
Revisiting Graph Persistence for Updates and
Efficiency

Tamal K. Dey, Purdue U.
Tao Hou, DePaul U.

Salman Parsa, DePaul U.

WADS 2023

Summary

Build
Filtration

Persistent
Homology

• Our focus: Persistent homology on graphs (i.e., graph persistence)

o Persistent homology is a major tool in TDA

• We consider both standard and zigzag persistence

o Zigzag persistence is an extension of the standard version by incorporating deletions

• We propose efficient algorithms for graph persistence with a special focus on update

o Update means the transposition operation proposed in the vineyard paper [CEM06]

Existing results

General Graph

Update
Standard 𝑂(𝑚) 𝑂(𝑚)

Zigzag 𝑂(𝑚) 𝑂(𝑚)

Comp. from
Scratch

Standard 𝑂(𝑚!) / 𝑂(𝑚") 𝑂(𝑚	𝛼(𝑚))

Zigzag 𝑂(𝑚!) / 𝑂(𝑚𝑛#) 𝑂(𝑚 log4 𝑛)

𝑚 : length of the filtration, or number of additions/deletions

Existing results

General Graph

Update
Standard 𝑂(𝑚) 𝑂(𝑚)

Zigzag 𝑂(𝑚) 𝑂(𝑚)

Comp. from
Scratch

Standard 𝑂(𝑚!) / 𝑂(𝑚") 𝑂(𝑚	𝛼(𝑚))

Zigzag 𝑂(𝑚!) / 𝑂(𝑚𝑛#) 𝑂(𝑚 log4 𝑛)

David Cohen-Steiner, Herbert Edelsbrunner, and Dmitriy Morozov. Vines and vineyards by updating
persistence in linear time. 2006

𝑚 : length of the filtration, or number of additions/deletions

Existing results

General Graph

Update
Standard 𝑂(𝑚) 𝑂(𝑚)

Zigzag 𝑂(𝑚) 𝑂(𝑚)

Comp. from
Scratch

Standard 𝑂(𝑚!) / 𝑂(𝑚") 𝑂(𝑚	𝛼(𝑚))

Zigzag 𝑂(𝑚!) / 𝑂(𝑚𝑛#) 𝑂(𝑚 log4 𝑛)

Tamal K. Dey and Tao Hou. Updating barcodes and representatives for zigzag persistence. 2022.

𝑚 : length of the filtration, or number of additions/deletions

Existing results

General Graph

Update
Standard 𝑂(𝑚) 𝑂(𝑚)

Zigzag 𝑂(𝑚) 𝑂(𝑚)

Comp. from
Scratch

Standard 𝑂(𝑚!) / 𝑂(𝑚") 𝑂(𝑚	𝛼(𝑚))

Zigzag 𝑂(𝑚!) / 𝑂(𝑚𝑛#) 𝑂(𝑚 log4 𝑛)

Nikola Milosavljevi ć, Dmitriy Morozov, and Primoz Skraba. Zigzag persistent homology in matrix multiplication time. 2011.
Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological persistence and simplification. 2000.

Clement Maria and Steve Y. Oudot. Zigzag persistence via reflections and transpositions. 2014.

Tamal K. Dey and Tao Hou. Fast computation of zigzag persistence. 2022

... (and many many more!)

𝑚 : length of the filtration, or number of additions/deletions

Existing results

General Graph

Update
Standard 𝑂(𝑚) 𝑂(𝑚)

Zigzag 𝑂(𝑚) 𝑂(𝑚)

Comp. from
Scratch

Standard 𝑂(𝑚!) / 𝑂(𝑚") 𝑂(𝑚	𝛼(𝑚))

Zigzag 𝑂(𝑚!) / 𝑂(𝑚𝑛#) 𝑂(𝑚 log4 𝑛)

By using Union-Find; 𝛼(𝑚): Inverse Ackermann function

𝑚 : length of the filtration, or number of additions/deletions

Existing results

General Graph

Update
Standard 𝑂(𝑚) 𝑂(𝑚)

Zigzag 𝑂(𝑚) 𝑂(𝑚)

Comp. from
Scratch

Standard 𝑂(𝑚!) / 𝑂(𝑚") 𝑂(𝑚	𝛼(𝑚))

Zigzag 𝑂(𝑚!) / 𝑂(𝑚𝑛#) 𝑂(𝑚 log4 𝑛)

Tamal K. Dey and Tao Hou. Computing zigzag persistence on graphs in near-linear time. 2021

𝑚 : length of the filtration, or number of additions/deletions

New results

General Graph

Update
Standard 𝑂(𝑚) 𝑂(𝑚)

Zigzag 𝑂(𝑚) 𝑂(𝑚)

Comp. from
Scratch

Standard 𝑂(𝑚!) / 𝑂(𝑚") 𝑂(𝑚	𝛼(𝑚))

Zigzag 𝑂(𝑚!) / 𝑂(𝑚𝑛#) 𝑂(𝑚 log4 𝑛)

𝑚 : length of the filtration, or number of additions/deletions

New results

General Graph

Update
Standard 𝑂(𝑚) 𝑂(𝑚)

Zigzag 𝑂(𝑚) 𝑂(𝑚)

Comp. from
Scratch

Standard 𝑂(𝑚!) / 𝑂(𝑚") 𝑂(𝑚	𝛼(𝑚))

Zigzag 𝑂(𝑚!) / 𝑂(𝑚𝑛#) 𝑂(𝑚 log4 𝑛)

⟹ 𝑂(log𝑚)

𝑚 : length of the filtration, or number of additions/deletions

New results

General Graph

Update
Standard 𝑂(𝑚) 𝑂(𝑚)

Zigzag 𝑂(𝑚) 𝑂(𝑚)

Comp. from
Scratch

Standard 𝑂(𝑚!) / 𝑂(𝑚") 𝑂(𝑚	𝛼(𝑚))

Zigzag 𝑂(𝑚!) / 𝑂(𝑚𝑛#) 𝑂(𝑚 log4 𝑛)

⟹ 𝑂(log𝑚)

⟹ 𝑂(𝑚 log𝑚)

𝑚 : length of the filtration, or number of additions/deletions

New results

General Graph

Update
Standard 𝑂(𝑚) 𝑂(𝑚)

Zigzag 𝑂(𝑚) 𝑂(𝑚)

Comp. from
Scratch

Standard 𝑂(𝑚!) / 𝑂(𝑚") 𝑂(𝑚	𝛼(𝑚))

Zigzag 𝑂(𝑚!) / 𝑂(𝑚𝑛#) 𝑂(𝑚 log4 𝑛)

⟹ 𝑂(log𝑚)

⟹ 𝑂(𝑚 log𝑚)

⟹ 𝑂(𝑚 log𝑚)

𝑚 : length of the filtration, or number of additions/deletions

Assume 𝑛 ∈ Ω(𝑚$) for arbitrarily small 𝜖 > 0

New results
Detailed complexity for update on zigzag persistence of graphs

• Closed-closed intervals in dim 0: 𝑂(1)

• Closed-open and open-closed intervals: 𝑂(log𝑚)

• Open-open in dim 0 and closed-closed in dim 1: 𝑂(𝑚 log𝑚)

Updating standard persistence on graphs in
𝑶 𝐥𝐨𝐠𝒎 time

Transposition (switch) operation

Merge forest (tree)

1

2

1

2

1

2

3

1

2

3

1

2

3

1 4

2

3

5

1 4

2

3

5

1 4

2

3

5

1 4

F :

Merge forest (tree)

1

2

1

2

1

2

3

1

2

3

1

2

3

1 4

2

3

5

1 4

2

3

5

1 4

2

3

5

1 4

1

2

3

4

5

F :

MF(F) :

Merge forest (tree)

1

2

1

2

1

2

3

1

2

3

1

2

3

1 4

2

3

5

1 4

2

3

5

1 4

2

3

5

1 4

1

2

3

4

5

F :

MF(F) :

Merge forest (tree)

1

2

3

4

5

MF(F) :

Merge forest (tree)

1

2

3

4

5

MF(F) :

Merge forest (tree)

1

2

3

4

5

MF(F) :

More definitions
Two types of edges in the graph filtration:
• Negative edge: connect two different connected components
• Positive edge: connect the same connected component

Focus on certain cases
• There are different cases for the update, and the data structures for some

cases do not change.
• We will focus on those cases where the merge forest of the paring do change.

1. Switch two vertices 𝒗𝟏, 𝒗𝟐
• The only situation where the pairing changes:

o 𝑣!, 𝑣" are in the same tree in the merge forest
o 𝑣!, 𝑣" are both unpaired when 𝑒 is added in ℱ, where 𝑒 is the edge

corresponding to the nearest common ancestor of 𝑣!, 𝑣" in the merge forest
• In above case, we switch the paired edges of 𝑣!, 𝑣"

T1

v1

T2

v2

e

1. Switch two vertices 𝒗𝟏, 𝒗𝟐
• The only situation where the pairing changes:

o 𝑣!, 𝑣" are in the same tree in the merge forest
o 𝑣!, 𝑣" are both unpaired when 𝑒 is added in ℱ, where 𝑒 is the edge

corresponding to the nearest common ancestor of 𝑣!, 𝑣" in the merge forest
• In above case, we switch the paired edges of 𝑣!, 𝑣"

T1

v1

T2

v2

e

T1

v1

T2

e

v2

2. Switch a negative edge 𝒆𝟏 and a positive edge 𝒆𝟐
• If 𝑒! is in a 1-cycle after is 𝑒" added:

o This is the case where 𝑒!, 𝑒" connect to the same two connected components
o After the switch, 𝑒! becomes positive and 𝑒" becomes negative
o We pair 𝑒" with the vertex that 𝑒! previously pairs with
o The node in the merge forest corresponding to 𝑒! should now correspond to 𝑒"

e1 e2

C1

C2

C1

C2

e1

C1

C2

e2

C1

C2

Gi−1

Gi

G′
i

Gi+1

3. Switch two negative edges 𝒆𝟏, 𝒆𝟐
• Only need to make changes when the corresponding node of 𝑒!	is a child of the

corresponding node of 𝑒" in the merge forest
• Let 𝑢, 𝑣, 𝑤 be the lowest leaves in 𝑇!, 𝑇", 𝑇#.
• WLOG, assume 𝑣 is lower than 𝑢.

e1

e2

i−1 i

T1

T2

T3

u

v

w

3. Switch two negative edges 𝒆𝟏, 𝒆𝟐
• Only need to make changes when the corresponding node of 𝑒!	is a child of the

corresponding node of 𝑒" in the merge forest
• Let 𝑢, 𝑣, 𝑤 be the lowest leaves in 𝑇!, 𝑇", 𝑇#.
• WLOG, assume 𝑣 is lower than 𝑢.

e1

e2

i−1 i

T1

T2

T3

u

v

w

3. Switch two negative edges 𝒆𝟏, 𝒆𝟐
• Based on the structure of the merge forest, there are two connecting configurations for 𝐶!,
𝐶", 𝐶#	in 𝐺$%! (𝐶!, 𝐶", 𝐶# are the connected components containing 𝑢, 𝑣, 𝑤 respectively)

C1

C2 C3

e1

u

v w
e2

C1

C2

C3

e1

u

v

w
e2

(a)

(b)

3. Switch two negative edges 𝒆𝟏, 𝒆𝟐
• Based on the structure of the merge forest, there are two connecting configurations for 𝐶!,
𝐶", 𝐶#	in 𝐺$%! (𝐶!, 𝐶", 𝐶# are the connected components containing 𝑢, 𝑣, 𝑤 respectively)

C1

C2 C3

e1

u

v w
e2

C1

C2

C3

e1

u

v

w
e2

(a)

(b)

e2

e1

i−1 i

T1

T2

T3

u

v

w

e2

e1

i−1 i

T1

T2

T3

u

v

w

3. Switch two negative edges 𝒆𝟏, 𝒆𝟐
• Based on the structure of the merge forest, there are two connecting configurations for 𝐶!,
𝐶", 𝐶#	in 𝐺$%! (𝐶!, 𝐶", 𝐶# are the connected components containing 𝑢, 𝑣, 𝑤 respectively)

C1

C2 C3

e1

u

v w
e2

C1

C2

C3

e1

u

v

w
e2

(a)

(b) If 𝑤 is lower than 𝑢, then swap the
paired vertices of 𝑒%, 𝑒#
• Provable by case analysis

DFT-Tree
Data structures implementing the merge forests [Farina, Laura, 2015]:

Gabriele Farina and Luigi Laura. Dynamic subtrees queries revisited: The depth first tour tree. 2015.

DFT-Tree
Data structures implementing the merge forests [Farina, Laura, 2015]:

Gabriele Farina and Luigi Laura. Dynamic subtrees queries revisited: The depth first tour tree. 2015.

𝑂 log𝑚

Returns the lowest leaf for a subtree

Detecting if 𝒆𝟏 = (𝒖, 𝒗) is in a cycle in 𝑮𝒊$𝟏
• Check if 𝑢, 𝑣 are connected in 𝐺′(

• Check the first time 𝑢, 𝑣 are connected in the filtration ℱ′
• Based on an idea in [DH21], do following:

o Let edges in 𝐺 ≔ 𝐺& be weighted by their indices in ℱ′
o The first time 𝑢, 𝑣 are connected = 1 + the bottleneck weight of the path in the MSF of
𝐺 (bottleneck weight: max weight of edges)

• Maintain the MSF over the switch by the Link-Cut tree [ST81]:
• Everything can be in 𝑂 log𝑚 time
• This is possible because we are only doing switches (switching the weights for edges

whose weights are consecutive)

- Tamal K. Dey and Tao Hou. Computing zigzag persistence on graphs in near-linear time. 2021.
- Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. 1981.

Detecting if 𝒆𝟏 = (𝒖, 𝒗) is in a cycle in 𝑮𝒊$𝟏
• Check if 𝑢, 𝑣 are connected in 𝐺′(

• Check the first time 𝑢, 𝑣 are connected in the filtration ℱ′
• Based on an idea in [DH21], do following:

o Let edges in 𝐺 ≔ 𝐺& be weighted by their indices in ℱ′
o The first time 𝑢, 𝑣 are connected = 1 + the bottleneck weight of the path in the MSF of
𝐺 (bottleneck weight: max weight of edges)

• Maintain the MSF over the switch by the Link-Cut tree [ST81]:
• Everything can be in 𝑂 log𝑚 time
• This is possible because we are only doing switches (switching the weights for edges

whose weights are consecutive)

- Tamal K. Dey and Tao Hou. Computing zigzag persistence on graphs in near-linear time. 2021.
- Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. 1981.

Detecting if 𝒆𝟏 = (𝒖, 𝒗) is in a cycle in 𝑮𝒊$𝟏
• Check if 𝑢, 𝑣 are connected in 𝐺′(

• Check the first time 𝑢, 𝑣 are connected in the filtration ℱ′
• Based on an idea in [DH21], do following:

o Let edges in 𝐺 ≔ 𝐺& be weighted by their indices in ℱ′
o The first time 𝑢, 𝑣 are connected = 1 + the bottleneck weight of the path in the MSF of
𝐺 (bottleneck weight: max weight of edges)

• Maintain the MSF over the switch by the Link-Cut tree [ST81]:
• Everything can be in 𝑂 log𝑚 time
• This is possible because we are only doing switches (switching the weights for edges

whose weights are consecutive)

- Tamal K. Dey and Tao Hou. Computing zigzag persistence on graphs in near-linear time. 2021.
- Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. 1981.

Detecting if 𝒆𝟏 = (𝒖, 𝒗) is in a cycle in 𝑮𝒊$𝟏
• Check if 𝑢, 𝑣 are connected in 𝐺′(

• Check the first time 𝑢, 𝑣 are connected in the filtration ℱ′
• Based on an idea in [DH21], do following:

o Let edges in 𝐺 ≔ 𝐺& be weighted by their indices in ℱ′
o The first time 𝑢, 𝑣 are connected = 1 + the bottleneck weight of the path in the MSF of
𝐺 (bottleneck weight: max weight of edges)

• Maintain the MSF over the switch by the Link-Cut tree [ST81]:
• Everything can be in 𝑂 log𝑚 time
• This is possible because we are only doing switches (switching the weights for edges

whose weights are consecutive)

- Tamal K. Dey and Tao Hou. Computing zigzag persistence on graphs in near-linear time. 2021.
- Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. 1981.

Detecting if 𝒆𝟏 = (𝒖, 𝒗) is in a cycle in 𝑮𝒊$𝟏
• Check if 𝑢, 𝑣 are connected in 𝐺′(

• Check the first time 𝑢, 𝑣 are connected in the filtration ℱ′
• Based on an idea in [DH21], do following:

o Let edges in 𝐺 ≔ 𝐺& be weighted by their indices in ℱ′
o The first time 𝑢, 𝑣 are connected = 1 + the bottleneck weight of the path in the MSF of
𝐺 (bottleneck weight: max weight of edges)

• Maintain the MSF over the switch by the Link-Cut tree [ST81]:
• Everything can be in 𝑂 log𝑚 time
• This is possible because we are only doing switches (switching the weights for edges

whose weights are consecutive)

- Tamal K. Dey and Tao Hou. Computing zigzag persistence on graphs in near-linear time. 2021.
- Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. 1981.

Updating zigzag persistence on graphs

Four witches on zigzag filtrations
• Switch two consecutive simplex-wise inclusions (additions or deletions)
• Four operations:

Forward
switch

Backward
switch

Outward
switch

Inward
switch

Converting to up-down filtrations
• Our strategy: Convert the zigzag filtrations to up-down filtrations as in [DH22]

o The first half is only additions, and the second is only deletions

o Barcodes of the two filtrations can be easily converted for constant time per bar

• Immediately, inward and outward switches take 𝑂(1) time

• Forward and backward switches: For intervals other than those from the edge-edge pairs,
the update reduces to the standard persistence case, hence 𝑂(log𝑚) time

Tamal K. Dey and Tao Hou. Fast Computation of Zigzag Persistence. 2022.

Converting to up-down filtrations
• Our strategy: Convert the zigzag filtrations to up-down filtrations as in [DH22]

o The first half is only additions, and the second is only deletions

o Barcodes of the two filtrations can be easily converted for constant time per bar

• Immediately, inward and outward switches take 𝑂(1) time

• Forward and backward switches: For intervals other than those from the edge-edge pairs,
the update reduces to the standard persistence case, hence 𝑂(log𝑚) time

Tamal K. Dey and Tao Hou. Fast Computation of Zigzag Persistence. 2022.

Converting to up-down filtrations
• Our strategy: Convert the zigzag filtrations to up-down filtrations as in [DH22]

o The first half is only additions, and the second is only deletions

o Barcodes of the two filtrations can be easily converted for constant time per bar

• Immediately, inward and outward switches take 𝑂(1) time

• Forward and backward switches: For intervals other than those from the edge-edge pairs,
the update reduces to the standard persistence case, hence 𝑂(log𝑚) time

Tamal K. Dey and Tao Hou. Fast Computation of Zigzag Persistence. 2022.

𝑶 𝒎 algorithm for updating edge-edge pairs
• Based on a direct maintenance of representative cycles for the pairs
• Similar to the vineyard algorithm [CEM06]

𝑶(𝒎 𝐥𝐨𝐠𝒎)	algorithm: ideas
• Eliminate the explicit maintenance of representative cycles by observing: the update only

need to check the connectivity of two vertices in the intersection of two graphs in the up-
down filtration, where one graph is from the ascending part and the other is from the
descending part.

• Maintain the MSF’s for 𝑚 graphs in the ascending part where the edges are weighted
by indices in the descending part.

• Each MSF is a Link-Cut tree.

𝑶(𝒎 𝐥𝐨𝐠𝒎)	algorithm: ideas
• Eliminate the explicit maintenance of representative cycles by observing: the update only

need to check the connectivity of two vertices in the intersection of two graphs in the up-
down filtration, where one graph is from the ascending part and the other is from the
descending part.

• Maintain the MSF’s for 𝑚 graphs in the ascending part where the edges are weighted
by indices in the descending part.

• Each MSF is a Link-Cut tree.

Computing zigzag persistence on graphs in
𝑶(𝒎 𝐥𝐨𝐠𝒎) time

Ideas
• Converting to up-down filtration as done previously in 𝑂 𝑚 time

• Utilize the pairing algorithm proposed in [YMGTC21]

• Use the Link-Cut tree to perform the pairing

Zuoyu Yan, Tengfei Ma, Liangcai Gao, Zhi Tang, and Chao Chen. Link prediction with persistent homology: An interactive view. 2021

Thank you!

