang, and Chao Chen. Link prediction with persistent homology: An interactive view. 2021



Thank you!


